ebook img

A primer on mapping class groups PDF

489 Pages·2011·2.509 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A primer on mapping class groups

A Primer on Mapping Class Groups PrincetonMathematicalSeries EDITORS: PHILLIP A. GRIFFITHS, JOHN N. MATHER, AND ELIAS M. STEIN 1. TheClassicalGroupsbyHermannWeyl 8. TheoryofLieGroups:IbyC.Chevalley 9. Mathematical MethodsofStatistics byHaraldCrame´r 14. TheTopologyofFibreBundlesbyNormanSteenrod 17. Introduction toMathematical Logic,Vol.IbyAlonzoChurch 19. Homological AlgebrabyH.CartanandS.Eilenberg 28. ConvexAnalysisbyR.T.Rockafellar 30. Singular Integrals and Differentiability Properties of Functions by E. M.Stein 32. Introduction to Fourier Analysis on Euclidean Spaces by E. M. Stein andG.Weiss 33. E´taleCohomology byJ.S.Milne 35. Three-Dimensional GeometryandTopology, Volume1byWilliamP. Thurston. EditedbySilvioLevy 36. Representation Theory of Semisimple Groups: An Overview Based onExamplesbyAnthonyW.Knapp 38. Spin Geometry by H. Blaine Lawson, Jr., and Marie-Louise Michel- sohn 43. Harmonic Analysis: Real Variable Methods, Orthogonality, and Os- cillatory Integrals byEliasM.Stein 44. TopicsinErgodicTheorybyYa.G.Sinai 45. CohomologicalInductionandUnitaryRepresentationsbyAnthonyW. KnappandDavidA.Vogan,Jr. 46. Abelian Varieties with Complex Multiplication and Modular Func- tionsbyGoroShimura 47. Real Submanifolds in Complex Space and Their Mappings by M. SalahBaouendi, PeterEbenfelt,andLindaPreissRothschild 48. Elliptic PartialDifferential Equations andQuasiconformal Mappings inthePlanebyKariAstala,TadeuszIwaniec,andGavenMartin 49. A Primer on Mapping Class Groups by Benson Farb and Dan Mar- galit A Primer on Mapping Class Groups Benson Farb and Dan Margalit PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright (cid:1)c 2012byPrincetonUniversityPress Published byPrincetonUniversityPress,41WilliamStreet,Princeton, NewJersey08540 IntheUnitedKingdom:PrincetonUniversityPress,6OxfordStreet, Woodstock, Oxfordshire OX201TW press.princeton.edu AllRightsReserved ISBN978-0-691-14794-9 LibraryofCongressCataloging-in-Publication Data Farb,Benson. Aprimeronmappingclassgroups/BensonFarb,DanMargalit. p.cm.–(Princeton mathematicalseries) Includes bibliographical references andindex. ISBN978-0-691-14794-9 (hardback) 1. Mappings (Mathematics) 2. Class groups (Mathematics) I. Margalit, Dan,1976–II.Title.III.Series QA360.F372011 512.7’4–dc22 2011008491 BritishLibraryCataloging-in-Publication Dataisavailable Thisbookhasbeencomposed inTimesandHelvetica. The publisher would like to acknowledge the authors of this volume for providing thecamera-ready copyfromwhichthisbookwasprinted. Printedonacid-free paper.∞ PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 ToAmieandKathleen This page intentionally left blank Contents Preface xi Acknowledgments xiii Overview 1 PART1. MAPPINGCLASSGROUPS 15 1. Curves,Surfaces,andHyperbolicGeometry 17 1.1 SurfacesandHyperbolicGeometry 17 1.2 SimpleClosedCurves 22 1.3 TheChangeofCoordinatesPrinciple 36 1.4 ThreeFactsaboutHomeomorphisms 41 2. MappingClassGroupBasics 44 2.1 DefinitionandFirstExamples 44 2.2 ComputationsoftheSimplestMappingClassGroups 47 2.3 TheAlexanderMethod 58 3. DehnTwists 64 3.1 DefinitionandNontriviality 64 3.2 DehnTwistsandIntersectionNumbers 69 3.3 BasicFactsaboutDehnTwists 73 3.4 TheCenteroftheMappingClassGroup 75 3.5 RelationsbetweenTwoDehnTwists 77 3.6 Cutting,Capping,andIncluding 82 4. GeneratingtheMappingClassGroup 89 4.1 TheComplexofCurves 92 4.2 TheBirmanExactSequence 96 4.3 ProofofFiniteGeneration 104 4.4 ExplicitSetsofGenerators 107 5. PresentationsandLow-dimensionalHomology 116 5.1 TheLanternRelationandH1(Mod(S);Z) 116 5.2 PresentationsfortheMappingClassGroup 124 5.3 ProofofFinitePresentability 134 viii CONTENTS 5.4 Hopf’sFormulaandH2(Mod(S);Z) 140 5.5 TheEulerClass 146 5.6 SurfaceBundlesandtheMeyerSignatureCocycle 153 6. TheSymplecticRepresentationandtheTorelliGroup 162 6.1 AlgebraicIntersectionNumberasaSymplecticForm 162 6.2 TheEuclideanAlgorithmforSimpleClosedCurves 166 6.3 MappingClassesasSymplecticAutomorphisms 168 6.4 CongruenceSubgroups,Torsion-freeSubgroups,andResidualFiniteness 176 6.5 TheTorelliGroup 181 6.6 TheJohnsonHomomorphism 190 7. Torsion 200 7.1 Finite-orderMappingClassesversusFinite-orderHomeomorphisms 200 7.2 Orbifolds,the84(g−1)Theorem,andthe4g+2Theorem 203 7.3 RealizingFiniteGroupsasIsometryGroups 213 7.4 ConjugacyClassesofFiniteSubgroups 215 7.5 GeneratingtheMappingClassGroupwithTorsion 216 8. TheDehn–Nielsen–BaerTheorem 219 8.1 StatementoftheTheorem 219 8.2 TheQuasi-isometryProof 222 8.3 TwoOtherViewpoints 236 9. BraidGroups 239 9.1 TheBraidGroup:ThreePerspectives 239 9.2 BasicAlgebraicStructureoftheBraidGroup 246 9.3 ThePureBraidGroup 248 9.4 BraidGroupsandSymmetricMappingClassGroups 253 PART2. TEICHMU¨LLERSPACEANDMODULISPACE 261 10. Teichmu¨llerSpace 263 10.1 DefinitionofTeichmu¨llerSpace 263 10.2 Teichmu¨llerSpaceoftheTorus 265 10.3 TheAlgebraicTopology 269 10.4 TwoDimensionCounts 272 10.5 TheTeichmu¨llerSpaceofaPairofPants 275 10.6 Fenchel–NielsenCoordinates 278 10.7 The9g−9Theorem 286 11. Teichmu¨llerGeometry 294 11.1 QuasiconformalMapsandanExtremalProblem 294 11.2 MeasuredFoliations 300 11.3 HolomorphicQuadraticDifferentials 308 11.4 Teichmu¨llerMapsandTeichmu¨ller’sTheorems 320 11.5 Gro¨tzsch’sProblem 325 CONTENTS ix 11.6 ProofofTeichmu¨ller’sUniquenessTheorem 327 11.7 ProofofTeichmu¨ller’sExistenceTheorem 330 11.8 TheTeichmu¨llerMetric 337 12. ModuliSpace 342 12.1 ModuliSpaceastheQuotientofTeichmu¨llerSpace 342 12.2 ModuliSpaceoftheTorus 345 12.3 ProperDiscontinuity 349 12.4 Mumford’sCompactnessCriterion 353 12.5 TheTopologyatInfinityofModuliSpace 359 12.6 ModuliSpaceasaClassifyingSpace 362 PART3. THECLASSIFICATIONANDPSEUDO-ANOSOVTHEORY 365 13. TheNielsen–ThurstonClassification 367 13.1 TheClassificationfortheTorus 367 13.2 TheThreeTypesofMappingClasses 370 13.3 StatementoftheNielsen–ThurstonClassification 376 13.4 Thurston’sGeometricClassificationofMappingTori 379 13.5 TheCollarLemma 380 13.6 ProofoftheClassificationTheorem 382 14. Pseudo-AnosovTheory 390 14.1 FiveConstructions 391 14.2 Pseudo-AnosovStretchFactors 403 14.3 PropertiesoftheStableandUnstableFoliations 408 14.4 TheOrbitsofaPseudo-AnosovHomeomorphism 414 14.5 LengthsandIntersectionNumbersunderIteration 419 15. Thurston’sProof 424 15.1 AFundamentalExample 424 15.2 ASketchoftheGeneralTheory 434 15.3 MarkovPartitions 442 15.4 OtherPointsofView 445 Bibliography 447 Index 465

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.