ebook img

A primer on A-infinity-algebras and their Hochschild homology PDF

0.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A primer on A-infinity-algebras and their Hochschild homology

A PRIMER ON A∞-ALGEBRAS AND THEIR HOCHSCHILD HOMOLOGY STEPHANMESCHER Ruhr-Universita¨tBochum Fakulta¨tfu¨rMathematik 6 Universita¨tsstraße 150 1 44801Bochum(Germany) 0 2 n ABSTRACT. Wepresentanelementaryandself-containedconstructionofA∞-algebras, a A∞-bimodulesand theirHochschildhomologyand cohomologygroups. Inaddition, J wediscussthecupproductinHochschildcohomologyandthespectralsequenceofthe 5 lengthfiltrationofaHochschildchaincomplex. 1 A∞-structuresarisenaturallyinthestudyofbasedloopspacesandthegeometryof manifolds, in particular in Lagrangian Floer theory and Morse homology. In several ] A geometricsituations,Hochschildhomologymaybeusedtodescribehomologygroups offreeloopspaces,seee.g.[Jon87],[Goo85]or[Sei09]. R The objective of this article is not to introduce new material, but to give a unified h. and coherent discussionof algebraic results from several sources. It further includes t detailedproofsofallpresentedresults. a m [ 1 v CONTENTS 3 Introduction 1 6 9 Acknowledgements 2 3 1. A∞-algebrasand-bimodules 3 0 . 2. Hochschildhomologyof A∞-algebras 11 1 3. Hochschildcohomologyof A∞-algebras 36 0 4. TheHochschildcupproduct 42 6 1 5. ThelengthfiltrationofaHochschildchaincomplexanditsspectralsequence 54 : References 59 v i X r a INTRODUCTION A∞-algebras, also known as strongly homotopy associative algebras, are generaliza- tionsofassociativealgebras. Theyare obtainedbyformalizing andrefiningthenotion that the product of an algebra is associative up to homotopy. They were introduced by E-mail address:[email protected]. Date:January18,2016. 1 2 APRIMERON A∞-ALGEBRASANDTHEIRHOCHSCHILDHOMOLOGY James Stasheff in [Sta63b] for the study of based loop spaces and further used in ho- motopy theory by several authors. In the geometry of manifolds, A∞-algebras and theirgeneralizationsto A∞-categorieswereintroducedintoMorsehomologyandFloer homology in symplectic geometry by Kenji Fukaya in [Fuk93] (see also [Sei08b] for a detaileddiscussion). InhistalkattheICM1994,MaximKontsevichusedA∞-structures in the formulation of his homological version of the mirror symmetry conjecture, see [Kon95]. The author’s aim is to give an introduction to A∞-algebras and their Hochschild (co)- homologywhichisaselementaryandasself-containedaspossible. While A∞-algebras are introduced and well explained in several places in the literature, e.g. in [Kel01], [GJ90], [Tra08b] or [KS09], and while their Hochschild homology has also been de- scribed on several occasions, e.g. in [Sei08a, Section 5] or [KS09, Section 7], the author wasnotabletoobtainasourcewhichdiscussesthetopicscontainedinthisarticleboth in an elementary and in a complete way, especially including all necessary sign com- putations. Thisarticleisintendedtoprovidearemedy. Afterpresentingthedefinitionsand somebasic constructionsof A∞-algebras and A∞- bimodulesin Section1,wedefinetheHochschildhomologyof A∞-algebras in Section 2 and show that morphisms of A∞-bimodules induce homomorphisms between the correspondingHochschildhomologygroups. ThelargestpartofSection2is occupied by the proof of the latter statement and by the proof of Theorem 2.5, stating that the differentialoftheHochschildchaincomplexisindeedadifferential. In Section 3 we define the notion of Hochschild cohomology of A∞-algebras and pro- vide a detailed discussion of its duality with Hochschild homology. Additionally, we explicitly describe the case that the coefficient A∞-bimodule is given by the algebra itself. Afterwards, we define the cup product structure of Hochschild cohomology in Section4andshowthatitisinducedbyachainmapdefinedontheHochschildcochain complex. We conclude this article by discussing the spectral sequence of the length filtration of a Hochschild chain complex in detail in Section 5. This spectral sequence has useful convergenceproperties.Moreover,itsfirstpagehasaconcisedescriptionwhichwewill usetoproveasimplecriterionforcertainmapstoinduceisomorphismsofHochschild homologygroups. ThroughoutthisarticleletRdenoteacommutativeringwithunit. Byan R-module,wealways mean a bimodule over R. All tensor products appearing in this article refer to tensor products of R-modules. Agraded R-moduleisalwaysassumedtobegradedoverZ. ACKNOWLEDGEMENTS This article is a byproduct of the author’s Ph.D. thesis in preparation, written under the guidance of Prof. Dr. Matthias Schwarz at the University of Leipzig and partially supportedbyascholarshipfromtheDeutscheTelekomFoundation. Theauthorthanks MatthiasSchwarzandAlbertoAbbondandoloforvaluablediscussionson A∞-algebras andtheirapplicationsinthegeometryofmanifolds. APRIMERON A∞-ALGEBRASANDTHEIRHOCHSCHILDHOMOLOGY 3 1. A∞-ALGEBRAS AND -BIMODULES We begin by giving an elementary definition of an A∞-algebra. Note that our sign conventions coincide with those in [Sei08b], [Sei08a] and [GJ90], but differ from the conventionsusedin[Tra08b]and[Tra08a]. Definition 1.1. A graded R-module A = j∈Z Aj equipped with a family of homo- morphismsofgradedR-modules L µ : A⊗n → A , degµ = 2−n, foreveryn ∈ N, n n willbecalledan A∞-algebraover Rifthefollowingequationissatisfiedforeveryr ∈ N andeverya ,...,a ∈ A: 1 r ∑ r+∑1−n1(−1)z1i−1µn2(a1,...,ai−1,µn1(ai,...,ai+n1−1),ai+n1,...,ar) = 0, (1.1) n1,n2∈N i=1 n1+n2=r+1 where1 j zj := zj(a ,...,a ) := ∑µ(x )−(j−i+1) (1.2) i i 1 r q q=i for all i,j ∈ {1,2,...,r} with i ≤ j and where for every k ∈ Z we write µ(a) = k iff a ∈ A . For a fixed r ∈ N we refer to equation (1.1) as the r-th defining equation of the k A∞-algebra(A,(µn)n∈N). Example1.2. (1) Everydifferentialgradedalgebra(DGA)over R,i.e. anassociative graded algebra over R which comes with a differential satisfying the graded Leibniz rule, can be given the structure of an A∞-algebra. We simply put µ1 to be the differential, µ to be the algebra multiplication and µ to be zero for 2 n every n ≥ 3. In this case, the second defining equation reduces to the graded Leibnizrule,thethirddefiningequationisequivalenttotheassociativityofthe multiplicationandalldefiningequationsofhigherordersimplyvanishonboth sides. (2) Stasheffhasshownin[Sta63a]and[Sta63b]thatthesingularchaincomplexofa based loop space can always be equippedwith the structureof an A∞-algebra. Themapµ isgiven(uptoinvertingthegrading)bythedifferentialofthecom- 1 plex. The map µ is given by the Pontryagin product, i.e. the map induced 2 on singular chains by the composition of loops. While it is easy to see that the Pontryagin product is associative up to a chain homotopy, Stasheff introduced A∞-algebrastoshowthatthisstatementcanbestronglyrefined. Remark 1.3. It is possible to give a slightly more concise and elegant definition of an A∞-algebraandallothernotionsdefinedinthissectionintermsoftheusualcoalgebra structureonthetensoralgebraof A. ThismethodwasintroducedbyGetzlerandJones in [GJ90] and furtherconsideredby Tradler in [Tra08b] and [Tra08a] and severalother authors. 1 TheuseoftheMaltesecrossforthecoefficientsdefiningthesignsinthisarticlehappensinaccordance with the notation of the works of Mohammed Abouzaid and Paul Seidel, e.g. [Sei08b] or [Abo10]. In particular,theauthordistanceshimselffromanypoliticalmeaningorimplicationofthissymbol. 4 APRIMERON A∞-ALGEBRASANDTHEIRHOCHSCHILDHOMOLOGY Throughouttherestofthissectionlet(A,(µn)n∈N)bean A∞-algebraover R. Definition1.4. Let M = j∈Z Mj beagradedR-module. (1) For a ∈ A, we puLt µ(a) := j iff a ∈ Aj and call µ(a) the index of a. We further callkak := µ(a)−1thereducedindexofa. (2) For m ∈ M, we put µ (m) := j iff m ∈ M and call µ (m) the index of m. We M j M furthercall kmk := µ (m)−1thereducedindexofm. M j Inthisnotationwehavezj = ∑ka kforalliand j. i q q=i Remark 1.5. Thesignsappearing in thedefiningequationsof A are bestunderstoodin terms ofreduced indices. We consider theshifted cochain complex A[1] = j∈Z A[1]j, givenby L A[1] = A ∀j ∈ Z , j j+1 whose differential is given by µ . In other words, the elements of A[1] are those ele- 1 j mentsof Awhosereducedindexequals j,i.e. itholdsthat µ (a) = kak (1.3) A[1] for every a ∈ A. If one considers the operation µ as defined on (A[1])⊗d instead of d A⊗d, then the signs in the defining equations of the A∞-algebra A will be obtained by followingtheusualKoszulsignconvention. ThefollowingnotionwasintroducedbyEzraGetzlerandJohnD.S.Jonesin[GJ90]and byMartinMarklin[Mar92]. Definition 1.6. A graded R-module M equipped with a family of maps (µrM,s)r,s∈N0 where µM : A⊗r⊗M⊗ A⊗s → M r,s isanR-modulehomomorphismwithdegµrM,s = 1−r−swillbecalledan A∞-bimodule over Aifthefollowingequationholdsforeveryr,s ∈ N ,m ∈ M anda ,...,a ∈ A: 0 1 r+s ∑ ∑r1 (−1)z1i−1µrM1,s(a1,...,ai−1,µr2(ai,...,ai+r2−1),ai+r2,...,ar,m,ar+1,...,ar+s) r1∈N0,r2∈Ni=1 r1+r2=r+1 + ∑ ∑ (−1)z1r1µrM1,s1(a1,...,ar1,µrM2,s2(ar1+1,...,ar,m,ar+1,...,ar+s2),...,ar+s) r1,r2∈N0 s1,s2∈N0 r1+r2=rs1+s2=s + ∑ ∑s1 (−1)z1r−j+1+µM(m) s1∈N0,s2∈N j=1 s1+s2=s+1 µM (a ,...,a ,m,a ,...,a ,µ (a ,...,a ),a ,...,a ) = 0. r,s1 1 r r+1 r+j−1 s2 r+j r+j+s2−1 r+j+s2 r+1 Werefertothisequationasthedefiningequationoftype(r,s) forthe A∞-bimodule M. APRIMERON A∞-ALGEBRASANDTHEIRHOCHSCHILDHOMOLOGY 5 Notethatthedefiningequationoftype(0,0) isequivalenttothemap µM := µM : M → M 0,0 beingadifferentialofdegree+1on M. Remark1.7. Itfollowsfrom(1.3)thatA[1]isan A∞-bimoduleoverAwiththeoperations definedby µA[1] : A⊗r⊗ A[1]⊗ A⊗s → A[1], r,s A[1] µ (a ,...,a ,a ,a ,...,a ) = µ (a ,...,a ,a ,a ,...,a ), r,s 1 r 0 r+1 r+s r+s+1 1 r 0 r+1 r+s forallr,s ∈ N . 0 Next we construct a slightly more sophisticatedexample which is taken from [Abo10, Section 4]. Consider the tensor product A⊗ A of graded R-modules. In general, the tensorproductoftwo A∞-algebrascannotbegiventhestructureofan A∞-algebra,see [KS09,Section5.2]. Nevertheless,weshowthat A⊗ Awill alwaysadmit thestructure ofan A∞-bimoduleover Aifweequipitwiththegrading µ (b ⊗b ) = kb k+kb k, A⊗A 1 2 1 2 i.e. ifweactuallyconsidertheproductgradingon A[1]⊗ A[1]. Definemapsµ⊗ by r,s µ⊗ : A⊗r⊗(A⊗ A)⊗A⊗s → A⊗ A, µ⊗ = 0 for r,s > 0, r,s r,s µ⊗ : A⊗r⊗(A⊗A) → A⊗ A, r,0 a ⊗···⊗a ⊗(b ⊗b ) 7→ µ (a ,...,a ,b )⊗b for r > 0, 1 r 1 2 r+1 1 r 1 2 µ⊗ : (A⊗A)⊗A⊗s → A⊗ A, 0,s (b1⊗b2)⊗a1⊗···⊗as 7→ (−1)kb1kb1⊗µs+1(b2,a1,...,as) fors > 0, µ⊗ : A⊗A → A⊗ A, b ⊗b 7→ µ (b )⊗b +(−1)kb1kb ⊗µ (b ). 0,0 1 2 1 1 2 1 1 2 Theorem1.8([Abo10],Proposition4.7). (A⊗A,(µr⊗,s)r,s∈N0)isan A∞-bimoduleover A. Proof. By definition, µ⊗ vanishes if both r > 0 and s > 0 and so does the left-hand r,s sideofthedefiningequationofan A∞-bimodule. Ifr = 0, s = 0,thedefiningequation is equivalent to µ⊗ ◦µ⊗ = 0, which is clear from the definition of µ⊗ as a product 0,0 0,0 0,0 differential. Assumethatr > 0and s = 0. Thenthethirdsumontheleft-hand sideofthedefining equation of type (r,0) vanishes by definition, while for every a ,...,a ,b ,b ∈ A the 1 r 1 2 firstsumisgivenby: ∑ ∑r1 (−1)z1i−1µr⊗1,0(a1,...,ai−1,µr2(ai,...,ai+r2−1),ai+r2,...,ar,b1⊗b2) r1∈N0,r2∈N i=1 r1+r2=r+1 = ∑ r∑1−1(−1)z1i−1µr1(a1,...,ai−1,µr2(ai,...,ai+r2−1),...,ar,b1)⊗b2 . (1.4) r1,r2∈N i=1 r1+r2=r+2 6 APRIMERON A∞-ALGEBRASANDTHEIRHOCHSCHILDHOMOLOGY The reader may notice the similarity of this sum to the left-hand side of the (r+1)-st defining equation of the A∞-algebra A for the elements a1,...,ar,b1 ∈ A tensorized with b , except that some parts of the defining equation are still missing. We will see 2 that thesepartsare containedin thesecondsumofthedefiningequation oftype(r,s) whichwenextwritedownexplicitly. ∑ (−1)z1r1µr⊗1,0(a1,...,ar1,µr⊗2,0(ar1+1,...,ar,b1⊗b2)) r1,r2∈N0 r1+r2=r = (−1)z1rµr⊗,0(a1,...,ar,µ0⊗,0(b1⊗b2))+µ0⊗,0(µr,0(a1,...,ar,b1⊗b2)) + ∑ (−1)z1r1µr⊗1,0(a1,...,ar1,µr⊗2,0(ar1+1,...,ar,b1⊗b2)) r1,r2∈N r1+r2=r = (−1)z1rµr⊗,0(a1,...,ar,µ1(b1)⊗b2+(−1)kb1kb1⊗µ1(b2)) +µ⊗ (µ (a ,...,a ,b )⊗b ) 0,0 r+1 1 r 1 2 + ∑ (−1)z1r1µr1+1(a1,...,ar1,µr2+1(ar1+1,...,ar,b1))⊗b2 r1,r2∈N r1+r2=r = (−1)z1rµr+1(a1,...,ar,µ1(b1))⊗b2+(−1)z1r+kb1kµr+1(a1,...,ar,b1)⊗µ1(b2) +µ1(µr+1(a1,...,ar,b1))⊗b2+(−1)kµr+1(a1,...,ar,b1)kµr+1(a1,...,ar,b1)⊗µ1(b2) + ∑ (−1)z1r1−1µr1(a1,...,ar1−1,µr2(ar1,...,ar,b1))⊗b2 r1,r2≥2 r1+r2=r+2 = ∑ (−1)z1r−1µr1(a1,...,ar1−1,µr2(ar1,...,ar,b1))⊗b2 (1.5) r1≥2,r2∈N +µ (µ (a ,...,a ,b ))⊗b , 1 r+1 1 r 1 2 wherewehaveusedthefactthat r kµ (a ,...,a ,b )k = ∑ ka k+kb k+1 = zr +kb k+1, r+1 1 r 1 q 1 1 1 q=1 since degµ = 1−r. Thus, we have shown that for A⊗ A, the left-hand side of r+1 the defining equation for A∞-bimodules is given by the sum of (1.4) and (1.5), which amountsto: ∑ r∑1−1(−1)z1i−1µr1(a1,...,ai−1,µr2(ai,...,ai+r2−1),ai+r2,...,ar,b1)⊗b2 r1,r2∈N i=1 r1+r2=r+2 + ∑ (−1)z1r1−1µr1(a1,...,ar1−1,µr2(ar1,...,ar,b1))⊗b2 r1,r2∈N r1+r2=r+2 = ∑ ∑r1 (−1)z1i−1µr1(a1,...,ai−1,µr2(ai,...,ai+r2−1),ai+r2,...,ar,b1)⊗b2 . r1,r2∈N i=1 r1+r2=r+2 APRIMERON A∞-ALGEBRASANDTHEIRHOCHSCHILDHOMOLOGY 7 The latter sum equals the left-hand side of the A∞-equation for r+1 tensorized with b2. Since Aisan A∞-algebra,thesumvanishes. Weomittheremainingcase,r = 0ands > 0,sinceitisprovenanalogously. (cid:3) The following theoremshows that the dual R-module of an A∞-bimodule can always beequippedwiththestructureofan A∞-bimoduleoverthesame A∞-algebra. Theorem 1.9 ([Tra08b], Lemma 3.9). Let M,(µrM,s)r,s∈N0 be an A∞-bimodule over R and let M∗ = HomR(M,R) denote its dual R(cid:0)-bimodule. Then(cid:1) M−∗,(µr∗,s)r,s∈N0 is an A∞- bimoduleover A,where M−∗ denotes M∗ withinvertedgrading, i.e. (cid:0) (cid:1) M−j := (M−∗)j := Hom (M ,R), R −j and where µ∗ : A⊗r⊗ M−∗⊗ A⊗s → M−∗ is for all r,s ∈ N , a ,...,a ∈ A, m ∈ M r,s 0 1 r+s andm∗ ∈ M−∗ definedby µr∗,s(a1,...,ar,m∗,ar+1,...,ar+s) (m) = (−1)‡r,sm∗ µsM,r(ar+1,...,ar+s,m,a1,...,ar) (cid:16) (cid:17) (cid:0) (cid:1) with ‡ := ‡ (a ,...,a ,m∗,a ,...,a ,m) r,s r,s 1 r r+1 r+s := zr1· zrr++1s +µM∗(m∗)+µM(m) +µM∗(m∗)+1. (cid:0) (cid:1) Proof. (We repeat Tradler’s proof and add a sign computation since we use different signconventions.) We exhibit the operations µr∗,s r,s∈N0 to fulfill the A∞-bimodule equation. We needto showforallr,s ∈ N ,a ,...,a ∈ A,m ∈ Mandm∗ ∈ M−∗ that 0 1 (cid:0) r(cid:1)+s ∑ ∑r1 (−1)z1i−1µr∗1,s(a1,...,µr2(ai,...,ai+r2−1),ai+r2,...,ar,m∗,ar+1,...,ar+s)(m) r1+r2=r+1i=1 + ∑ ∑ (−1)z1r1µr∗1,s1(a1,...,µr∗2,s2(ar1+1,...,ar,m∗,ar+1,...,ar+s2),...,ar+s)(m) r1+r2=rs1+s2=s + ∑ ∑s1 (−1)z1r+j−1+µ(m∗) s1+s2=s+1j=1 µ∗ (a ,...,a ,m∗,a ,...,a ,µ (a ,...,a ),a ,...,a )(m) =! 0. r,s1 1 r r+1 r+j−1 s2 r+j r+j+s2−1 r+j+s2 r+1 8 APRIMERON A∞-ALGEBRASANDTHEIRHOCHSCHILDHOMOLOGY whereµ(m∗) := µM∗(m∗). Bydefinitionoftheµr∗,s,theleft-handsideofthisequationis givenby ∑ ∑r1 (−1)z1i−1+‡r1,s(a1,...,µr2(ai,...,ai+r2−1),...,ar,m∗,ar+1,...,ar+s,m) r1+r2=r+1i=1 m∗ µM (a ,...,a ,m,a ,...,µ (a ,...,a ),...,a ) s,r1 r+1 r+s 1 r2 i i+r2−1 r + ∑ (cid:16) ∑ (−1)z1r1+‡r1,s1(a1,...,ar1,µ∗r2,s2(ar1+1,...,ar,m∗,ar+1,...,ar+s2),ar+s2(cid:17)+1,...,ar+s,m) r1+r2=rs1+s2=s µ∗ (a ,...,a ,m∗,a ,...,a ) µM (a ,...,a ,m,a ,...,a ) r2,s2 r1+1 r r+1 r+s2 s,r1 r+s2+1 r+s 1 r1 + (cid:0)∑ ∑s1 (−1)z1r+j−1+µ(m∗)+‡r,s1(a1,...,ar,m∗(cid:1),a(cid:16)r+1,...,µs2(ar+j,...,ar+j+s2−1),...,ar+s,m) (cid:17) s1+s2=s+1j=1 m∗ µM (a ,...,a ,µ (a ,...,a ),a ,...,a ,m,a ,...,a ) s1,r r+1 r+j−1 s2 r+j r+j+s2−1 r+j+s2 r+s 1 r = ∑(cid:16) ∑r1 (−1)z1i−1+‡r1,s(a1,...,µr2(ai,...,ai+r2−1),...,ar,m∗,ar+1,...,ar+s,m) (cid:17) r1+r2=r+1i=1 m∗ µM (a ,...,a ,m,a ,...,µ (a ,...,a ),...,a ) s,r1 r+1 r+s 1 r2 i i+r2−1 r + ∑ (cid:16) ∑ (cid:17) r1+r2=rs1+s2=s (−1)z1r1+‡r1,s1(a1,...,µ∗r2,s2(ar1+1,...,m∗,...,ar+s2),...,ar+s,m)+‡r2,s2(ar1+1,...,m∗,...,ar+s2,µsM1,r1(ar+s2+1,...,m,...,ar1)) m∗ µM (a ,...,a ,µM (a ,...,a ,m,a ,...,a ),a ,...,a ) s2,r2 r+1 r+s2 s1,r1 r+s2+1 r+s 1 r1 r1+1 r + ∑(cid:16) ∑s1 (−1)z1r+j−1+µ(m∗)+‡r,s1(a1,...,ar,m∗,ar+1,...,µs2(ar+j,...,ar+j+s2−1),...,ar+s,m) (cid:17) s1+s2=s+1j=1 m∗ µM (a ,...,a ,µ (a ,...,a ),a ,...,a ,m,a ,...,a ) , s1,r r+1 r+j−1 s2 r+j r+j+s2−1 r+j+s2 r+s 1 r (cid:16) (cid:17) Clearlythissumvanishesforeverym∗ ∈ M−∗ ifandonlyif r1 ∑ ∑(−1)S1µsM,r1(ar+1,...,ar+s,m,a1,...,µr2(ai,...,ai+r2−1),...,ar) r1+r2=r+1i=1 + ∑ ∑ (−1)S2µsM2,r2(ar+1,...,µsM1,r1(ar+s2+1,...,ar+s,m,a1,...,ar1),...,ar) r1+r2=rs1+s2=s s1 + ∑ ∑(−1)S3µsM1,r(ar+1,...,µs2(ar+j,...,ar+j+s2−1),...,ar+s,m,a1,...,ar) = 0, s1+s2=s+1j=1 wherewedenotetheexponentsof(−1) in thepreviouscomputationby S , S and S , 1 2 3 respectively. APRIMERON A∞-ALGEBRASANDTHEIRHOCHSCHILDHOMOLOGY 9 Since (M,(µrM,s)r,s∈N0) is an A∞-bimodule over A, the latter equality holds true if we canshowthatmodulo2,wehave S ≡ zr+s +zi−1+µ (m)+k, 1 r+1 1 M (1.6) S ≡ zr+s2 +k, S ≡ zr+j−1+k, 2 r+1 3 r+1 for some k ∈ Z. In this case, multiplying the desired equation with (−1)k yields the definingequationoftype(r,s)forthe A∞-bimodule M. Soitonlyremainstocheckthe signs. ConcerningS ,wecomputethat 1 ‡ (a ,...,µ (a ,...,a ),...,a ,m∗,a ,...,a ,m) r1,s 1 r1 i i+r1−1 r r+1 r+s i−1 r = ∑ ka k+kµ (a ,...,a )k+ ∑ ka k zr+s +µ(m∗)+µ (m) q r2 i i+r2−1 q r+1 M (cid:16)q=1 q=i+r2 (cid:17) (cid:0) (cid:1) +µ(m∗)+1 ≡ (zr +1) zr+s +µ(m∗)+µ (m) +µ(m∗)+1 1 r+1 M ≡ zrr++1s +µ(cid:0)M(m)+µ(m∗)+‡r,s(a1,.(cid:1)..,ar,m∗,ar+1,...,ar+s,m) andthereforebydefinitionofS : 1 S ≡ zr+s +zi−1+µ (m)+k 1 r+1 1 M 0 if we put k := µ(m∗)+‡ . This shows the first line of (1.6). Considering the sign 0 r,s givenbyS ,wefirstcompute 2 ‡ (a ,...,a ,µ∗ (a ,...,a ,m∗,a ,...,a ),a ,...,a ,m) r1,s1 1 r1 r2,s2 r1+1 r r+1 r+s2 r+s2+1 r+s ≡ zr1 zr+s +µ µ∗ (a ,...,a ,m∗,a ,...,a ) +µ (m) 1 r+s2+1 r2,s2 r1+1 r r+1 r+s2 M (cid:16) +µ µ∗(cid:0) (a ,...,a ,m∗,a ,...,a ) +(cid:1)1 (cid:17) r2,s2 r1+1 r r+1 r+s2 ≡ zr1 zr+s +µ(cid:0)(m∗)+µ (m)+1 +zr+s2 +µ(m∗)(cid:1) 1 r1+1 M r1+1 (cid:16) (cid:17) ≡ zr+s2 +zr1 zr+s +µ(m∗)+µ (m) +µ(m∗). 1 1 r1+1 M (cid:16) (cid:17) Furthermore,noticethat ‡ (a ,...,a ,m∗,a ,...,a ,µM (a ,...,a ,m,a ,...,a )) r2,s2 r1+1 r r+1 r+s2 s1,r1 r+s2+1 r+s 1 r1 ≡ zr zr+s2 +µ(m∗)+µ µM (a ,...,a ,m,a ,...,a ) +µ(m∗)+1 r1+1 r+1 M s1,r1 r+s2+1 r+s 1 r1 ≡ zr (cid:16)zr+s +zr1 +µ(m∗)+(cid:16)µ (m)+1 +µ(m∗)+1 (cid:17)(cid:17) r1+1 r+1 1 M ≡ zrr1+1(cid:0)+zr11zrr1+1+zrr1+1 zrr++1s +µ(m∗)(cid:1)+µM(m) +µ(m∗)+1. Combiningtheselasttwocomp(cid:0)utations,thedefinitiono(cid:1)fS2 yields S ≡zr1 +zr+s2 +zr +zr1 zr+s +µ(m∗)+µ (m) +zr1zr 2 1 1 r1+1 1 r1+1 M 1 r1+1 +zr zr+s +µ(cid:16)(m∗)+µ (m) +1 (cid:17) r1+1 r+1 M ≡zrr++1s2 +zr1 zrr++1s(cid:0)+µ(m∗)+µM(m) +1 ≡(cid:1) zrr++1s2 +k0 , (cid:0) (cid:1) 10 APRIMERON A∞-ALGEBRASANDTHEIRHOCHSCHILDHOMOLOGY implyingthefirstcongruencefromthesecondlineof(1.6). Finally,forS weconsider: 3 ‡ (a ,...,a ,m∗,a ,...,µ (a ,...,a ),...,a ,m) r,s1 1 r r+1 s2 r+j r+j+s2−1 r+s ≡ zr zr+j−1+kµ (a ,...,a )k+zr+s +µ(m∗)+µ (m) +µ(m∗)+1 1 r+1 s2 r+j r+j+s2−1 r+j+s2 M ≡ zr (cid:16)zr+s +1+µ(m∗)+µ (m) +µ(m∗)+1 ≡ zr +µ(m∗)+k . (cid:17) 1 r+1 M 1 0 Wecon(cid:0)sequentlyobtainthatS ≡ z(cid:1)r+j−1+k . Thus,wehaveshownallthreeequations 3 r+1 0 of(1.6)withk = k andthereforecompletedtheproof. (cid:3) 0 Weconcludethissectionbydefiningthenotionofmorphismsof A∞-bimodules. Definition 1.10. Let (M,(µrM,s)r,s∈N0) and (N,(µrN,s)r,s∈N0) be A∞-bimodules over A. A familyofmodulehomomorphisms f = (fr,s)r,s∈N0,where: f : A⊗r⊗M⊗A⊗s → N , r,s willbecalledamorphismofA∞-bimodulesfromMtoNofdegreed,denotedby f : M → N, ofdegreed ∈ Z ifehave deg f = d−r−s r,s forallr,s ∈ N andif 0 ∑ ∑ (−1)d·z1r1 r1,r2∈N0 s1,s2∈N0 r1+r2=rs1+s2=s µN (a ,...,a , f (a ,...,a ,m,a ,...,a ),a ,...,a ) r1,s1 1 r1 r2,s2 r1+1 r r+1 r+s1 r+s1+1 r+s = ∑ ∑r1 (−1)z1i−1+d r1,r2∈N i=1 r1+r2=r+1 f (a ,...,a ,µ (a ,...,a ),a ,...,a ,m,a ,...,a ) r1,s 1 i−1 r2 i i+r2−1 i+r2 r r+1 r+s + ∑ ∑ (−1)z1r1+d r1,r2∈N0 s1,s2∈N0 r1+r2=rs1+s2=s f (a ,...,a ,µM (a ,...,a ,m,a ,...,a ),a ,...,a ) r1,s1 1 r1 r2,s2 r1+1 r r+1 r+s2 r+s2+1 r+s + ∑ ∑s1 (−1)z1r+i−1+µ(m)+d s1,s2∈N i=1 s1+s2=s+1 f (a ,...,a ,m,a ,...,a ,µ (a ,...,a ),a ,...,a ) r,s1 1 r r+1 r+i−1 s2 r+i r+i+s2−1 r+i+s2 r+s forall a ,...,a ∈ Aandm ∈ M. Wedenote f by f : M → N. 1 r+s Remark 1.11. The sign coefficients appearing in the defining equations of a morphism of A∞-bimodules might differ from those used other definitions in the literature, e.g. in [Tra08b, Section 4]. However, our choice of signs implies that a morphism of A∞- bimodules induces a map between the corresponding Hochschild chain complexes whichwillbethecontentofTheorem2.8inthenextsection.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.