A Practical Guide to Ecological Modelling A Practical Guide to Ecological Modelling Using R as a Simulation Platform Karline Soetaert and Peter M.J. Herman Netherlands Institute ofEcology,Yerseke,TheNetherlands 123 Dr.KarlineSoetaert Dr.PeterM.J.Herman NetherlandsInstituteofEcology NetherlandsInstituteofEcology CentreforEstuarine&MarineEcology CentreforEstuarine&MarineEcology (NIOO-CEME) (NIOO-CEME) 4400ACYerseke POBox140 POBox140 4400ACYerseke TheNetherlands TheNetherlands [email protected] [email protected] Additionalmaterial,theR-examplesandtheR-codeofallfigures,isavailableasanR-package(ecolMod), whichcanbefoundontheofficialR-website(http://cran.r-project.org/). TheR-examplefilesarealsoavailableonthewebsiteofthisbookatwww.springer.com ISBN:978-1-4020-8623-6 e-ISBN:978-1-4020-8624-3 LibraryofCongressControlNumber:2008933286 (cid:2)c SpringerScience+BusinessMediaB.V.2009 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmitted inanyformorbyanymeans,electronic,mechanical,photocopying,microfilming,recording orotherwise,withoutwrittenpermissionfromthePublisher,withtheexception ofanymaterialsuppliedspecificallyforthepurposeofbeingentered andexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Coverillustration:ViewattheOosterscheldefromtheNetherlandsInstituteofEcology,Yerseke, TheNetherlands.PhotographtakenbyThomasHaverkamp. Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Preface WhyAnotherEcologicalModellingBook? For several years we have taught courses on ecological modelling at the level of graduates or starting PhD students. The audience typically consists of students frombiology,geology,bio-engineering,and,lessfrequently,fromsciencessuchas physicsandchemistry.Formostofthesestudentsourcoursewasafirstacquaintance withthefieldofecologicalmathematicalmodelling.Althoughoftendifficult,itwas an intellectual adventure both for them and for us. The course was set up as an initiationtothesubject,startingfromthemostbasicofprinciplesbutnevertheless leadingtoquiteadvancedapplications. Thisbookisbasedonlecturenotesthatwerewrittenin2001andthataccompany this modelling course. We prepared the original notes because we felt there was shortageofabookcoveringallthematerialthatwewantedtoaddressinourlectures. Thenotesalsoservedasareadabletextthatthestudentscanconsultwhilepreparing for the exam. This allowed us to teach the theory in rather short lessons, leaving moretimetocoverthepracticalexercises,duringwhichwedirectlyinteractedwith thestudentsindividually. This book is written for young researchers who want to get more out of their datathanjustdescription.Evenwhentheyseethepossibilitiesofmodellingtohelp them gaining insight in the processes they study, two factors might frighten them awayfromthispath.Oneismathematicalformalism,theoremsanddetailedproofs, the bread and butter of the applied mathematician. The other is complicated, se- manticandnear-philosophicalecologicaltheory.Wehavesteeredawayfromthese twoextremes.Wehavetriedtowriteabookthatisreadableforanaudiencewitha basicformationinecologyandabasicknowledgeofmathematics.Althoughenough materialispresentedthatmayalsointerestthemoreexperiencedecologicmodeller, it is not a book only readable for either full-blown mathematicians or ecological theoreticians. Throughout the book we have tried to be practical, emphasizing the diversity that exists in mathematical models and techniques. We discuss only the essential aspectsofmathematicalmethods,withoutpretensiontomathematicalrigour:often one does not need to understand the fine details of a technique to correctly apply v vi Preface it,butithelpsgreatlytohaveanintuitiveunderstandingofitsfoundations.Thisis whereouremphasishasbeenplaced. Despite our preference for practical and simple approaches, fact is that the basic methods of solution are often adequate only for the most simple of mod- els. As application of more efficient and complex mathematics may considerably speed up solution, and thus avoid frustration, we do not neglect to mention some more advanced techniques that can make the life of a modeller so much more pleasant. Ecologicalmodellinghasmultipleroots.Manytheoreticalecologicalmodelsgo backinsomewaytothepioneeringworkofLotkaandVolterra.Anewapproach, aimingatenvironmentalmodelling,wasbasedonengineeringprinciplesfromabout the 1960’s onwards. We have taken this approach as a starting point for the book, becauseitismuchmoredirectlybasedonconservationlawsandthereforeaneas- ier vehicle to explain principles underlying modelling. However, we have tried to bridge,fromthere,tothemoreclassicalecologicalapproachinlatersectionsofthe book. ScopeandContent Abriefmentionofthebook’scontentsrevealsitsscope. We start by giving arguments as to why models are useful, from the scien- tific point of view as well as with respect to management. This sets the scene and explains why we are doing what we are doing. Here we introduce some model applications, both simple and complex, that will be expanded on further in thebook. Afterhavingintroducedthesemanticsofmodels,wethenproceedwiththebasic principlesoftransferringecologyintoequations.Thisiswhereourbookdiffersmost fromotherbooks,whichgenerallyassumethatsuchknowledgeisalreadyavailable, or can be deduced from the rather complex examples that these books generally contain.Duringourlectureswebecameawarethatthementalswitchfromdescrip- tivetoprocess-basedthinkingisthelargestleapformostofourstudents,itisNOT themaths.Thereforewespendmuchefforttoexplainanddetailtheformulationof ecologicalinteractions. Next we deal with how space can be incorporated into the mass equations. We concentrateonone-dimensionalproblemswithvariousgeometries,withashortex- cursiontothreedimensions. We then continue with the mathematical solution of the models, mentioning where applicable possible sources of difficulty and error. This section deals with differentialandnumericalcalculus,thebasicmathematicalconceptsareintroduced as they are needed, and compiled in an appendix. This is definitely the most de- mandingpartofthebook,butnecessarytoputtheoryintopractice. Inanextchapter,thederivationofthesteady-statesolutionandsubsequentanal- ysis of its properties introduces concepts such as stability, domains of attraction, multiplestablestatesandbifurcation. Preface vii Thus far, the models that were discussed fall into the category of deterministic differentialequations.Intheremainingpartofthebook,someothertypesofmodelsare dealtwith.Theyincludedifference(discretetime)equations,dynamicmatrixmodels, andsequentialdecisionmodels,alsoknownasdynamicprogrammingmodels. Asitisessentialformakingrobustmodellingapplications,wegenerallyspenda lotoftimeduringourpracticalcoursesondesigning,testing,validatingandimprov- ingecologicalequations.Thisisthetopicofthefinalbookchapter,whichdiscusses varioustechniquesforanalysingmodelbehaviour. Each chapter is organised as follows: an introduction sets the scene of what is to follow, and, if relevant, puts the chapter in perspective with respect to previous chapters. The first sections give the basics and theory, if appropriate illustrated by (simple) examples. Certain sections (starred) probe beyond the elementary level, andmaybeskippedatfirstreading.Wealsofinditimportanttoactuallyshowhow toimplementmodels,suchthatthereadermayacquirehands-onexperience.Thus, each chapter includes case studies that illustrate (nearly) all methods discussed in themaintext,andputthetheoryintopractice.Wherepossible,wechosepublished modelsthataresimpleenoughandwereamongstthefirstintheirkind,toillustrate concepts.Thecodetoruntheseexamples,implementedintheRcomputerlanguage, isincludedanddiscussedinthebookandcanbefoundontheaccompanyingwebsite orontheofficialR-website(seebelow). R,theModellingPlatformUsedinthisBook Forthosewhoarebeinginitiatedinthefield,thelearningofanew(programming) language,ontopofthenewsetsofprinciplesthatsurroundmathematicalmodelling maybeverydemanding.Therefore,duringourpracticalcourses,theproblemshave been kept simple, such that the students can implement them in a spreadsheet, a software package that most of them know or should know. These exercises, and theirsolutions,canbefoundontheaccompanyingwebsite. Forthisbook,wehavetakenadifferentapproachandweuseRforourexamples, mainlybecauseitisfreesoftware,itisrapidlygainingpopularity,R-codeishighly readable,and...wesimplylikeit. AlthoughRwasnotoriginallydevelopedtobeusedasamodellingtool,itisvery wellsuitedforthistask.Inourday-to-daywork,weuseRmainlytodevelopsimple modelsortovisualisemodeloutput.WealsouseRtointerfacewithcompiledmod- elswritteninFortran.Risthenusedforpost-processingthemodeloutput(making graphs,creatingsummaries,performingtests...). As the use of the R-language is growing rapidly, students are now becoming acquaintedwithRduringtheirstatisticalcourses.Weexpect(orhope)thatitisonly a matter of time before the use of spreadsheets in introductory modelling courses canbeavoided. Inanappendix,wegivea-veryshort-introductiontoR.Amoreextensiveintro- ductioncanbefoundonthebook’swebsite. viii Preface TheBooksWebsite Thebookcomeswithsomeadditionalmaterial,whichcanbedownloadedfromthe book’swebsiteonwww.springer.com. The files that contain the example codes are in a subdirectory named after the chapter.Asthecodeisgenerallysmall,wehaveprintedalmostallofitinthebook. Wemakeliberaluseofdiagramsandfiguresinourbook.Thishasapurpose:di- agramsvisualiseconceptsandrelationships,whilefiguresareacriticallyimportant toolforanalyzingmodeloutput.Rhasbeenusedformakingthesediagramsandfig- ures.ThesourcecodeofallbookfigureshasbeenbundledinanofficialR-package (ecolMod–SoetaertandHerman,2008)andputontheR-website(CRAN).Itcan simplybeinstalledasaregularR-package,afterwhichthefiguresofeachchapter canbegeneratedbyrunningademo,namedafterthechapter. Acknowledgements Manypeoplehaveprovidedvaluableinput/feedbackorreviewedpartsofthisbook. WewouldliketothankespeciallyourcolleaguesJackMiddelburg,whocommented ontheoverallconceptandonmostchaptersbutalsostimulatedustostartwriting this book, Filip Meysman, Johan van de Koppel, Matthijs Vos, Dick van Oevelen, Andreas Hofmann, Wolf Mooij and Marcel Klaassen. Whereas all these persons providedgreathelp,ofcourseallremainingerrorsareourownresponsibility.Also thanks to our post-docs (Marilaure Gre´goire, Sophie Rabouille, Caroline Ulses, Jim Greenwood), our (former) PhD students (Dick van Oevelen, Jeroen Wijsman, Filip Meysman, Henrik Andersson, Karel Van den Meersche, Andreas Hofmann, Pieter Provoost, Tom van Engeland, Julius Kones, Paul Obade, Tom Cox) and all MARELACandECOMAMAstudents,forchallengingustoexplainthemodelling processfromthemostbasicuptothehighestlevel. TheRoyalDutchAcademyofScience(KNAW)supportsourresearch,inwhich we make frequent use of mathematical models. The University of Ghent, the Free UniversityofBrussels,andtheUniversityofNijmegenallowedustoteachecolog- icalmodellingtoundergraduateandgraduatestudents.Weexpressourgratitudeto theNetherlandsInstituteofEcology,CentreforEstuarineandMarineEcology,our baseinstitutionforprovidinguswiththeopportunitytofinalisethisbook.Finally, wededicatethebooktothosethatareneartous:ourspouses,CarloHeip(KS)and Rosette Mortier (PH), and our children, Maarten and Eva (KS), Eva, Gerard and Judith(PH). Yerseke,TheNetherlands K.Soetaert Yerseke,TheNetherlands P.M.J.Herman Contents 1 Introduction................................................... 1 1.1 WhatisaModel?........................................... 1 1.1.1 ASimpleExample:ZooplanktonEnergyBalance ......... 3 1.2 WhyDoWeNeedModels? .................................. 5 1.2.1 ModelsasAnalysingTools ............................ 5 1.2.2 ModelsasInterpolation,Extrapolation,andBudgetingTools 7 1.2.3 ModelstoQuantifyImmeasurableProcesses ............. 9 1.2.4 ModelPredictionasaManagementTool................. 10 1.3 ModellingStepsandIngredients .............................. 10 1.4 TheModeller’sToolkit ...................................... 13 2 ModelFormulation............................................. 15 2.1 ConceptualModel .......................................... 15 2.1.1 TheBalanceEquationofaStateVariable ................ 17 2.1.2 Example:ConceptualModelofaLakeEcosystem......... 19 2.1.3 ConservationofMassandEnergyasaConsistencyCheck.. 21 2.1.4 DimensionalHomogeneityandConsistencyofUnits....... 23 2.2 MathematicalFormulations .................................. 24 2.3 FormulationofChemicalReactions ........................... 25 2.3.1 TheLawofMassAction .............................. 25 2.3.2 Example:ASimpleChemicalReaction.................. 26 2.4 EnzymaticReactions........................................ 27 2.5 BasicFormulationofEcologicalInteractions.................... 28 2.5.1 Example: Flows to and from Phytoplankton intheLakeEcosystem ............................... 28 2.5.2 MaximalInteractionStrength,RateLimitation andInhibition....................................... 31 2.5.3 One Rate-Limiting Resource, 3 Types ofFunctionalResponses.............................. 35 2.5.4 MorethanOneLimitingResource ...................... 37 2.5.5 InhibitionTerms ..................................... 38 2.6 CoupledModelEquations ................................... 40 2.6.1 FlowsModelledasFractionsofOtherFlows ............. 41 ix x Contents 2.6.2 CoupledDynamicsofSourceandSinkCompartments ..... 42 2.6.3 StoichiometryandCouplingofElementCycles ........... 43 2.7 ModelSimplifications....................................... 44 2.7.1 CarryingCapacityFormulation......................... 45 2.7.2 ClosureTermsattheHighestTrophicLevel .............. 48 2.7.3 SimplificationbyDeletionofIntermediateLevels ......... 48 2.8 ImpactofPhysicalConditions ................................ 49 2.8.1 Temperature ........................................ 49 2.8.2 Light............................................... 50 2.8.3 OtherPhysicalImpacts ............................... 53 2.9 Examples ................................................. 54 2.9.1 NPZD,aSimpleEcosystemModelforAquaticEnvironments 54 2.9.2 AQUAPHY, a Physiological Model of Unbalanced AlgalGrowth(**)................................... 58 2.10 CaseStudiesinR........................................... 63 2.10.1 MakingSenseOutofMathematicalFormulations ......... 63 2.10.2 OneFormula,SeveralParameterValues ................. 64 2.11 Projects................................................... 65 2.11.1 ConceptualModel:LakeEutrophication ................. 65 2.11.2 ModelFormulation:Nutrient-LimitedBatchCulture....... 66 2.11.3 ModelFormulation:DetritusDegradation................ 67 2.11.4 ModelFormulation:AnAutocatalyticReaction ........... 69 3 SpatialComponentsandTransport .............................. 71 3.1 MicroscopicandMacroscopicModels ......................... 72 3.2 RepresentingSpaceinModels................................ 74 3.2.1 SpatialDimensions................................... 74 3.2.2 DiscreteSpatialModels............................... 74 3.2.3 ContinuousSpatialModels ............................ 76 3.3 TransportinaZero-DimensionalModel........................ 77 3.4 TransportinaOne-DimensionalModel ........................ 79 3.4.1 FluxDivergence ..................................... 80 3.4.2 Macroscopic Formulation of Fluxes: AdvectionandDispersion ............................ 82 3.4.3 TheGeneral1-DAdvection-Dispersion-ReactionEquation . 84 3.4.4 The 1-D Advection-Dispersion-Reaction Equation inEstuaries,RiversandLakes ......................... 85 3.4.5 The 1-D Advection-Dispersion-Reaction Equation inShapeswithDifferentSymmetries ................... 86 3.4.6 One-dimensionalDiffusioninPorousMedia(Sediments)(∗∗) 89 3.4.7 The3-DAdvection-Dispersion-ReactionEquation(∗)...... 92 3.5 BoundaryConditionsinSpatiallyExplicitModels ............... 92 3.5.1 BoundaryConditionsinDiscreteModels ................ 94 3.5.2 BoundaryConditionsinContinuousModels.............. 95 3.5.3 BoundaryConditionsinMulti-layeredModels(∗∗) ........ 98 Contents xi 3.6 CaseStudiesinR...........................................102 3.6.1 AnAutocatalyticReactioninaFlow-ThroughStirredTank .102 3.6.2 A1-DMicroscopicandMacroscopicModelofDiffusion...103 3.6.3 CellularAutomatonModelofDiffusion(∗∗)..............107 3.6.4 CompetitioninaLatticeGrid ..........................110 3.6.5 TransportandReactioninPorousMedia: SilicateDiagenesis .................................. 114 4 Parameterization...............................................117 4.1 InSituMeasurement ........................................117 4.2 Literature-DerivedParameters ................................118 4.3 Calibration ................................................119 4.3.1 LinearRegression....................................120 4.3.2 NonlinearFitting ....................................122 4.4 CaseStudiesinR...........................................123 4.4.1 NonlinearParameterEstimation:P-ICurve...............123 4.4.2 Linear Versus Non-Linear Parameter Estimation: SedimentBioturbation ............................... 125 4.4.3 Pseudo-Random Search, a Random-Based MinimizationRoutine................................ 128 4.4.4 CalibrationofaSimpleModel .........................132 5 ModelSolution–AnalyticalMethods.............................139 5.1 AnEverydayLifeExample ..................................139 5.2 FindinganAnalyticalSolution................................140 5.3 Examples .................................................141 5.3.1 AVerySimpleFirst-OrderDifferentialEquation ..........141 5.3.2 TheLogisticEquation ................................143 5.3.3 A Second-Order Differential Equation: Carbon DynamicsinSediments(∗)............................ 144 5.3.4 CoupledBODandOxygenEquations(∗) ................146 5.3.5 MultilayerDifferentialEquations(∗∗) ...................147 5.4 CaseStudiesinR...........................................150 5.4.1 TransientDispersion-ReactioninOneDimension .........150 5.4.2 TransientDiffusion-Reactionona2-DimensionalSurface ..151 5.4.3 Steady-State Oxygen Budget in Small Organisms LivinginSuboxicConditions ......................... 152 5.4.4 Analytical Solution of the Non-Local Exchange SedimentModel(∗∗∗) ................................ 158 5.5 Projects...................................................161 5.5.1 OrganicMatterSinkingThroughaWaterColumn.........161 5.5.2 OxygenDynamicsintheSediment......................162 5.5.3 CarbonDynamicsintheSediment ......................164