ebook img

A polynomial defined by the $\mathit{SL}(2;\mathbb{C})$-Reidemeister torsion for a homology 3-sphere obtained by Dehn-surgery along a torus knot PDF

0.08 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A polynomial defined by the $\mathit{SL}(2;\mathbb{C})$-Reidemeister torsion for a homology 3-sphere obtained by Dehn-surgery along a torus knot

A POLYNOMIAL DEFINED BY THE SL(2;C)-REIDEMEISTER TORSION FOR A HOMOLOGY 3-SPHERE OBTAINED BY DEHN-SURGERY ALONG A TORUS KNOT 6 1 0 TERUAKIKITANO 2 n Abstract. LetM beahomology3-sphereobtainedby 1-Dehnsurgery a n n J along a (p,q)-torus knot. We consider a polynomial σ (t) whose (p,q,n) 4 zeros are the inverses of the Reideimeister torsion of Mn for SL(2;C)- irreduciblerepresentations. We giveanexplicitformulaofthispolyno- ] mialbyusingTchebychevpolynomialsofthefirstkind.Furtherwealso T givea3-termrelationsofthesepolynomials. G . h t a m 1. Introduction [ Let T(p,q) be a (p,q)-torus knot in S3. Here p,q are coprime and posi- 1 tive integers. Let M be a homology 3-sphere obtained by 1-Dehn surgery v n n 8 along T(p,q). It is well known that M is a Brieskorn homology 3-sphere n 4 Σ(p,q,N)wherewewrite N for pqn+1. HereΣ(p,q,N) isdefined as 4 | | 0 (z ,z ,z ) C3 zp +zq +zN = 0, z 2 + z 2 + z 2 = 1 . 0 { 1 2 3 ∈ | 1 2 3 | 1| | 2| | 3| } . 1 In this paper we consider the Reidemeister torsion τ (M ) of M for an ρ n n 0 irreduciblerepresentationρ : π (M ) SL(2;C). 6 1 n → 1 In the 1980’s Johnson [1] gave an explicit formula for any non-trivial : value of τ (M ). Furthermore, he proposed to consider the polynomial v ρ n i whosezerosetcoincideswiththesetofallnon-trivialvalues 1 ,which X {τρ(Mn)} isdenotedbyσ (t). Undersomenormalizationofσ (t),hegavea3- r (2,3,n) (2,3,n) a term relation among σ (t),σ (t) and σ (t) by using Tcheby- (2,3,n+1) (2,3,n) (2,3,n 1) − chevpolynomialsofthefirst kind. Recently in [5] we gave one generalization of the Johnson’s formula for a (2p ,q)-torus knot. Here p ,q are coprimeodd integers. In this paper, we ′ ′ showtheformulaforany torusknotT(p,q). Acknowledgements. TheauthorwasstayinginAix-MarseilleUniversity whenhewrotethisarticle. Hethanksfortheirhospitality. Thisresearch waspartiallysupportedby JSPS KAKENHI25400101. 2010MathematicsSubjectClassification.57M27. Key words and phrases. Reidemeister torsion, a torus knot, Brieskorn homology 3- sphere,SL(2;C)-representation. 1 2 TERUAKIKITANO 2. Definition ofReidemeister torsion Firstlet usdescribedefinitionsandproperties oftheReidemeistertorsion forSL(2;C)-representations. See Johnson[1], Kitano [2,3]and Porti [7] fordetails. Letb = (b , ,b )and c = (c , ,c )betwobases forad-dimensional 1 d 1 d ··· ··· d vectorspaceW overC. Settingb = p c , weobtainanonsingular i ji j Xj=1 matrix P = (p ) GL(d;C). Let [b/ c]denotethedeterminantof P. ij ∈ Suppose C : 0 Ck ∂k Ck 1 ∂k−1 ∂2 C1 ∂1 C0 0 ∗ → → − → ··· → → → isan acyclicchain complexoffinitedimensionalvectorspaces overC. We assumethatapreferred basisc forC is givenforeach i. Thatis,C is a i i basedacyclicchain complexoverC. ∗ Chooseany basisb for B = Im(∂ ) andtakealiftofit inC ,which is i i i+1 i+1 denotedbyb˜ . Since B = Z = Ker∂,thebasisb can serveas abasisfor i i i i i Z. Furthermoresincethesequence i 0 Z C ∂i B 0 i i i 1 → → → − → isexact,thevectors(b,b˜ ) formabasisforC . Here b˜ is aliftofb i i 1 i i 1 i 1 inC. It iseasilyshownth−at[b,b˜ /c]does notdepend−onachoiceof−a i i i 1 i lift ˜b . Hencewecan simplyden−oteit by[b,b /c]. i 1 i i 1 i − − Definition2.1. The torsionτ(C )of abased chaincomplexC with c is ∗ ∗ { ∗} givenbythealternatingproduct k τ(C ) = [b,b /c]( 1)i+1. i i 1 i − ∗ Yi=0 − Remark2.2. It iseasyto seethatτ(C )doesnot dependon choicesofthe ∗ bases b , ,b . 0 k { ··· } Nowweapplythistorsioninvariantofchain complexestogeometric situationsas follows. Let X beafiniteCW-complexand X˜ auniversal coveringof X withthelifted CW-complexstructure. Thefundamental groupπ X acts on X˜ from theright-handsideas deck transformations. We 1 mayassumethat thisaction isfree and cellularby takingasubdivisionif weneed. Thenthechain complexC (X˜;Z)has thestructureofachain complexoffree Z[π X]-modules. ∗ 1 Letρ : π X SL(2;C)bearepresentation. Wedenotethe2-dimensional 1 vectorspace→C2 byV. Usingtherepresentation ρ,V admitsthestructureof aZ[π X]-moduleand thenwe denoteitby V . 1 ρ A POLYNOMIALDEFINEDBYREIDEMEISTERTORSION 3 DefinethechaincomplexC (X;V )byC (X˜;Z) V and choosea ∗ ρ ∗ ⊗Z[π1X] ρ preferred basis (u˜ e ,u˜ e , ,u˜ e ,u˜ e ) 1 1 1 2 d 1 d 2 ⊗ ⊗ ··· ⊗ ⊗ ofC (X;V )where e ,e isacanonical basisofV = C2, u , ,u are i ρ 1 2 1 d { } { ··· } thei-cells givingabasisofC(X;Z)and u˜ , ,u˜ are liftsofthemon X˜. i 1 d { ··· } NowwesupposethatC (X;V )isacyclic, namelyall homologygroups ρ ∗ H (X;V ) arevanishing. In thiscaseρis called an acyclicrepresentation. ρ ∗ Definition2.3. Let ρ : π (X) SL(2;C)bean acyclicrepresentation. 1 Then theReidemeistertorsion→τ (X) C 0 is definedbythetorsion ρ ∈ \{ } τ(C (X;V ))ofC (X;V ). ρ ρ ∗ ∗ Remark2.4. (1) Wedefineτ (X) = 0 fora non-acyclicrepresentationρ. ρ (2) Thedefinitionof τ (X) dependson severalchoices. However itis ρ well known thatitisa piecewiselinearinvariantinthecaseof SL(2;C)-representations. 3. Johnson’stheory LetT(p,q) S3 bea(p,q)-torusknotwithcoprimeintegers p,q. Nowwe ⊂ write M to aclosedorientable3-manifoldobtainedby a 1-Dehn surgery n n alongT(p,q). HerethefundamentalgroupofS3 T(p,q)has the \ presentationas follows; π (S3 T(p,q)) = x,y xp = yq . 1 \ h | i Furthermoreπ (M )admitsthepresentationas follows; 1 n π (M ) = x,y xp = yq,mln = 1 1 n h | i wherem = x rys (r,s Z, ps qr = 1)is ameridianofT(p,q)and − similarlyl = x pmpq =∈y qmpq−isalongitude. − − Itis seen [1,5]that theset oftheconjugacyclassesoftheirreducible representationsofπ (M )inSL(2;C)is finite. Anyconjugacyclasscan be 1 n representedbyρ : π (M ) SL(2;C)forsometriple(a,b,k)suchthat (a,b,k) 1 n → (1) 0 < a < p,0 < b < q,a b mod2, (2) 0 < k < N = pqn+1,k≡ namod2, (3) tr(ρ (x)) =| 2cos aπ|, ≡ (a,b,k) p (4) tr(ρ (y)) = 2cos bπ, (a,b,k) q (5) tr(ρ (m)) = 2cos kπ. (a,b,k) N FurthermoreJohnsoncomputedτ (M ) asfollows. ρ(a,b,k) n Theorem 3.1 (Johnson). (1) Arepresentationρ is acylicif andonlyifa b 1. (a,b,k) ≡ ≡ 4 TERUAKIKITANO (2) Foranyacyclicrepresentationρ with a b 1, then onehas (a,b,k) ≡ ≡ 1 τ (M ) = . ρ(a,b,k) n 2 1 cos aπ 1 cos bπ 1+cos pqkπ − p − q N (cid:16) (cid:17)(cid:16) (cid:17)(cid:16) (cid:17) 4. Maintheorem Inthissection wegiveaformulaofthetorsionpolynomialσ (t)for (p,q,n) M = Σ(p,q,N)obtainedbya 1-Dehn surgery alongT(p,q). Nowwe n n definetorsionpolynomialsas follows. Definition4.1. A onevariablepolynomialσ (t)iscalledthetorsion (p,q,n) polynomialof M if thezeroset coincideswith theset ofall nontrivial n values 1 τ (M ) , 0 and itsatisfiesthefollowingnormalization τρ(Mn) | ρ n conditionnas o (N 1)p(q 1) ( 1) − 8 − p iseven,qis odd, − σ(p,q,n)(0) =  ((−−11))((NN−−11))8((pp8−−11))q(q−q1)ips,eqveanr,eqoidsdo,dnd,iseven, N(p 1)(q 1) where N = pqn+1.  (−1) −8 − p,qareodd,nisodd | | Remark4.2. (1) For M = S3,thetorsionpolynomialσ (t)isdefined by 0 (p,q,0) σ (t) = 1. (p,q,0) (2) In thecasethat p = 2p is even and p is odd,thenthis ′ ′ normalizationconditioncoincideswith theonein [5]. Fromhere assumen , 0. Recall Johnson’sformula 1 aπ bπ pqkπ = 2 1 cos 1 cos 1+cos τ (M ) − p ! − q ! N ! ρ(a,b,k) n where0 < a < p,0 < b < q,a b 1 mod2,k n mod2. Here by ≡ ≡ ≡ putting aπ bπ C = 1 cos 1 cos , (p,q,a,b) − p ! − q ! onehas 1 1 pqkπ = 4C 1+cos . (p,q,a,b) τ (M ) · 2 N ! ρ(a,b,k) n Mainresultisthefollowing. Theorem 4.3. Thetorsionpolynomialof M is given by n σ (t) = Y (t) (p,q,n) (n,a,b) Y (a,b) A POLYNOMIALDEFINEDBYREIDEMEISTERTORSION 5 where TN+1(s) TN 1(s) (p orq is even,n > 0), 2(s2−1)2−  TN+1(−s) TN 1(s) (p or q iseven,n < 0), Here Y(n,a,b)(t) =  T−−TNNT+(N12(+s(ss122))2(((−s−ss)T221−−(−−N)T2p−11N1)),22(−−sq1)(,s)n((appr,,eqqoaadrrdee)o.odddd,,nniisseevveenn,,nn><00)),. T (x) isthel-thTchebychevpolynomialofthefirstkind. l • √t s = . • 2 C (p,q,a,b) C p= 1 cos aπ 1 cos bπ . • (p,q,a,b) − p − q apairof in(cid:16)tegers(a,b(cid:17))(cid:16)is satisfyin(cid:17)gthefollowingconditions; • – 0 < a < p,0 < b < q, – a b 1 mod2. ≡ ≡ Remark4.4. Recall thatthel-thTchebychevpolynomialT (x)is defined l byT (cosθ) = cos(lθ). l Proof. Weconsiderthefollowing; TN+1(x) TN 1(x) (n > 0) X (x) = 2(x−2 1)− n  TN+1(x)−TN 1(x) (n < 0).  − 2(x−2 1)− − Xn′(x) = TN(x). Firstweassume p = 2p iseven. Forthecase that p isodd,then itis ′ ′ provedin [5]. Thenwesupposethat p iseven. Here N = 2p qn+1 is ′ ′ | | alwaysodd. Case1:p = 2p , p is evenandn > 0 ′ ′ 1 Wemodifyonefactor (1+cos 2p′qkπ)of asfollows. See[5]for the N τ (M ) ρ n proof. Lemma4.5. Theset cos 2p′qkπ 0 < k < N,k n mod 2 isequaltotheset { N | ≡ } cos 2p′kπ 0 < k < N 1 . − { N | 2 } Nowwecan modify 1 2p kπ 1 2p kπ 1+cos ′ = 2cos2 ′ 2 N ! 2 · 2N p kπ = cos2 ′ . N 6 TERUAKIKITANO Weput p kπ z = cos ′ (1 k N 1). k N ≤ ≤ − By thedefinition,it isseen p (N k)π z = cos ′ − N k − N p kπ = cos(p π ′ ) ′ − N = z k because p is even. ′ Thereforeit isenoughto consideronlyz (1 k N 1). Nowwesubstitute x = z to T (x). Thekn on≤eha≤s 2− k N+1 p kπ T (z ) = cos (N +1) ′ N+1 k N ! p kπ = cos ′ N = z k and p kπ T (z ) = cos (N 1) ′ N 1 k − − N ! p kπ = cos ′ N = z . k Henceitholds T (z ) T (z ) = 0. N+1 k N 1 k − − By propertiesofTchebychevpolynomials,itisseen that T (1) T (1) = 0, N+1 N 1 • T ( 1−) T− ( 1) = 0. N+1 N 1 • − − − − Weremark thatthedegreeof X (x) = TN+1(x) TN 1(x) is N 1 and n 2(x−2 1)− − z , ,z arezeros. Because bothofT (−x) and T (x)are even 1 N 1 N+1 N 1 ··· 2− − functions,then z , , z are alsozeros of X (x). Hence X (x) isa 1 N 1 n n − ··· − 2− functionsof x2. Hereby replacing xby √t , thedegreeofY (t)is (n,a,b) 2√C(p,q,a,b) N 1, and therootsofY (t)are 2− (n,a,b) πk N 1 4C z2 = 4C cos2 0 < k < − , (p,q,a,b) k (p,q,a,b) N 2 ! whichare allnontrivialvaluesof 1 . τρ(a,b,k)(Mn) A POLYNOMIALDEFINEDBYREIDEMEISTERTORSION 7 Herewecheck thenormalizationcondition. By thedefinitionofY (t) (n,a,b) andproperties ofT (x),T (x), onehas N+1 N 1 − T (0) T (0) Y(n,a,b)(0) = N+1 − N−1 2(0 1) − = ( 1)N2+1 ( 1)N2−1 − − − − 2 = ( 1)N2−1. − Henceitcan beseen σ(p,q,n)(0) = ( 1)N2−1 − Y (a,b) p(q 1) = ( 1)N2−1 4− − Y(a,b)(cid:16) (cid:17) = ( 1)(N−1)8p(q−1). − Thereforeweobtaintheformula. Case2:p = 2p and n < 0 ′ Inthiscase wemodify N = 2p qn+1 = 2p qn 1. By thesame ′ ′ | | | |− arguments,itiseasy to seetheclaim ofthetheorem isproved. Nextassumebothof p,qare oddintegers. Case3:p,qare oddand n iseven Ifn iseven,then N = pqn+1 isodd. Thenthesimilarargumentsin[5] | | workwell. Thenit can beproved. Case4:p,qare oddand n isodd Supposen ispositive. Firstnotethat N = pqn+1 iseven. Wecan modify 1 | | onefactor (1+cos pqkπ)of as follows. It isclear because N τ (M ) ρ n (q,N) = 1. Lemma 4.6. Theset cos pqkπ 0 < k < N,k n mod2 isequalto theset { N | ≡ } cos pkπ 0 < k < N,k 1mod 2 . { N | ≡ } Nowwecan modify 1 pkπ 1 pkπ 1+cos = 2cos2 2 N ! 2 · 2N pkπ = cos2 . 2N Weput pkπ z = cos (1 k N 1, k 1 mod2). ′k 2N ≤ ≤ − ≡ 8 TERUAKIKITANO Herewesubsitute x = z (1 k N 1, k 1mod2)to T (x). Then one ′k ≤ ≤ 2− ≡ N has N(pkπ) T (z ) = cos N ′k 2N ! pkπ = cos 2 ! = 0 because pk isodd. Similarlyit can bealsoseen that T ( z ) = 0. N − ′k Wementionthat thedegreeof X (x) = T (x) is N and z , , z are n′ N ± ′1 ··· ± ′N 1 thezeros. Because X (x) isafunctionsof x2. Here byreplacing xby− n′ √t , Hereit holdsthatitsdegreeofY (t)is N 1, andtherootsof 2√C(p,q,a,b) (n,a,b) 2− Y (t)are (n,a,b) πk N 1 4C z 2 = 4C cos2 0 < k < − , (p,q,a,b) ′k (p,q,a,b) N 2 ! whichare allnontrivialvaluesof 1 . τρ(a,b,k)(Mn) Finallywecan check thenormalizationconditionas follows. By the definitionofY (t), onehas (n,a,b) Y (0) = T (0) (n,a,b) N = ( 1)N2 − and σ(p,q,n)(0) = ( 1)N2 − Y (a,b) (p 1)(q 1) = ( 1)N2 − 4 − − (cid:16) (cid:17) = ( 1)N(p−18)(q−1). − Thereforeweobtaintheformula. Inthecase thatn isnegative,then itcan beprovedbysimilararguments. Thereforethiscompletestheproof. (cid:3) Remark4.7. Bydefiningas X (t) = 1,it impliesY (t) = 1. Then the 0 (0,a,b) abovestatementis trueforn = 0. By direct computation,oneobtainsthefollowingcorollary. A POLYNOMIALDEFINEDBYREIDEMEISTERTORSION 9 Corollary4.8. Thedegreedeg(σ (t))is givenby (p,q,n) (N 1)p(q 1) (p even,qodd), − − 8 deg(σ(p,q,n)(t)) =  ((NN−−11))8((pp8−−11))(qq−(1)p o(pd,dq,qodevde,nn)e,ven), Wementionthe3-termrelationsN.(Fp−o1r8)(eq−a1c)h(fpac,tqoordodf,Yn odd()t.)ofσ (t), (n,a,b) (p,q,n) thereexiststhefollowingrelation. Proposition4.9. (1) Assumeoneof p and qis even. Foranyn, itholdsthat Y (t) = D(t)Y (t) Y (t) (n+1,a,b) (n,a,b) (n 1,a,b) − − where D(t) = 2T √t . pq 2√Cp,q,a,b! (2) Assumebothof p,q areodd. Foranyn,it holdsthat Y (t) = D(t)Y (t) Y (t) (n+2,a,b) (n,a,b) (n 2,a,b) − − where D(t) = 2T √t . 2pq 2√C2p,q,a,b! Proof. Herewe need toconsider N = pqn+1 is afunctionofn Z for | | ∈ fixed p,q. Thenwewrite N(n) for N inthisproof. Theproofforthefirst caseisessentiallythesameoneforthe3-term relations[5]. Wegivetheproofonlyforthesecond case. Recall thefollowingpropertyofTchebychevpolynomials 2T (x)T (x) = T (x)+T (x) m n m+n m n − foranym,n Z. ∈ Case1: nis even Ifn > 0 onehas T (x) T (x) 2T2pq(x)Xn(x) = 2T2pq(x) N(n)+12(x2− 1N)(n)−1 − T (x)+T (x) (T (x)+T (x)) = (pqn+1)+1+2pq (pqn+1)+1−2pq − (pqn+1)−1+2pq (pqn+1)−1−2pq 2(x2 1) − T (x) T (x)+T (x) T (x) = pq(n+2)+1+1 − pq(n+2)+1−1 pq(n−2)+1+1 − pq(n−2)+1−1 2(x2 1) − T (x) T (x)+T (x) T (x) = N(n+2)+1 − N(n+2)−1 N(n−2)+1 − N(n−2)−1 2(x2 1) − = X (x)+X (x). n+2 n 2 − 10 TERUAKIKITANO Thereforeit can beseen that X (x) = 2T (x)X (x) X (x) n+2 2pq n n 2 − − and √t Y (t) = 2T Y (t) Y (t). (n+2,a,b) 2pq2 C  (n,a,b) − (n−2,a,b) Ifn < 0, itcan bealso provedbypth(e2pa,qb,ao,bv)eargument. Case2: nis odd Ifn > 0, onehas 2T (x)X (x) = 2T (x)T (x) 2pq n′ 2pq N(n) = T (x)+T (x) pqn+1+2pq pqn+1 2pq − = T (x)+T (x) pq(n+2)+1 pq(n 2)+1 − = T (x)+T (x) N(n+2) N(n 2) − = X (x)+X (x). n′+2 n′ 2 − Thereforeit can beseen that X (x) = 2T (x)X (x) X (x) n′+2 2pq n′ − n′ 2 − and √t Y (t) = 2T Y (t) Y (t). (n+2,a,b) 2pq2 C  (n,a,b) − (n−2,a,b) Ifn < 0, itcan bealso proved. p (2p,q,a,b) Thiscompletestheproofofthisproposition. (cid:3) 5. examples Finallywegivesomeexamples. Example5.1. Put p = 4,q = 3. Now N = 12n+1. In thiscase (a,b) = (1,1),(3,1). Byapplyingthemain|theorem|,onehas σ (t) = 34359738368t10 77309411328t9+66840428544t8 (4,3, 1) − − 28655484928t7+6677331968t6 882900992t5+66371584t4 − − 2723840t3+55680t2 480t+1. − − σ (t) = 1. (4,3,0) σ (t) = 4398046511104t12 12094627905536t11+13434657701888t10 (4,3,1) − 7859790151680t9+2670664351744t8 552909930496t7 − − +71319945216t6 5727322112t5+278757376t4 − 7741440t3+110208t2 672t+1. − −

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.