ebook img

A Pipeline for the ROTSE-IIId Archival Data PDF

0.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Pipeline for the ROTSE-IIId Archival Data

ExperimentalAstronomymanuscriptNo. (willbeinsertedbytheeditor) A Pipeline for the ROTSE–IIIdArchival Data B.B.Güçsav · C.Yes¸ilyaprak · S.K.Yerli · N.Aksaker · U.Kızılog˘lu · D.Çoker · E.Dikiciog˘lu · M.E.Aydın 2 1 0 2 Received:date/Accepted:date n a J Abstract We haveconstructedanew,fast, robustandreli- 1 Introduction 2 able pipeline to detect variable stars from the ROTSE-IIId ] archivaldata.Turkishshare ofROTSE-IIIarchivecontains RoboticOpticalTransientSearchExperiment(ROTSE-Akerlofetal, M approximatelyonemillionobjectsfromalargefieldofview 2003)isanetworkoftelescopeslocatedallaroundtheworld1. ◦ I (1.85 ) and itconsiderablycoversa largeportionof north- The primary goal of the ROTSE–IIIproject is to observe h. ern sky (d >−25◦). The unfiltered ROTSE-III magnitude Gamma-Ray Bursts (GRB) in optical light. Each ROTSE– p of the objects rangesfrom 7.7 to 16.9. The main stages of IIItelescope consists of 45 cm with a wide field of view o- the newpipelineare asfollows:Sourceextraction,astrom- (1.85◦).ThetelescopeswerebuilttorespondrapidlytoGRBs r etry of the objects, light curve generation and inhomoge- (<10 s) which are triggered by satellites such as Swift, In- t s neous ensemble photometry. A high performance comput- tegral and HETE. The ROTSE–IIIsystem runs unattended a ing (HPC) algorithm has also been implemented into the withfullyautomatedobservation,dataacquisitionandanal- [ pipeline where we had a good performanceeven on a per- ysis(seeRykoffetal(2005)forthepipeline). 2 sonalcomputer.Runningthealgorithmsofthepipelineona TheROTSE–IIIcollaborationuses70%ofeachROTSE– v 3 cluster decreasesanalysis time significantly from weeks to IIItelescope’sobservationtime.Therestofthetimeisallo- 2 hours.The pipelineis especially tested againstlong period catedfordiscretionbythelocalorganization.TheROTSE– 8 variablestarswithperiodsofafewhundreddays(e.gMira IIIdtelescope is located at TÜB˙ITAKNational Observatory 2 and SR) and variables having periods starting from a few (TUG)2, Bakırlıtepe, Antalya, Turkey. Scheduled observa- . 8 daystoafewhundreddaysweredetected. tions were started in May 2004 and they were distributed 0 amongtheTurkishastronomersbyTUG.Inthiswork,allof 1 1 Keywords Software:Pipeline· Methods:dataanalysis· thepublicTurkishobservationshavebeenused.Someofar- : Telescopes:ROTSE–IIId ticleswhichmadeofusingtheROTSE–IIIddataofTurkish v i share are as follows Baykaletal (2005), Biliretal (2006) X andKızılogˇluetal(2009). r PACS (PACScodes) a The aim of this work is to detect variability as well as finding new variables using the ROTSE–IIIdarchival data. Toachievethismaingoalamultistagealgorithmweredevel- B.B.Güçsav·D.Çoker·M.E.Aydın opedandthentheyarecraftedintoaseriesofroutines:the Ankara Üniversitesi, Science Faculty, Astronomy & Space Sciences Department,Ankara,Turkey pipeline.Insection2.1,ROTSE–IIIdobservationsandstruc- C.Yes¸ilyaprak·E.Dikiciog˘lu tureofthedata,andinsection2.2thesummaryofROTSE– AtatürkUniversity,FacultyofScience,DepartmentofPhysics,Erzu- IIIdpipelineare given.The data handling,our pipeline and rum,Turkey its structure are given in section 3. The main stages of the S.K.Yerli·U.Kızılog˘lu pipelineareasfollows:sourceextraction(§3.2),astrometry OrtaDog˘uTeknikÜniversitesi,PhysicsDepartment,Ankara,Turkey offieldstars(§3.3),lightcurvegeneration(§3.4)andinho- N.Aksaker Çukurova Üniversitesi, Vocational School of Technical Sciences, 1 http://rotse.net/information/world/ Adana,Turkey 2 TUG:http://www.tug.tubitak.gov.tr/ 2 GucsavB.etal. Table1 MagnitudelimitsofROTSE–IIIdexposures. datareductionpipelineallowingthenearreal-timeprocess- ingoftheCCDimagestakenbytheentireROTSE–IIInetwork. ExposureTime SaturationMagnitude LimitingMagnitude 5s 7m.7 15m.6 Regardless of types of observation carried out on the tele- 20s 9m.0 16m.2 scope,allimagesarefedintotheROTSE–IIIdpipeline.Fur- 60s 10m.0 16m.9 thermore, CCD images of all observations (taken with ei- ther alarmed or scheduled mode) were automatically pro- cessed(biassubtracted,flatfieldedandfringecorrected)im- mogeneousensemble photometry (§3.5). We conclude our mediately after the frame has been download to the disk workwithresultsandsomesuggestionsforfuturework. (Rykoffetal,2005).SExtractorsoftware(BertinandArnouts, 1996) is then used to detect objects, to measure centroid positionsand to determine instrumentalmagnitudes(using 2 ROTSEData 5 pixelsaperture).In additionto centroidpositions,round- nessandsharpnessvaluesarealsousedtoeliminatenon-star 2.1 ROTSE–IIIdobservationsandstructureofthedata like objects. Instrumentalmagnitudesof each objectin the frame is calibrated by comparingall the field stars against TheROTSE–IIIdhasan45cmprimarymirrorandisoutfit- the“USNO–A2.0R–bandcatalog”(Monet,1998)(because tedwitha2k×2kTEcooled,CCDcamerawith3.3"/pixels, the R filter is the nearest to the QE maximum) to obtain ◦ making a 1.85 field of view. QE (Quantum Efficiency) of ROTSE–IIImagnitudes.Bysimplyusingtriangulationmethod the CCD peaks at 550 nm. The telescope and CCD were from the USNO catalog each object’s coordinate and in- describedinAkerlofetal(2003). strumental magnitude are calibrated at the same time. The The CCD observations have been carried out in three pipeline finally outputsfiles of calibrated object catalogs different exposure times: 5 (∼ 54%), 20 and 60 seconds. whicharetabulateddataintheformofbinaryFITStables. There are two important magnitude limits for these expo- ThealgorithmofthepipelinewerecodedinIDLandsche- suresgiveninTable1:saturation(meanofmaximumbright- maticrepresentationisshowninFigure1(bluecoloredblocks). nessofstarshavingnosaturatedpixelsintheirFullWidthat Thus,theframe(andeachdetectedobjectintheframe)can HalfMaximum-FWHM)andlimiting(meanofthefaintest nowbeusedinlightcurveanalysisusingobject’sa ,d ,mag- star’smagnitudes). nitudeanderrorinmagnitude. TheunfilteredROTSE–IIImagnitudeoftheobjects,de- pending on the exposure times, ranges from 7.7 to 16.9. Another image quality check was the FWHM of the point spreadfunctiononanimagewhichrangesbetween2to25 pixelsand onthe averageit istaken as5 pixels.The Turk- ishshareofROTSE–IIIdarchivecovers2,210deg2 whichis 3.4%ofthewholesky. 3 TheNewPipeline The journalof observationsused in the pipelineranges betweenMay2004andJune2010anditconsistsof234,764 framesfrom645differentpointings.Thesizeofthearchived 3.1 DataHandling data from the Turkish share (regardless of the pointings) since2004isapproximately2TiB. Inputdata forthe pipelinecan either bea calibratedobject 266 pointings were observed less than 100 times and file or anycorrectedimagefile ofthe ROTSE–IIId.Thisis they were not included in the pipeline. This limiting value requirediftheframeisnotvalidi.e.theWCS(WorldCoor- isanarbitrarychoice.However,tohavestatisticallyreliable dinateSystem)headerswerewrongortherewererecorded data sets we had to implement this minimum lower limit. bad weather conditions, or technical problems. Otherwise ThisnumberwerealsousedinotherlargevolumeROTSE– theframeisvalidanditenterstothestage-Cofthepipeline. IIIanalyses(Wozniak,2004). Thus,usingthesefilteringmethods,atleast80%ofthearchive washandledwiththepipeline.Thealgorithmofthepipeline showninFigure1(yellowcoloredblocks). 2.2 ThesummaryofROTSE–IIIdpipeline It seems that the first two stages of our pipeline dupli- Thedataacquisitionsystemisconstructedontopofseveral catestheROTSE–IIIdpipeline(seeFigure1).However,since daemons(e.g.weather,clamshell,camera).Thetelescopeis (a) SCAMP has been used in astrometry calibration (see operatedundertwomodes:alarmedandscheduled.Thelat- §3.3) and (b) the parameterset that we use in our pipeline termodeisusedintheentireTurkishshareandthus,inour wasnotproducedbytheROTSE–IIId,wehadtointroduce pipeline. The ROTSE–IIItelescopes have a well designed ourownstagesinthepipeline. SoftwareforROTSE–IIId. 3 tractor’s statistical output we have improved the reliabil- ity of magnitudes calculated which wasn’t possible using ROTSE–IIIdpipeline;itcontainedonlyafewcolumnsofin- formation. Asanexample;fortheROTSE–IIIdpointingof0006+4305 therewere12,037sourcesin“USNO–B1R”catalog(here- afterUSNO–B;Monetetal,2005)form <18m.0.Whenthe R SExtractoris applied to this pointing, depending on atmo- spheric conditions, number of sources varied between 279 and11,399.Thus,thestagemissesonly5%oftheUSNO-B sources. 3.3 Stage-B:AstrometryofFieldStars Theoutputofstage-AisusedasanINPUT. Similartothe ROTSE–IIIdpipeline,thecalibratedobjectcatalogsarecal- culatedasanOUTPUT. TheSCAMP(Bertin,2006)softwarepackageisusedto mapUSNO–Bstarswiththeinputtedfieldstarcoordinates sothatatransformationmatrixcanbecalculated.Insteadof USNO–B catalog, GSC, UCAC or 2MASS catalogs could alsobeused. SCAMPhasbeenimprovedforCCDframestakenfrom largeFOV.ThecalculatedastrometricalerroroftheROTSE– IIIdisapproximately1-2"foritsFOV(lessthanitspixelsize). Therefore,SCAMPseemstobeasuitabletoolforastromet- riccalibrationsinourpipeline. Thepointingaccuracy(orerror)oftheROTSE–IIIdtelescope ′ isgivenasapproximately1(Akerlofetal,2003). The mean of differences between “targeted frame cen- ters” and “frame centers recorded in frame headers” gives thepointingaccuracyofROTSE–IIId.Thesevaluesareap- proximatelyDa =5.1′andDd =1.0′.Sinceunalignedframes within a few arcmin (Bertin, 2006) can be handled with SCAMP,thiserrordoesn’teffecttheresultantastrometry. Fig.1 AcombinedflowchartviewofROTSE–IIId(bluecolored)and Duetothetelescopeoptics(Güçsav,2010),thebestas- ournew(yellowcolored)pipelines. trometricalignmentoftheframesweredonewithinthecen- ◦ tral 1.79 diameter of the whole ROTSE–IIIdframe. Thus, starsfallingonlyintothisregionwereused(seeFig.2). 3.2 Stage-A:SourceExtraction Since, SCAMP cannot handle frames having excessive imagedeformations(e.g.badfocusing,weathereffects,tele- ROTSE–IIIdcorrected images are used as INPUT data in scope instability) they are automatically discarded and no this stage. A catalog of stars with their instrumental mag- outputisproduced.ThisfeatureofSCAMPisalsousedasa nitudeandframecoordinatesisproducedasanOUTPUT. “filtering”algorithmforfaultyframes. SExtractorcode(BertinandArnouts,1996)isusedtoiden- tify(andtoperformanaperturephotometry)thestarsinthe frame.FourtypesofmagnitudesarecalculatedbySExtrac- 3.4 Stage-C:LightCurveGeneration torwhere only one of them is used in the pipeline, namely MAG_APER (magnitude from aperture). A classical value Theoutputofstage-BortheoutputofROTSE–IIIdpipeline of5pixelsROTSE–IIIdaperture(e.g.Kızılogˇluetal,1995) isusedasanINPUT. was used in the SExtractorsettings.The outputof SExtrac- Notethat,ourinputcontainsalistofequatorialcoordi- torconsistsofinstrumentalmagnitude,framecoordinatesand nates and instrumentalmagnitudesof sources, namely it is manystatisticalcalculationsforeachstar.ByusingtheSEx- called “calibrated object catalog” (see Fig. 1; grey colored 4 GucsavB.etal. 3.5 Stage-D:InhomogeneousEnsemblePhotometry Theoutputofstage-CisusedasanINPUT.Cleanedlight curvesarecreatedasanOUTPUT. Inclassicalphotometry,asinglecomparisonstarisused effectivelyformanyyearsbyastronomers(seeHendenandKaitchuck, 1990;Youngetal,1991).However,inrecentyearsdifferen- tialphotometrywith“manycomparisonstars”hasincreased both reliability and accuracy of the light curves. Ensem- ble photometry is also a new kind of differential photom- etrywhichworkswithinhomogeneousCCD datasets(e.g. Honeycutt, 1992; Saesenetal, 2010). We have also imple- mentedtheensemblephotometryinthepipelinetodecrease statisticalerrorsininstrumentalmagnitudeofstars.Forex- ample,lightcurveofa10m.0starwasfoundtobealmostcon- stant.AccordingtoSExtractor,meanofRMSfluxerrorsof thePSFfittingtothestarwascalculatedtobe0m.006.How- ever,with the implementedensemble photometry,we have reachedto ascatter valueof0m.002.Notethat,thislevelof Fig.2 AsampleCCDimagefromROTSE–IIIdarchiveoverlayedwith noiseisalsorelatedtotheotherframestatistics(seescatter- thechosenROTSE–IIIdFOV(i.e.1.79◦). errorgraphofthepointingthatthisstarislocated-Figure3); as the magnitude of the source decreases, scatter increases andthereforegoodnessofthePSFfittingdecreases.Ascan beseeninthefigure,whilescatterofa10m.0magnitudestar isaround2mmag,itincreasesto130–200mmagat16m.0. boxatthemiddle).Eachinputtedstar’slightcurve(instru- mentalmagnitudevs.JD)iscreatedasanOUTPUT. The main aim of the technique is to find non-varying stars (i.e. reference stars) throughout the time span of the In thisstage, the aim is to follow each star’s equatorial lightcurves.The objectsthat have non-starlike shapesare coordinatesin each frame throughoutthe whole time span all ignored by using SExtractor’s roundnessand sharpness andthencollectthecorrespondinginstrumentalmagnitudes analysis(see §2.2). Main criteriain choosingthe reference atthatcoordinate.Asinthestage-B,coordinatesofUSNO– stars are (1) to choose the stars far enough from edges of Bfieldstarsareusedtomatchcalibratedcatalogs.Inorder the frame, (2) to have the star isolated from the others, (3) todothisafixedcircularaperture(namely“matchingaper- to have no flags set in the SExtractor’s output, (4) to have ture”; hereafter f ) has to be chosen to scan through each roundness value close to zero, and (5) to have sharpness m catalog.Thef canbeneitheralowvalue(whichincreases valueclosetoone.Inordertonottofoulthetechnique,light m the chance to miss the target star) nor a high value (which curvesofmostlynon-variablestarshavetobeused.There- increasesthechancetomulti-matchthetargetstars).There- fore,roughvariabilitydetectionhastobeappliedtothelight fore, f was chosen according to ROTSE–IIIdpixel scale curves;namely‘scatter-and-error’relationofthelightcurve m (namely3.3"/pixel)andtoachieveastandardGaussianpho- hastobecalculated.Accordingtotheresultofthisrelation ton distribution, 3 pixels range were taken. Thus, 10"was the star can nowbe accountedas a reference.Afterward,a chosen as an optimum f value (f¯ ) which will be used meanreferenceleveliscalculatedfromallchosenreference m m throughoutthepipeline(Güçsav,2010). stars and it is used to calculate the relative(or differential) magnitudeofotherstars. As a side effect of the matching algorithm, especially Byapplyingthetechniquesecondtime(startingfromthe in crowdedfields, there mightstill be multi-matchesin the scatter-and-errorrelation),reliabilityofreferencestarsisin- field.Insuchcases,theneareststarinthecalibratedcatalog creased:starsofthefirstrunisinputtedasthestarlistinthe totheUSNO–Bstarwaschosenasthematch.Thepipeline secondrun.Withthisrun,variationofreferencestarsisde- can be fine-tuned manually for some of the overcrowded creasedandthereforetheaccuracyofthefinalcleanedlight fields by decreasing f to 6"to be able to decrease multi- curvesis increased. As an example,a referencestar’s light m matches. In a future version, this fine-tuning can be inte- curves before and after ensemble photometry applied are gratedintothepipelinebymarkingeachfieldwithacrowd- giveninFig.4.Asseeninthefigure,afterensemblephotom- nessvaluewhichwouldmakeitpossibleto applydifferent etry(stage-D)applied,scatterofthelightcurve(i.e.sigma) f valuestoeachfieldwheneveritisnecessary. decreased. m SoftwareforROTSE–IIId. 5 Fig.3 Meanmagnitude(inmagnitude)versus meanofRMSfluxerrors (inmmag)ofsources inanexamplepointingwhichcontains31,984 sourcesisgiven(see§3.5).Thebrightendofthegraphisextendedatupperleftasaninsetwiththesameunits.Similarly,dimendofthegraphis markedwithgridlines. Thistechniquehastheadvantageofremovingframeto In order to balance the CPU load between cores the same framebackgroundvariationsduetoMoonlightandunstable amountofstar’s data(bothlightcurvesandstar’sinforma- weatherconditions.Asadisadvantageofthistechnique,the tion)arestored. absolutemagnitudeofstarscannotbecalculated.Asample TheprototypeofthepipelinewasstartedwithIDL.How- of the final light curve of a variable from our pipeline is ever,to be able to have a robust and fast pipeline,they are giveninFig.5. convertedandparallelizedintoC-language.Withtheproto- type,ittookapproximatelyoneweektocreatelightcurves of a single medium crowded pointing with a 4 cored PC. 3.6 ThePipelineStructure Thisdurationdecreasedtoabout2hourswiththepipeline. The new pipeline works on a small cluster called Infini- 4 Conclusion tuswhichmadeuseof8differentcomputerswith36cores eachhaving8GHzCPUspeed.GNU/Linuxoperatingsys- Wehaveconstructedanew,fast,robustandreliablepipeline temandLustre1.6.7.4filesystemisusedonallcomputers. to detect variable stars from the ROTSE–IIIdarchivaldata. Computersareinterconnectedwithagigabyteethernet.The The main stages of the pipeline were as follows: Object pipelineismainlywritteninClanguage.Parallelalgorithms identification,astrometryoftheobjects,lightcurvegenera- havebeenusedineverystepofthepipelinewhichmadeuse ofMPICH23library. tionandinhomogeneousensemblephotometry.Forthefirst timeintheROTSE–IIIarchive,ahighperformancecomput- In order to increase speed of the process a parallel file ing(HPC)algorithmhasbeenimplementedintothepipeline. reading method is used in the pipeline. The files of each Dependingonthedataquality,eithercorrectedCCDimages pointing (all the calibrated catalog stars in the entire time (stage-A)orthe calibratedobjectcatalogsproducedbythe span) is automatically separated into all processors so that ROTSE–IIIdpipeline(stage-C)couldbeusedinthepipeline. eachpointingstaysinthememoryuptoendofthestage-C. Thelaststageofthepipeline(stage-D),namelyinhomoge- 3 http://www.mcs.anl.gov/research/projects/mpich2/neous ensemble photometry (implemented to the ROTSE– 6 GucsavB.etal. Fig.4 Thelightcurvesofareference starbefore(toppanel)andaf- ter(bottompanel)ensemblephotometryisapplied.Thesigmavalues representthescatteringofthecurve. IIIarchiveforthefirsttime),givesrelativelightvariationsof themeasuredstarswithhighprecision.Within645pointings (see section2.1) of observationsin2004–2010,lightcurve ofapproximatelyonemillionstarsareproduced. Workonidentifyingnewvariablesandsearchingforpe- riodsofknownvariablesarestillinprogress.Thefollowing statisticaltests todetectvariablestarshavebeenappliedto Fig. 5 Light curves (differantial magnitudes vs. phase) of three se- the light curves: Scatter-Error Analysis (commonly used), lectedvariableswhichareautomaticlyproducedbyourpipeline.They Abbe Index (Saesenetal, 2010) and Analysis of Variance allhavedifferentmeanmagnitudesandtheirmeanstatisticalerrorsare (Wozniak,2004).Forperiodhuntingthefollowingtechniques alsoplottedoneachpoint(exceptthetopone;whichistoosmalltobe plottedtogether).Fromtoptobottompanel,themeanmagnitudesare havebeenused:PDM(PhaseDispersionMinimization;Stellingwerf, 8m.3,12m.4and15m.5;andtheirmeanstatisticalerrorsare1mmag,10 1978), Lomb–Scargle periodogram (Lomb, 1976; Scargle, mmagand40mmag,respectively. 1982)andSIGnificanceSPECtrum(SigSpec;Reegen,2007). A fewthousandsoflightcurveshavepassedfromallthree statistical tests mentioned above. These light curves most tual periods of 78 Mira variables have been identified and probablyareun-identifiedvariablestars. 18ofthemhaveaperiodforthefirsttime(Yes¸ilyapraketal, Lightcurvesofapproximatelytenthousandsstarsfrom 2011)withearlyversionofthepipeline.Also,approximately 4pointingsareconvertedintophase-magnitudetable.These 300SRstarsareunderinvestigationand15ofthemwereex- phasegraphswerethenvisuallyinspectedforrepeatingpat- aminedindetailsbyDikiciog˘lu(2011).Tabulatedvaluesof terns. Amongthese reducedlist, 152stars show variability minimum and maximum values of both amplitude and pe- andaccordingtoSIMBAD (Güçsav,2010),20ofthemare riodaregiveninTable2. unknownvariableswhicharenotclassifiedyet. Asabyproductofthepipeline,deformationand/orde- Asaresultofanearlyversionofthepipeline,Miraand generationofframescouldalsobedetected;e.g.background SRstarsknowninSIMBADhavebeenexamined.Newac- variations due to Moon light and unstable weather condi- SoftwareforROTSE–IIId. 7 Table2 Quantitativelimitsoflightcurvescreatedbythepipeline. Bilir S, Güver T, Aslan M (2006)Separation of dwarf and giantstarswithROTSE-IIId.AstronomischeNachrichten Amplitude Period(days) Reference Min. 0m.1 0.17±0.02 Güçsav(2010) 327:693–697 Max. 5m.9 720.0±43.1 Yes¸ilyapraketal(2011) Dikiciog˘luE(2011)MultiplePeriodsforSemiregular(SR) VariableStars.Master’sthesis,AtatürkUniversity,Erzu- rum,Turkey Güçsav BB (2010) Detection of Different Types of Celes- tions. A surprisingresultfromdegradationof the ROTSE– tial Objects from Robotic Telescope Archives. Master’s IIIdmirrorwas also noticed:the decrease in the number of thesis,AnkaraUniversity,Ankara,Turkey detectedstars iscorrelatedwithonemagnitudedecreasein HendenAA,KaitchuckRH(1990)Astronomicalphotome- thelimitingmagnitude. try : a text and handbookfor the advanced amateur and Themainaimofthe pipelineusageistofindnewvari- professionalastronomer ables,periodsofknownvariables,andtoclassifythesevari- HoneycuttRK(1992)CCDensemblephotometryonanin- ablesusingtheaboveperiodhuntingtechniques. homogeneousset of exposures.AstronomicalSociety of The pipeline can easily be adapted to other ROTSE– thePacific104:435–440 IIItelescopeswhichwillincreasetheskycoverageandnum- KızılogˇluÜ, KızılogˇluN,BaykalA (1995)ROTSEObser- berofdetectedunknownvariables,transientsetc. vations of the Young Cluster IC 348. The Astronomical Journal130:2766–2777 Acknowledgements ThisprojectutilizesdataobtainedbytheRobotic KızılogˇluÜ,OzbilgenS,KızılogˇluN,BaykalA(2009)Op- OpticalTransientSearchExperiment(ROTSE).ROTSEisacollabora- ticalandX-rayoutburstsofBe/X-raybinarysystemSAX tionofLawrenceLivermoreNationalLab,LosAlamosNationalLab J2103.5+4545. Astronomy and Astrophysics 508:895– andtheUniversityofMichigan(http://www.rotse.net). 900 All observations were made with the ROTSE–IIIdtelescope and the archival data of ROTSE–IIIdobtained at the TÜB˙ITAK(Turkish Lomb NR (1976) Least-squares frequency analysis of un- ScientificandResearchCouncil)NationalObservatory(TUG),sowe equally spaced data. Astrophysics and Space Science thanktoROTSE–IIICollaborationandTUGfortheopticalandarchival 39:447–462 facilities(TUG-ROTSE–IIIdprojectsofTurkishobservers). MonetDG(1998)The526,280,881ObjectsInTheUSNO- WealsothankProf. Dr.Ü.Kızılog˘luforconsulting, suggestions A2.0Catalog.BulletinoftheAmericanAstronomicalSo- andhelps. Thisstudywassupported byTÜB˙ITAKwiththeproject TBAG– ciety30:1427 108T475. Monet DG, Levine SE, Canzian B, Ables HD, Bird AR, ThisresearchhasmadeuseoftheSIMBADdatabase,operatedat DahnCC, Guetter HH, HarrisHC, HendenAA, Leggett CDS,Strasbourg,FranceandcdsclienttoollocatedatCDSandNASA SK,LevisonHF, LuginbuhlCB, MartiniJ, MonetAKB, AstrophysicsDataSystemBibliographicServices. Munn JA, Pier JR, Rhodes AR, Riepe B, Sell S, Stone RC, Vrba FJ, Walker RL, Westerhout G, Brucato RJ, ReidIN,SchoeningW,HartleyM,ReadMA,TrittonSB (2005)TheUSNO-BCatalog.TheAstronomicalJournal References 125:984–993 ReegenP(2007)SigSpec.I.Frequency-andphase-resolved AkerlofCW,KehoeRL,McKayTA,RykoffES,SmithDA, significance in Fourier space. Astronomy and Astro- Casperson DE, McGowan KE, Vestrand WT, Wozniak physics467:1353–1371 PR, Wren JA, Ashley MCB, Phillips MA, Marshall SL, Rykoff ES, Aharonian F, Akerlof CW, Alatalo K, Ashley EppsHW,SchierJA(2003)TheROTSE-IIIRoboticTele- MCB,GüverT,HornsD,KehoeRL,KizilogˇluÜ,McKay scopeSystem.ThePublicationsoftheAstronomicalSo- TA,ÖzelM,PhillipsA,QuimbyRM,SchaeferBE,Smith cietyofthePacific115:132–140 DA, Swan HF, Vestrand WT, Wheeler JC, Wren J, Yost Baykal A, Kızılogˇlu Ü, Kızılogˇlu N, Balman S¸, Inam SÇ SA (2005) A Search for Untriggered GRB Afterglows (2005) X-ray outburst of 4U 0115+634and ROTSE ob- with ROTSE-III. The Astrophysical Journal 631:1032– servationsofitsopticalcounterpartV635Cas.Astronomy 1038 andAstrophysics439:1131–1134 Saesen S, Carrier F, Pigulski A, Aerts C, Handler G, Nar- Bertin E (2006) Automatic Astrometric and Photometric wid A, Fu JN, Zhang C, Jiang XJ, Vanautgaerden J, Calibration with SCAMP. In: Astronomical Data Anal- Kopacki G, Steslicki M, Acke B, Poretti E, Uytterho- ysisSoftwareandSystemsXV, AstronomicalSociety of even K, Gielen C, Ostensen R, De Meester W, Reed thePacificConferenceSeries,vol351,pp112–115 MD, Kolaczkowski Z, Michalska G, Schmidt E, Yakut BertinE,ArnoutsS(1996)SExtractor:Softwareforsource K, Leitner A, Kalomeni B, Cherix M, Spano M, Prins extraction. Astronomy and Astrophysics Supplement S, van Helshoecht V, Zima W, Huygen R, Vandenbuss- 117:393–404 8 GucsavB.etal. che B, Lenz P, Ladjal D, Puga Antolin E, Verhoelst T, De Ridder J, Niarchos P, Liakos A, Lorenz D, Dehaes S, ReyniersM, DavignonG, KimSL, KimDH, LeeYJ, LeeCU,KwonJH,BroedersE,vanWinckelH,Vanholle- beke E, Waelkens C, Raskin G, Blom Y, EggenJR, De- groote P, Beck P, Puschnig J, Schmitzberger L, Gelven GA, Steininger B, Blommaert J, Drummond R, Briquet M,DebosscherJ(2010)Photometricmulti-sitecampaign ontheopenclusterNGC884.I.Detectionofthevariable stars.AstronomyandAstrophysics515:A16 ScargleJD(1982)Studiesinastronomicaltimeseriesanaly- sis.II-Statisticalaspectsofspectralanalysisofunevenly spaceddata.AstrophysicalJournal263:835–853 Stellingwerf RF (1978) Period determination using phase dispersionminimization.AstrophysicalJournal224:953– 960 Wozniak WSJVWTGV P R (2004) Identifying Red Vari- ablesintheNorthernSkyVariabilitySurvey.TheAstro- nomicalJournal128:2965–2976 Yes¸ilyaprak C, Yerli S, Güçsav B, Aksaker N, Dikiciog˘lu E, Helvacı M, Çoker D, Aydın M, Dinçel B, Uzun N (2011) Long-Term Variations and Periods of Mira Stars fromROTSE–IIId.AcceptedbyNewAstronomy Young AT, Genet RM, Boyd LJ, Borucki WJ, Lockwood GW,HenryGW,HallDS,SmithDP,BaliumasSL,Don- ahueR, EpandDH (1991)Precise automaticdifferential stellar photometry. Astronomical Society of the Pacific 103:221–242

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.