ebook img

A novel second order finite difference discrete scheme for fractal mobile/immobile transport model based on equivalent transformative Caputo formulation PDF

0.21 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A novel second order finite difference discrete scheme for fractal mobile/immobile transport model based on equivalent transformative Caputo formulation

A novel second order finite difference discrete scheme for fractal mobile/immobile transport model based on equivalent transformative Caputo formulation ZhengguangLiua,XiaoliLia,∗ aSchoolofMathematics,ShandongUniversity,Jinan,Shandong250100,China. 7 1 0 Abstract 2 In this article, we present a new second order finite difference discrete scheme for fractal mobile/immobile n transport model based on equivalent transformative Caputo formulation. The new transformative formulation a takesthesingularkernelawaytomaketheintegralcalculationmoreefficient. Furthermore,thisdefinitionisalso J effective where α is a positive integer. Besides, the T-Caputo derivative also helps to increase the convergence 5 rate of the discretization of α-order(0 < α < 1) Caputo derivative from O(τ2−α) to O(τ3−α), where τ is the ] timestep. Fornumerical analysis, aCrank-Nicholson finitedifferenceschemeto solve fractalmobile/immobile P transport model is introduced and analyzed. The unconditional stability and a priori estimates of the scheme A are given rigorously. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical h. experimentstosupportourtheoreticalanalysis. t a Keywords: m Transformativeformulation, Singularkernel,mobile/immobiletransportmodel,Unconditionalstability, [ Estimates 2010MSC: 65M06,65M12,65M15,26A33 1 v 3 8 2 1. Introductions 1 0 In recent years, many problems in physical science, electromagnetism, electrochemistry, diffusion and gen- . 1 eral transport theory can be solved by the fractional calculus approach, which gives attractive applications as 0 a new modeling tool in a variety of scientific and engineering fields. Roughly speaking, the fractional models 7 can be classified into two principal kinds: space-fractional differential equation and time-fractional one. Nu- 1 : mericalmethodsandtheoryofsolutions oftheproblemsforfractionaldifferentialequations havebeenstudied v extensively bymany researchers which mainly coverfiniteelement methods[1–4],mixedfiniteelement meth- i X ods [5–8], finite difference methods [9–12], finite volume (element) methods [13, 14], (local) discontinuous r Galerkin(L)DGmethods[15],spectralmethods[16,17]andsoon. a The singular kernel of Caputo fractional derivative causes a lot of difficult problems both in integral cal- culation and discretization. To take singular kernel away, Caputo and Fabrizio [18] suggest a new definition of fractional derivative by changing the kernel (t−s)−α with the function exp(−αt−s) and 1 with M(α). 1−α Γ(1−α) 1−α The Caputo-Fabrizo derivative can portray substance heterogeneities and configurations with different scales, which noticeably cannot be managing with the renowned local theories. And some related articles have been consideredbymanyauthors. Atangana[19]introducestheapplicationtononlinearFishera˛´rsreaction-diffusion equation based on the new fractional derivative. He [20] also analyzes the extension of the resistance, induc- tance, capacitance electrical circuit to this fractional derivative without singular kernel. A numerical solution ∗Correspondingauthor. Emailaddresses:[email protected](ZhengguangLiu),[email protected](XiaoliLi) for the model of resistance, inductance, capacitance(RLC) circuit via the fractional derivative without singular kernel is considered by Atangana [21]. However, we observe that there are many different actions between Caputo-FabrizioderivativeandCaputoderivative. Thetwodefinitionsarenotequivalent andcannottransform intoeachotherinanycases. Inthispaper,wesuggestanewtransformativeformulationoffractionalderivativenamedT-Caputoforluma, whichisequivalent withCaputofractionalderivativeinsomecases. Furthermore,thetwodefinitionscantrans- form into each other. More importantly, the T-Caputo formula also helps to increase the convergence rate of thediscretization of α-order(0<α<1)Caputo derivative fromO(τ2−α) toO(τ3−α),where τ is thetimestep. Fornumericalanalysis,wepresentaCrank-Nicholsonfinitedifferenceschemetosolvefractalmobile/immobile transport model. The unconditional stability and a priori estimates of the scheme are given rigorously. More- over, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoreticalanalysis. A fractal mobile/immobile transport model is a type of second order partial differential equations (PDEs), describing a wide family of problems including heat diffusion and ocean acoustic propagation, in physical or mathematical systems with a time variable, which behave essentially like heat diffusing through a solid [22]. Significantprogresshasalreadybeenmadeintheapproximationofthetimefractionalorderdispersionequation, see [23]. Schumer [24] firstly developes the fractional-order, mobile/immobile (MIM) model. The time drift term∂u/∂tisaddedtodescribethemotiontimeandthushelpstodistinguishthestatusofparticlesconveniently. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waitingtimes. Inmostcases,itisdifficult,orinfeasible,tofindtheanalyticalsolutionorgoodnumericalsolution of the problems. Numerical solutions or approximate analytical solutions become necessary. Liu et al. [25] givearadialbasisfunctions(RBFs)meshlessapproachformodelingafractalmobile/immobiletransportmodel. Numericalsimulationofthefractionalordermobile/immobileadvection-dispersionmodelisconsinderedbyLiu etal. [26]. Furthermore,ZhangandLiu[27]presentanovelnumericalmethodforthetimevariablefractional order mobile–immobile advection–dispersion model. Thefinitedifference schemesare usedby Ashyralyev and Cakir [28] for solving one-dimensional fractional parabolic partial differential equations. They [29] also give theFDMforfractionalparabolicequationswiththeNeumanncondition. The paper is organized as follows. In Sect.2, we give the definitions and some notations. We introduce a Crank-Nicholson finite difference scheme for a fractal mobile/immobile transport model in Sect.3. Then in Sect.4,wegivetheanalysisofstabilityanderrorestimatesforthepresentedmethod. InSect.5,somenumerical experimentsforthesecondorderfinitedifferencediscretizationarecarriedout. 2. Somenotationsanddefinitions Firstly,wegivesomedefinitionswhichareusedinthefollowinganalysis. LetusrecalltheusualCaputofractionaltimederivativeoforderα,givenby t 1 CDαu(t)= u′(s)(t−s)−αds, 0<α<1. 0 t Γ(1−α) Z0 Here,wegivethefollowingnewtransformativeformulationoffractionalderivative. Definition1. Letu(t)∈C2(0,T),α∈(0,1),thenthenewtransformativeformulaoffractionalorderisdefinedas: t 1 TCDαu(t)= u′′(s)(t−s)1−αds, 0<α<1. 0 t Γ(2−α) Z0 From the above definition of fractional order transformative formula, we know that the singular kernel (t−τ)−αinCaputoderivativeisreplacedwith(t−τ)1−α innewonewhichdoesnothavesingularityfor t=τ. Lemma2. Supposeu(t)∈C2(0,T),α∈(0,1),thenwehave u′(0)t1−α TCDαu(t)=CDαu(t)− . 0 t 0 t Γ(2−α) 2 Inparticular,ifthefunctionissuchthatu′(0)=0,thenwehave TCDαu(t)=CDαu(t). 0 t 0 t Proof: Notingthat ∂[u′(s)(t−s)1−α] =u′′(s)(t−s)1−α−(1−α)u′(s)(t−s)−α. ∂s Thenitiseasytoget 1 ∂[u′(s)(t−s)1−α] u′(s)(t−s)−α= u′′(s)(t−s)1−α− . 1−α ∂s – ™ ThustheCaputoderivativecanberewrittenas t 1 CDαu(t)= u′(s)(t−s)−αds 0 t Γ(1−α) Z0 1 t ∂[u′(s)(t−s)1−α] = u′′(s)(t−s)1−α− ds Γ(2−α) ∂s Z0 – ™ =TCDαu(t)−u′(s)(t−s)1−α t 0 t 0 u′(0)t1−α (cid:12) =TCDαu(t)+ . (cid:12) 0 t Γ(2−α) Thiscompletestheproof. Definition3. Suppose u(t)∈ Cn+1(0,T), if n>1, and α∈(n−1,n), the fractional transformative formulation TCDαu(t)isdefinedby 0 t t 1 TCDαu(t)= u(n+1)(s)(t−s)n−αds, n−1<α<n. 0 t Γ(n+1−α) Z0 Lemma4. Supposeu(t)∈Cn+1(0,T),α∈(n−1,n),thenwehave u(n)(0)tn−α TCDαu(t)=CDαu(t)− . 0 t 0 t Γ(n+1−α) Inparticular,ifthefunctionissuchthatu(n)(0)=0,thenwehave TCDαu(t)=CDαu(t), n−1<α<n. 0 t 0 t Proof: Similarly analysisintheproofofLemma1,wehave ∂[u(n)(s)(t−s)n−α] =u(n+1)(s)(t−s)n−α−(n−α)u(n)(s)(t−s)n−1−α. ∂s Thenitiseasytoget 1 ∂[u(n)(s)(t−s)n−α] u(n)(s)(t−s)n−1−α= u(n+1)(s)(t−s)n−α− . n−α ∂s – ™ 3 Thustheα-orderCaputoderivativecanberewrittenas t 1 CDαu(t)= u(n)(s)(t−s)n−1−αds 0 t Γ(n−α) Z0 1 t ∂[u(n)(s)(t−s)n−α] = u(n+1)(s)(t−s)n−α− ds Γ(n+1−α) ∂s Z0 – ™ =TCDαu(t)−u(n)(s)(t−s)n−α t 0 t 0 u(n)(0)tn−α (cid:12) =TCDαu(t)+ . (cid:12) 0 t Γ(n+1−α) Thiscompletestheproof. Lemma5. Forthenewfractionalordertransformativeformulation,α∈(0,1)wehave D(n)(TCDαu(t))=CDα(D(n)u(t)). t 0 t 0 t t Inparticular,ifthefunctionissuchthatu′(0)=0,thenwehave D(n)(TCDαu(t))=TCDα(D(n)u(t)). t 0 t 0 t t Proof: Webeginconsidering n=1,thenfromdefinition(1)ofTCDαu(t),weobtain 0 t t d 1 D(1)(TCDαu(t))= u′′(s)(t−s)1−αds t 0 t dt Γ(2−α) ‚ Z0 Œ t 1 = u′′(s)(t−s)1−α + (1−α)u′′(s)(t−s)−αds Γ(2−α) s=t – Z0 ™ t (cid:12) 1 (cid:12) = u′′(s)(t−s)−αds Γ(1−α) Z0 =CDα(D(1)u(t)). 0 t t Particularly,FromLemma2,weknow TCDαu(t)=CDαu(t)ifu′(0)=0. Thuswehave 0 t 0 t D(1)(TCDαu(t))=TCDα(D(1)u(t)). t 0 t 0 t t Itiseasytogeneralizetheproofforany n>1. Lemma6. Forthenewfractionalordertransformativeformulation,ifα=n,wehave TCDnu(t)=u(n)(t)−u(n)(0). 0 t Proof: FromDefinition3,weobtain t 1 TCDαu(t)= u(n+1)(s)(t−s)n−αds 0 t Γ(n+1−α) Z0 .=u(n)(s) t s=0 =u(n)(t)(cid:12)−u(n)(0). (cid:12) FromtheLemma6,weobtain t 1 TCDαu(t)= u(n+1)(s)(t−s)n−αds 0 t Γ(n+1−α) Z0 u(n)(0)tn−α CDαu(t)− , n−1<α<n, = 0 t Γ(n+1−α) u(n)(t)−u(n)(0) α=n.   4 Letusconsider, thetransformative formulationofaparticular function,asu(t)=cos(t)fordifferentα(0< α<1). Itiseasytogetthatu′(0)=sin(0)=0. FromFigure1,weobservetherearenodifferentactionsbetween transformativeformulationandCaputoderivative. Wealsoconsideranotherfunctionasu(t)=sin(t)whichhas u′′(0)=0fordifferentα(1<α<2). FromFigure2,transformativeformulationandCaputoderivativehavethe exactsamesetofstates. 1 1 γ=0.1 γ=0.1 γ=0.3 γ=0.3 γ=0.6 γ=0.6 0.5 γ=0.9 0.5 γ=0.9 0 0 αT-Caputo: Du(t)-0.5 αCaputo: Du(t)-0.5 -1 -1 -1.5 -1.5 -2 -2 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 t t Figure1:Simulationoftransformativeformulation(left)andCaputoderivative,withα=0.1,0.3,0.6,0.9inthetimeinterval[0,20]. 1 1 γ=1.1 γ=1.1 γ=1.3 γ=1.3 γ=1.6 γ=1.6 0.5 γ=1.9 0.5 γ=1.9 0 0 αT-Caputo: Du(t)-0.5 αCaputo: Du(t)-0.5 -1 -1 -1.5 -1.5 -2 -2 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 t t Figure2:Simulationoftransformativeformulation(left)andCaputoderivative,withα=1.1,1.3,1.6,1.9inthetimeinterval[0,20]. 3. Finitedifferenceschemeforfractalmobile/immobiletransportmodel Inthissection,weintroducethebasicideasforthenumericalsolutionofthefractalmobile/immobiletrans- portmodelbythesecondorderfinitedifferencescheme. Weconsiderthefollowingfractalmobile/immobiletransportmodel: ∂u(x,t) ∂2u(x,t) +CDαu(x,t)= + f(x,t), (1) ∂t 0 t ∂x2 where(x,t)∈Ω=[0,L]×[0,T],0<α<1, f ∈C[0,T],withtheinitialconditions u(x,0)=φ(x), 0≤x ≤L, (2) 5 andboundaryconditions u(0,t)=u(L,t)=0, t>0. (3) Letting t =0intheequation(1),weget u′(0)=ψ(x)=φ (x)+ f(x,0). xx UsingLemma2,theabovemodelcanbetransformedintothefollowingformulation: ∂u(x,t) ∂2u(x,t) ψ(x)t1−α +TCDαu(x,t)= + f(x,t)− , (x,t)∈Ω, ∂t 0 t ∂x2 Γ(2−α)  u(x,0)=φ(x), 0≤x ≤L,     u(0,t)=u(L,t)=0, t>0,   ψ(x)=φxx(x)+f(x,0), 0≤ x≤ L.     In order to do discretizations, we define Ω ={x |x = ih, h= L/M, 0≤ i ≤ M} to be a uniform mesh of h i i interval[0,L]. Similarly,defineΩ ={t , t =iτ, τ=T/N, 0≤i≤N}tobeauniformmeshofinterval[0,T]. τ n n Thevaluesofthefunctionuatthegridpointsaredenoteduk =u(x ,t ). Uk istheapproximatesolutionatthe j j k j point(x ,t ). Incase, wesuppose V ={V, 0≤i ≤ M,V =V =0} andW ={W, 0≤i ≤N,W =W =0} j k i 0 M i 0 M aretwogridfunctionsonΩ . g={gn, 0≤n≤N}isgridfunctionsonΩ . h τ Forfunctions g,V andW,wegivesomenotations,define L2 discreteinnerproductsandnorms. Define[12] gn−gn−1 M−1 δ gn= , (V,W)= hVW, kVk2=(V,V). t τ i i i=1 X 3.1. TheCrank-Nicholsonfinitedifferencescheme Fromnowon,letC standforapositivenumberindependentofτandh,butpossiblywithdifferentvaluesat differentplaces. Wegivesomelemmaswhichusedinstabilityanalysisanderrorestimates. TheobjectiveofthissectionistoconsidertheCrank-Nicholsonfinitedifferencemethodforequations(1). A discreteapproximation tothenew transformative formulation TCDαu(x,t) at (x ,t ) canbeobtained bythe 0 t i k+1 2 followingapproximation TCDαu(x ,t )= 1 tk+21 u′′(x ,s)(t −s)1−αds 0 t i k+12 Γ(2−α) i k+21 Z0 = 1 k tj+21 u′(xi,tj+21)−u′(xi,tj−12) +(s−t )u(3)(x ,c ) (t −s)1−αds Γ(2−α)  τ j t i j  k+12 Xj=1Ztj−21   1 t1   + 2 u′′(x,s)(t −s)1−αds Γ(2−α) k+21 Z0 = 1 k tj+21 uij+1−2uij+uij−1 +rj+(s−t )u(3)(x ,c ) (t −s)1−αds (4) Γ(2−α)Xj=1Ztj−21  τ2 j t i j  k+12 1 t1 u1−2u0+u−1  + 2 i i i +r0+(s−t )u(3)(x ,c ) (t −s)1−αds Γ(2−α)Z−t1 – τ2 0 t i 0 ™ k+12 2 0 1 − u′′(x,s)(t −s)1−αds, Γ(2−α) k+12 Z−t1 2 6 wherec ∈(x ,x )andforξ ∈(t ,t ),ξ ∈(t ,t ),ξ ∈(t ,t ),ξ ∈(t ,t ),η∈(t ,t ) j j−1 j+1 1 j+1 j+1 2 j j+1 3 j−1 j 4 j−1 j−1 j−1 j+1 2 2 2 2 2 2 2 2 andu(t)∈C4[0,t ],wehave k+1 2 1 rj= τ u(3)(x ,t )−u(3)(x ,t ) 24 t i j+12 t i j−12 1h i + τ2 u(4)(x ,ξ )+u(4)(x ,ξ )−u(4)(x ,ξ )−u(4)(x ,ξ ) 256 t i 1 t i 2 t i 3 t i 4 (5) 1 h i = τ2u(4)(x ,η)+O(τ2) 48 t i =O(τ2). Inparticular,for j=0,denoteu−1=u0−τu′(x,0)=φ−τψ.Usingthesimplelinearinterpolantofuat(−t ,0), 1 sofors∈(−t ,0),wehaveu′′(x,s)=0. Itisasuitablemethodtosatisfytheconditionu−1=u0−τu′(x,0). 1 2 Combiningtheequation(4)with(5),weobtain TCDαu(x ,t )= τ2−α k uij+1−2uij+uij−1 M + τ2−α u1i −u0i − ψ M +Rk+21 0 t i k+21 Γ(3−α) j=1 τ2 ! k−j Γ(3−α)‚ τ2 τŒ k i X (6) = τ1−α M δ uk+1− k M −M δ uj−M ψ +Rk+21, Γ(3−α) 0 t i k−j k−j+1 t i k i i j=1 X€ Š   where M =(j+1)2−α− j2−α, (7) j and Rk+21 = 1 k tj+21 rj+(s−t )u(3)(x ,c ) (t −s)1−αds i Γ(2−α)Xj=0Ztj−21 (cid:16) j t i j (cid:17) k+12 (8) =O(τ3−α). WegivesomeLemmasabout M thatwillbeusedinthefollowinganalysis. j Lemma7. Forthedefinition M ,(j=0,1,2,...,N−1),wehave M >0and M ≥M ,∀j≤k. j j j+1 j Proof: Observing that x2−α is a monotone increasing functionfor 0<α<1, thenwe have M =(j+1)2−α− j j2−α>0. Next,let f(x)=(x+1)2−α−x2−α,wehave f′(x)=(2−α)[(x+1)1−α−x1−α]≥0, ∀x ≤0. Thusweobtain M = f(j+1)≥ f(j)=M . j+1 j Thiscompletestheproof. Lemma8. Forthedefinition M =(j+1)2−α− j2−α,wedenote G =M −M ,(j=0,1,2,...,N−1). Then j j+1 j+1 j itholdsthat G ≥G ≥···≥G ≥0. 1 2 N Proof:Firstly,usingLemma(7),itiseasytogetG ≥0. Next,forfixed0<α<1,wegivethefollowingfunction j f(x)=(x+2)2−α−2(x+1)2−α+x2−α, thenwehave f′(x)=(2−α)[(x+2)1−α−2(x+1)1−α+x1−α]. 7 UsingTaylor’sexpansion,wehave 1 1 (x+2)1−α=(x+1)1−α+(1−α)(x+1)−α− (1−α)α(x+1)−(α+1)+ (1−α)α(α+1)ξ−(α+2), 2! 3! 1 1 1 x1−α=(x+1)1−α−(1−α)(x+1)−α− (1−α)α(x+1)−(α+1)− (1−α)α(α+1)ξ−(α+2), 2! 3! 2 whereξ ∈(x+1,x+2)andξ ∈(x,x+1). 1 2 Thus,wehave 1 f′(x)=(2−α) −(1−α)α(x+1)−(α+1)+ (1−α)α(α+1) ξ−(α+2)−ξ−(α+2) 3! 1 2 (cid:20) (cid:16) (cid:17)(cid:21) ≤−(2−α)(1−α)α(x+1)−(α+1) ≤0, ∀x ≥0, 0<α<1. ItmeansthatG >G ,∀j≥1. Thiscompletestheproof. j j+1 Thediscretizationoffirstordertimederivativeisstatedas: ∂u(xi,tk+21) = uki+1−uki +O(τ2), (9) ∂t τ andthesecondorderspatialderivativeisstatedas: ∂2u(xi,tk+12) = 1 uki++11−2uki+1+uki−+11 + uki+1−2uki +uki−1 +O(h2), (10) ∂x2 2 h2 h2    Combining theequation(6)withequations(9)∼(10),wecanobtainthefollowingfinitedifferencescheme, ∀k=0,1,···N−1, τ1−α k δ Uk+1+ M δ Uk+1− M −M δ Uj−M ψ t i Γ(3−α) 0 t i k−j k−j+1 t i k i j=1 X€ Š (11) = 1 Uik++11−2Uik+1+Uik−+11 + Uik+1−2Uik+Uik−1 + fk+21 − ψi[(k+ 21)τ]1−α. 2 h2 h2  i Γ(2−α) NotethatG =M −M ,(j=0,1,2,...,N−1),thenwehave j+1 j+1 j k 1 k−1 − M −M δ Uj= G Uk| + G −G Uj−G U0| . (12) k−j k−j+1 t i τ 1 i k≥1 k−j+1 k−j i k i k≥1 j=1 j=1 X€ Š X€ Š   Letβ = τ1−α ,thenabovescheme(11)canberewrittenas Γ(3−α) τ τ τ − Uk+1+ +1+β Uk+1− Uk+1 2h2 i+1 h2 i 2h2 i−1 • (cid:129) ‹ ˜ τ τ τ k−1 = Uk + − +1+β−G | Uk+ Uk +β G −G Uj+G U0| 2h2 i+1 h2 1 k≥1 i 2h2 i−1 k−j k−j+1 i k i k≥1 (13) (cid:129) ‹ Xj=1€ Š +τβM ψ +τfk+21 − τψi[(k+12)τ]1−α.  k i i Γ(2−α) 8 4. Stabilityanalysisandoptimalerrorestimates 4.1. Stabilityanalysis We analyze thestability of thedifferenceschemebya Fourier analysis. Let Uk betheapproximate solution i of(13),anddefine ρk=Uk−Uk, 1≤i≤M, 0≤k≤N. e i i i Thenwehave e τ τ τ − ρk+1+ +1+β ρk+1− ρk+1 2h2 i+1 h2 i 2h2 i−1 • τ (cid:129) τ ‹ ˜ τ k−1 (14) = ρk + − +1+β−βG | ρk+ ρk +β G −G ρj+βG ρ0| . 2h2 i+1 h2 1 k≥1 i 2h2 i−1 k−j k−j+1 i k i k≥1 (cid:129) ‹ Xj=1€ Š   Asthesamedefinitionin[30],wedefinethegridfunction 0, 0≤ x≤ x , 1 2 ρk(x)= ρik, xi−1 ≤ x≤ xi+1, 1≤i≤M−1, 2 2 0, x ≤ x ≤x .  M−1 M 2  Wecanexpandρk(x)inaFourierseries ∞ ρk(x)= dk(l)ei2πLlx, k=1,2,...,N, l=−∞ X wherediscreteFouriercoefficientsd (l)are k L 1 dk(l)= L ρk(ξ)e−i2Lπlξdξ. (15) Z0 ThenwehavetheParsevalequalityforthediscreteFouriertransform L ∞ |ρk(x)|2dx= |d (l)|2. k Z0 l=−∞ X Introducethefollowingnorm M−1 1/2 L 1/2 kρkk = h|ρk|2 = |ρk|2dx . 2 i i i=1 ! Z0 ! X Thenweobtain ∞ kρkk2= |d (l)|2. 2 k l=−∞ X Based on the above analysis, we can suppose the solution of equation (14) has the following form ρk = m d eimhγ where L=1andγ=2πl. k Lemma9. Supposethatd (l)(k=1,2,...,N)aredefinedby(15),thenfor0<α<1,wehave k |d |≤|d |, k=1,2,...,N. k 0 9 Proof: Substitutingρk =d eimhγ intoequation(14),wehave m k τ τ τ − d ei(m+1)hγ+ +1+β d eimhγ− d ei(m−1)hγ 2h2 k+1 h2 k+1 2h2 k+1 • τ (cid:129) τ ‹ τ ˜ = d ei(m+1)hγ+ − +1+β−βG | d eimhγ+ d ei(m−1)hγ 2h2 k h2 1 k≥1 k 2h2 k (16) • (cid:129) ‹ k−1 +β G −G d eimhγ+βG d eimhγ| . k−j k−j+1 j k 0 k≥1  j=1 X€ Š  Bysimplycalculation,wecanget τ τ τ τ − (eihγ+e−ihγ)+ +1+β d = (eihγ+e−ihγ)+ − +1+β−βG | d 2h2 h2 k+1 2h2 h2 1 k≥1 k • (cid:129) ‹˜ • k−1 (cid:129) ‹˜ (17) +β G −G d +βG d | . k−j k−j+1 j k 0 k≥1 j=1 X€ Š Notingthateihγ+e−ihγ=2cos(hγ),thusequation(17)canberewrittenasthefollowingformulation: τ τ τ τ − cos(hγ)+ +1+β d = cos(hγ)+ − +1+β−βG | d h2 h2 k+1 h2 h2 1 k≥1 k • (cid:129) ‹˜ • k−1 (cid:129) ‹˜ (18) +β G −G d +βG d | . k−j k−j+1 j k 0 k≥1 j=1 X€ Š Firstly,lettingk=0inequation(18)toobtain τ cos(hγ)− τ +1+β −1−cos(hγ)τ+1+β |d |= h2 h2 |d |= h2 |d |≤|d |. (19) 1 (cid:12)−τ cos(hγ)+ τ +1+β(cid:12) 0 (cid:12) 1−cos(hγ)τ+1+β (cid:12) 0 0 (cid:12) h2 h2 (cid:12) (cid:12)(cid:12) h2 (cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Nowsupposethatwehave(cid:12)provedthat|d |≤|d |,n(cid:12)=1,2,.(cid:12)..,k,thenusingthe(cid:12)equation(18),weobtain n 0 (cid:12) (cid:12) |d |≤ −1−chos2(hγ)τ+1+β−βG1 |d |+ 1 βk−1 G −G |d |+βG |d | . k+1 (cid:12)(cid:12)(cid:12) 1−cohs2(hγ)τ+1+β (cid:12)(cid:12)(cid:12) k |1−chos2(hγ)τ+1+β| Xj=1€ k−j k−j+1Š j k 0  (cid:12) (cid:12)  (20) (cid:12) (cid:12)  Observin(cid:12)gthatGj≥0andGj−Gj+1(cid:12)≥0inLemma8,thenweobtain k−1 k−1 β G −G |d |+βG |d |≤β G −G +G |d |=βG |d | (21) k−j k−j+1 j k 0 k−j k−j+1 k 0 1 0   j=1 j=1 X€ Š X€ Š   Combiningtheequation(20)withequation(21),wecanobtain |−1−cos(hγ)τ+1+β−βG |+βG |d |≤ h2 1 1 |d |. (22) k+1  |1−cos(hγ)τ+1+β|  0 h2   If−1−cos(hγ)τ+1+β−βG >0,thenwehave h2 1 −1−cos(hγ)τ+1+β |d |≤ h2 |d |≤|d |. (23) k+1 |1−cos(hγ)τ+1+β| 0 0 h2   10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.