Proceedingsofthe25thCANCAM London,Ontario,Canada,May31-June4,2015 7 A NOVELNONLINEAR AMPLITUDE-MODULATION GYROSCOPEINCORPORATING 1 INTERNAL RESONANCE 0 2 n a J S. AmirMousaviLajimi,Navid Noori,AmrMarzouk, Behraad Bahreyni,Farid Golnaraghi 7 MechatronicSystemsEngineering,Simon FraserUniversity,B.C., Canada V3T0A3 [email protected],[email protected] ] t e d - ABSTRACT byanexternalsignalproportionaltotherotationrate[1]. s n Thedesignsofrotationratesensors(gyroscopes)areevolv- i We are presenting the design and the preliminary numerical . ingtoofferhigherresolution,largersensitivity,betterperfor- s andexperimentalanalysesoftwomismatchedCoriolisvibra- c manceanda lowerfabricationcost. Beam-basedgyroscopes i torygyroscopesincorporatingnonlinearmodalinteraction.A offer a relatively simple structure and have been in-use for s y noveldouble-Hdesignincludestwoclamped-clampedbeams a long time [2]. Gyroscopes suffer from the low sensitivity h and a suspended mass in the middle connected to the base andlowmechanicalscalefactor. Toovercomethesedifficul- p beamsviafourshortcantilevers.AnotherdesignisaT-shaped ties, researchers have investigated beam-mass systems both [ gyro including a primary doubly-clamped beam and a sec- experimentally and analytically [3, 4]. Furthermore, to op- 1 ondary sense beam. A combination of analytical, finite ele- erate the beam-mass gyroscope using frequency-modulation v ment, and experimental analyses are employed to study the schemetheclosed-formequationrelatingtheangularrotation 5 characteristicsofthenonlineargyro.Thedrivemodematches rate and the modal frequencieshas been obtained [5, 6] and 6 the structure’s second mode, while the sense mode matches 0 toexploitnonlinearitiesforhigherperformance,thenonlinear thefundamentalmodeofthestructure.Ourpreliminarystudy 0 responsehasbeencharacterized[7]. 0 indicatesthatthebandwidthandthesensitivityoftherotation Toincreasethesensitivityofanamplitude-modulationgyro, . rate sensor are improved by employing the nonlinear modal 2 thefrequenciesofthesenseanddrivemodesarematched[8]. 0 interaction. However, the bandwidth and other performance parameters 7 areaffectedadverselyandmaybeimprovedbyotherarrange- 1 Keywords: Gyroscope,ratesensor,internalresonance,sen- : ments of the modes [9]. The other possibility is to use dif- v sitivity,bandwidth,noise,saturation ferent mode shapes of a structure and operate based on the i X featuresofnonlinearlycoupledsystemstoincreasetheband- r INTRODUCTION widthand the sensitivity asit has been shownfor resonators a [10]. Furthermore,aparametricallyresonatinggyroscopeof- fers a higher performance [11]. Recently, Golnaraghi et al. AconventionalCoriolisvibratorygyro(CVG)referstoamicro- [12] revealed an application of internal resonance in design- ormacro-mechanicalstructurewheretheCorioliseffecttrans- inggyroscopeswithlargerbandwidthsandhighersensitivities fers some energy from a primary oscillation mode to a sec- [12]. ondary oscillation mode. The system used as a sensor, in- cludes a primary(drive) mode excited by an externalsource Inthiswork,weproposemethodsforthedesignandanal- and a secondary(sense) mode activated by the rotation rate- ysisofanamplitude-modulationgyrowhichisexcitedatthe dependentterms. To operatea CVG in open-loopmodeand frequency of the drive mode being twice the frequency of amplitude-modulationscheme,theamplitudeofthesensemode the sense mode. The first and second frequencies are inter- (pickoff)isusedtoidentifytherotationrate[1].Anotheroper- nally coupled because of the structure’s design and offer a ationmodeforvibratorygyroscopesistheforce-to-rebalance, higher sensitivity and a larger bandwidth in the sensed re- orclosed-loop,modewherethesenseamplitudeisestimated sponse.ThefiniteelementanalysisisperformedinAnsysMe- chanical APDL 14.5 package using static, modal, harmonic, theequationofmotionintheform and transient analyses. The initial designs are implemented inCoventorWarepackageandfabricatedusingaSOIMUMPs M r¨1 + C r˙1 + K K1 = Fr+Fe (1) process [13]. Two designs are used to study two-to-one in- (θ¨2) (θ˙2) (cid:26)K2(cid:27) (cid:26) Fθ (cid:27) ternally coupled gyroswhere the first one, a double-Hgyro, (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) is a novel design and the second one, a T-shaped structure, where was previouslystudied as a resonator. A macro-scale model oftheT-shapedstructureisbuiltandtestedonaratetableand M = M1+M2 −M2r2sin(θ2) thefrequency-responsecurvesareobtained. Usingalumped- (cid:26)−M2r2sin(θ2) M2r22 (cid:27) massmodel,amathematicalmodelofthesystemisdeveloped (cid:2) (cid:3) andsolvednumericallytoobtainthesaturationcurves. (cid:2)C(cid:3)=(L21c0−1r12 c02), (cid:2)K(cid:3)=Lar1crsin01(−LrLr111221) θ02 DESIGNSandMETHODS The schematic of the two micro-gyro designs with various Fr =M2r2 θ˙22+Ω2 cos(θ2)+2M2r2Ωcos(θ2)θ˙2 configurationsofthedriveandsense electrodesareprovided +(M(cid:16)+M )r(cid:17)Ω2 1 2 1 inFigs. 1and2. InFig. 1,excitingthebasebeamsalongY- axis,theCorioliseffectinducesaresponseintheX-direction Fe =aesin(fet) forasingle-axisgyrorotatingabouttheZ-axis(out-of-plane). Fθ =−M2r2r1Ω2sin(θ2)−2M2r2Ωcos(θ2)r˙1 It is worth mentioning that the same structure may be used for in-plane rate measurements placing the drive electrodes whereparametersandvariablesareintroducedinFig. 4. The alongtheZ-axisunderthedrivebeamontheSisubstrate.The mathematicalmodel,Eq.(1),isusedtonumericallystudythe double-Hdesignincludesamasstofurtheramplifythesense behaviourofthesystemandtoderiveareduced-ordermodel signal. Theseconddesignis a T-shapedstructurepreviously basedonatwo-variableperturbationmethod[14]. usedasaresonatorin[10],seeFig. 2. Both designs are initially analyzed using MEMS CAD RESULTS softwareCoventorWareandANSYS14.5Workbenchandfab- ricatedusingastandardSOIMUMPsprocess. Scanningelec- An Ansys MechanicalAPDL codeis developedto study the tron microscope(SEM) images of the fabricated devices are static, modal,harmonic,andtransientresponsesofthestruc- presented in Figs. 1(a) and 2(a) obtained using a FEI Nova tures. To performthe finite elementanalysisof the microT- NanoSEM 430 SEM System. The structures are designed shapedgyroinareasonableamountoftime,thequalityfactor suchthatthemodalfrequencyofthesecondmodeistwicethe is set to 100 and a two-dimensional model of the structure, modalfrequencyofthefirstmodeinteractingwitheachother Fig. 2(a),isstudiedinAnsysMechanicalusingPlane1822D throughnonlinearmodalinteraction(internalresonance).The structuralsolidelements. ForaT-shapedgyrowithaprimary pair of sense electrodes provide the required means for dif- 388µm long clamped-clamped beam with width 20µm and ferentialsensingofthesensedisplacement. Forthedouble-H a secondary 145.5µm long beam with width 8µm, the time- gyro,Fig. 1,thedriveelectrodesoperatein180degreesphase histories of the drive and sense displacements are computed differencetoincreasethestrengthofactuation.Properinstru- using transient analysis and shown in Fig. 5. The energy mentationoftheexperimentationsareshowninFigs.1(b)and istransferredfromthedrivebeam(mode)to the sense beam 2(b). Toproperlyidentifythenonlineardynamicsofthesystem, (a) (b) amacro-scalemodeloftheT-shapedsensorisbuiltandtested on a rate table, see Fig. 3. The parametersof the gyroscope include a base doubly-clamped beam of length 160.20mm, thickness 0.47mm, and width 15mm, and a secondary beam oflength80mm,thickness0.203mm,andwidth15mm. The actuation and sensing mechanismsinclude two pairs of PSI- 5H4E piezoelectric ceramic transducers and a pair of LTS 15/03 and 15/12 laser displacement sensors. The device is mountedonanIdealAerosmith1621-200A-TLratetableand operatedandcontrolledthroughacustomizedMATLABSimulink codeandadSpacedataacquisitionsystem. Figure1:(a)ASEMimageofthefabricateddouble-Hshaped A simplified mathematicalmodelbased on lumped-mass gyroand(b)theschematicofthegyroscopeandthetestsetup. model,Fig.4,oftheT-shapeddesign,Fig.2,isusedtoderive (a) (b) Figure 2: (a) A SEM image of the fabricated T-shaped gyro Figure5: Displacementtime historiesof the driveandsense and(b)theschematicofgyroscopeandthetestsetup. beamsformicroT-gyro(Ω=10◦/s). Figure6: Fast Fouriertransforms(FFT) of the displacement timehistoriesformicroT-gyro(Ω=10◦/s). Figure3: ExperimentaltestsetupfortheT-shapedgyro. The structureisplacedonthetableinsidetheratetablechamber. responsecurvesofferingahigherstabilityandalessersensi- tivitytowherethemeasurementsaretakenalongthefrequency- responsecurve. Anumericalsolutionoftheequationofmotion,Eq. 1,is computedforanincreasingamplitudeof excitationbydirect integration and plotted in Fig. 8. The sense mode starts to grow after a certain threshold of the excitation amplitude is passed where the drive amplitude reaches to a limit and re- mainsunchanged. Thesaturationphenomenaappearsinsys- Figure4:Alumped-massmodeloftheT-shapedgyroscope. tems having internally coupled modes of vibration. Similar resultsareobtainedusingatwo-variableperturbationmethod andexperimentalanalysis. (mode)throughinternalresonanceandtheCorioliseffectgiv- ing rise to the large amplitude of the sense beam. A fast CONCLUSIONS Fouriertransform(FFT)ofthesenseanddrivetime-histories aregiveninFig. 6indicatingthefrequencycomponentsofthe The coupled-systemresults in a multi-frequencyresponse in time-responses.Theexcitationfrequency(thesecondpeak)in the sense direction of the proposed novel Coriolis vibratory thedrivedirectiontransformsintotheprimaryfrequency(the gyros. Initial results show improvements in the sensitivity firstpeak)inthesensedirectionthroughtheinternalresonance and the bandwidth of the open-loop gyroscope. Using in- andtheCorioliseffect. ternal resonance offers a method to overcome the complexi- InFig. 7,theexperimentalfrequency-responsecurvesfor tiesofaclosed-loopgyro. Employingthetwo-to-oneinternal macro-structureofFig. 3arepresented.Repeatingtheexperi- resonancephenomenon,awidebandwidthhighamplitudere- mentforasetofexcitationamplitudes,afamilyoffrequency- sponseinthesensedirectionisachievedimprovingthestabil- responsecurvesareobtainedshowinganincreaseintheband- ityandthesensitivityofthedevice. Furthermore,separating width and the sense amplitude. For small excitation ampli- the driveand sense mode frequencies(for examplethe drive tudes, the response is similar to linear systems, however for frequency is twice bigger than the sense frequency-i.e a 2:1 largeexcitationamplitudesaflatregionappearsinthefrequency- internalresonance),thesensedsignalcouldbefilteredforfre- [4] Lajimi, S. A. M., Abdel-Rahman, E., and Heppler, G., 2014. “Modeling and sensitivity analysis of a memsvibratoryrotationratesensor”. InProceedingsof SPIE 2014,SensorsandSmartStructuresTechnologies for Civil, Mechanical, and Aerospace Systems 2014, Vol.9061,pp.90612I–90612I–11. [5] Lajimi, S. A. M., Heppler, G. R., and Abdel-Rahman, E., 2014. “The application of a new beam-rigid body mems gyroscope in the frequency-modulation mode”. In Nano/Micro Engineered and Molecular Systems (NEMS), 2014 9th IEEE International Conference on, Figure 7: Experimental frequency-response curves of the pp.586–591. sensebeamformacroT-gyroshowinganincreaseintheband- widthoftheresponse. [6] Lajimi, S., Heppler, G., and Abdel-Rahman, E., 2014. “A parametric study of the response of a beam- rigid-body microgyroscope”. In ASME 2014 Inter- national Mechanical Engineering Congress and Ex- position, American Society of Mechanical Engineers, pp.V010T13A052–V010T13A052. [7] Lajimi, S., Heppler, G., and Abdel-Rahman, E., 2014. “Nonlinear dynamics of a beam-rigid body microgy- roscope”. In ASME 2014 International Design Engi- neering Technical Conferences and Computers and In- formation in Engineering Conference, American So- ciety of Mechanical Engineers, pp. V008T11A036– V008T11A036. Figure 8: Numerical force-response curves of the sense and [8] Zaman, M. F., Sharma, A., Hao, Z., and Ayazi, F., drive modesfor macro T-gyro showingthe nonlinearsatura- 2008. “A mode-matchedsilicon-yawtuning-forkgyro- tionofthedriveamplitude. scope with subdegree-per-hour allan deviation bias in- stability”. MicroelectromechanicalSystems,Journalof, 17(6),pp.1526–1536. quencies up to near the frequency of the drive mode reduc- ingthenoiseeffectsaroundthenaturalfrequencyofthesense [9] Acar, C., and Shkel, A., 2008. MEMS vibratory gy- mode.Itisexpectedtoseeaconsiderableimprovementinthe roscopes: structuralapproachestoimproverobustness. longtermstabilityofthesensorbyreducingtheeffectsofthe Springer. electronicnoiseonthereadoutcircuit. Furtherinvestigations [10] Vyas, A., Peroulis, D., and Bajaj, A. K., 2009. “A mi- are underway to properly characterize the system response, croresonatordesignbasedonnonlinear1:2internalres- examine the possibility of using the method to improve the onance in flexural structural modes”. Microelectrome- performanceoftheamplitude-modulationgyroscopes,andto chanicalSystems,Journalof, 18(3),pp.744–762. examinethepossibilityofusinga closed-looptocontroland managetheeffectsofnonlinearities. [11] Oropeza-Ramos, L. A., Burgner, C. B., and Turner, K.L.,2009.“Robustmicro-ratesensoractuatedbypara- metric resonance”. SensorsandActuatorsA: Physical, REFERENCES 152(1),pp.80–87. [1] Curey,R.,Ash,M.,Thielman,L.,andBarker,C.,2004. [12] Golnaraghi,F.,Bahreyni,B.,Marzouk,A.,Sarrafan,A., “Proposed ieee inertial systems terminology standard Lajimi,S.A.M.,Pouyanfar,O.,andNoori,N.Vibratory and other inertial sensor standards”. In Position Loca- gyroscope utilizing nonlinear modal interaction. Filed tionandNavigationSymposium,pp.83–90. onMay8,2015,ApplicationNumber:62159054. [2] O’Connor, J. M., and Shupe, D. M., 1983. Vibrating [13] Cowen, A., Hames, G., Monk, D., Wilcenski, S., and beamrotatingsensor. U.S.Patent4381672. Hardy,B. “Soimumpsdesignhandbook”. [3] Yang, H., Bao, M., Yin, H., and Shen, S., 2002. “A [14] Golnaraghi, M., Moon, F., and Rand, R., 1989. “Res- novelbulkmicromachinedgyroscopebasedonarectan- onance in a high-speed flexible-arm robot”. Dynamics gular beam-mass structure”. Sensors and Actuators A: andStabilityofSystems, 4(3-4),pp.169–188. Physical, 96(2),pp.145–151.