ebook img

A Novel Approach to Relativistic Dynamics: Integrating Gravity, Electromagnetism and Optics PDF

206 Pages·2023·2.897 MB·English
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Novel Approach to Relativistic Dynamics: Integrating Gravity, Electromagnetism and Optics

Fundamental Theories of Physics 210 Yaakov Friedman Tzvi Scarr A Novel Approach to Relativistic Dynamics Integrating Gravity, Electromagnetism and Optics Fundamental Theories of Physics Volume 210 SeriesEditors HenkvanBeijeren,Utrecht,TheNetherlands PhilippeBlanchard,Bielefeld,Germany BobCoecke,Oxford,UK DennisDieks,Utrecht,TheNetherlands BiancaDittrich,Waterloo,ON,Canada RuthDurrer,Geneva,Switzerland RomanFrigg,London,UK ChristopherFuchs,Boston,MA,USA DomenicoJ.W.Giulini,Hanover,Germany GreggJaeger,Boston,MA,USA ClausKiefer,Cologne,Germany NicolaasP.Landsman,Nijmegen,TheNetherlands ChristianMaes,Leuven,Belgium MioMurao,Tokyo,Japan HermannNicolai,Potsdam,Germany VesselinPetkov,Montreal,QC,Canada LauraRuetsche,AnnArbor,MI,USA MairiSakellariadou,London,UK AlwynvanderMerwe,GreenwoodVillage,CO,USA RainerVerch,Leipzig,Germany ReinhardF.Werner,Hanover,Germany ChristianWüthrich,Geneva,Switzerland Lai-SangYoung,NewYorkCity,NY,USA The international monograph series “Fundamental Theories of Physics” aims to stretchtheboundariesofmainstreamphysicsbyclarifyinganddevelopingthetheo- retical and conceptual framework of physics and by applying it to a wide range ofinterdisciplinaryscientificfields.Originalcontributionsinwell-establishedfields such as Quantum Physics, Relativity Theory, Cosmology, Quantum Field Theory, StatisticalMechanicsandNonlinearDynamicsarewelcome.Theseriesalsoprovides aforumfornon-conventionalapproachestothesefields.Publicationsshouldpresent new and promising ideas, with prospects for their further development, and care- fullyshowhowtheyconnecttoconventionalviewsofthetopic.Althoughtheaim of this series is to go beyond established mainstream physics, a high profile and open-minded Editorial Board will evaluate all contributions carefully to ensure a highscientificstandard. · Yaakov Friedman Tzvi Scarr A Novel Approach to Relativistic Dynamics Integrating Gravity, Electromagnetism and Optics YaakovFriedman TzviScarr ExtendedRelativityResearchCenter DepartmentofMathematics JerusalemCollegeofTechnology JerusalemCollegeofTechnology Jerusalem,Israel Jerusalem,Israel ISSN 0168-1222 ISSN 2365-6425 (electronic) FundamentalTheoriesofPhysics ISBN 978-3-031-25213-6 ISBN 978-3-031-25214-3 (eBook) https://doi.org/10.1007/978-3-031-25214-3 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This self-contained monograph provides a mathematically simple and physically meaningful model which unifies gravity, electromagnetism, optics, and even some quantumbehavior.Thesimplicityofthemodelisachievedbyworkingintheframe ofaninertialobserverinsteadofincurvedspacetime. Ourapproachtodynamicsisgeometric,andbyplottingtheactionfunctionofa spacetime,oneistreatedtoavisualizationofthegeometry.Usingthesevisualiza- tions,onemayreadilycomparethegeometriesofdifferenttypesoffields.Moreover, anewunderstandingoftheenergy-momentumofafieldemerges. Thereaderwilllearnhowtocomputetheprecessionofplanets,thedeflectionof light, and the Shapiro time delay. Also covered is the relativistic motion of binary stars,includingthegenerationofgravitationalwavesandarelativisticdescriptionof spin. The mathematics is accessible to students after standard courses in multivari- ablecalculusandlinearalgebra.Forthoseunfamiliarwithtensorsandthecalculus of variations, these topics are developed rigorously in the opening chapters. The unifying model presented here should prove useful to upper undergraduate and graduatestudents,aswellastoseasonedresearchers. Jerusalem,Israel YaakovFriedman TzviScarr Acknowledgments WewouldliketothankLarryHorwitz,RainerWeiss,BahramMashhoon,Dan Scarr,TepperGill,TzviWeinberger,YakovItin,DavidHaiGootvilig,ElazarLevzion,andChanoch Cohenfortheircomments. v Contents 1 Introduction ................................................... 1 1.1 PhysicsviaGeometry–AHistoricalPerspective ................ 1 1.2 UnificationandSimplicity .................................. 4 1.3 OverviewoftheModel ..................................... 6 1.4 OutlineoftheBook ........................................ 10 1.5 AlternativeTheories ....................................... 11 2 ClassicalDynamics ............................................. 13 2.1 ClassicalFields ........................................... 13 2.2 MotionintheClassicalFields ............................... 15 2.3 TheEuler–LagrangeEquations .............................. 22 3 TheLorentzTransformationsandMinkowskiSpace ............... 25 3.1 InertialFrames ............................................ 26 3.2 SpacetimeTransformationsthatSatisfythePrinciple ofRelativity .............................................. 29 3.2.1 TheGalileanTransformations ........................ 33 3.2.2 TheLorentzTransformations ......................... 35 3.3 EinsteinVelocityAdditionandApplications ................... 38 3.3.1 VelocityAddition ................................... 38 3.3.2 FiberOpticGyroscopesandtheSagnacEffect .......... 41 3.4 MinkowskiSpace ......................................... 43 3.5 Four-Vectors,Four-Covectors,andContraction ................ 46 3.6 RelativisticEnergy-Momentum .............................. 51 3.7 RelativisticDopplerShift ................................... 56 3.8 Lorentz-CovariantFunctionsforaSingle-SourceField .......... 58 4 TheGeometricModelofRelativisticDynamics .................... 63 4.1 TheRelativityofSpacetimeandtheExtended PrincipleofInertia ......................................... 63 4.2 GeodesicsontheGlobe .................................... 67 4.3 TheGeometricActionFunctionandItsProperties ............. 76 vii viii Contents 4.4 SimpleActionFunction .................................... 77 4.5 UniversalRelativisticEquationofMotion ..................... 79 4.5.1 TheEquationofMotionUsingProperTime ............ 80 4.5.2 TheEquationofMotionUsingτ˜ ...................... 86 5 TheElectromagneticFieldinVacuum ............................ 89 5.1 TheElectromagneticFieldTensor ........................... 89 5.2 TheFour-PotentialofaSingle-SourceElectricField ............ 91 5.3 TheElectromagneticFieldofaMovingSource ................ 95 5.4 The Electric and Magnetic Components of the Field ofaUniformlyMovingSource .............................. 98 5.5 TheEnergy-MomentumofanElectromagneticField ........... 101 5.6 TheRadiationField ........................................ 103 5.7 TheFour-PotentialofaGeneralElectromagneticField .......... 105 5.8 TheFieldofaCurrentinaLongWire ........................ 107 5.9 Maxwell’sEquations ....................................... 109 5.10 OrbitsofChargedParticlesinaStatic,Single-sourceField ...... 111 5.11 CircularOrbits ............................................ 114 6 TheGravitationalField ......................................... 117 6.1 TheGravitationalFieldofaStationary,Static,Spherically SymmetricBodyandItsGeometry ........................... 118 6.2 PrecessionofOrbitsinaStationary,Static,Spherically SymmetricGravitationalField .............................. 123 6.3 PeriastronAdvanceofBinaryStars .......................... 129 6.4 OrbitsintheStrongFieldRegime ............................ 132 6.4.1 CircularOrbits ..................................... 133 6.4.2 EllipticalOrbits ..................................... 135 6.4.3 Hyperbolic-LikeOrbits .............................. 136 6.5 GravitationalLensing ...................................... 139 6.6 ShapiroTimeDelay ....................................... 140 6.7 TheGravitationalFieldofMultipleSources ................... 143 6.8 TheGravitationalFieldofaMovingSource ................... 145 6.9 GravitationalWaves ....................................... 147 7 MotionofLightandChargesinIsotropicMedia .................. 151 7.1 ThePhotonActionFunctionofRestMedia ................... 151 7.2 ThePhotonActionFunctioninMovingMedia ................. 153 7.3 RefractionofLight ........................................ 155 7.4 MotionofaChargeinanIsotropicMediumatRest ............. 156 8 SpinandComplexifiedMinkowskiSpacetime ..................... 159 8.1 HistoryoftheSpinofParticles .............................. 160 8.2 TheStateSpaceofanExtendedObjectMovingUniformly ...... 161 8.3 Complexified Minkowski Space as the State Space ofanExtendedObject ..................................... 163 8.4 TheRepresentationoftheSpinofanElectron ................. 165 Contents ix 8.5 TransitionProbabilitiesofSpinStatesandBell’sInequality ..... 167 8.6 Motion of Particles with Spin in a Slow-varying ElectromagneticField ...................................... 171 9 ThePrepotential ............................................... 173 9.1 ThePrepotentialandtheFour-PotentialofaFieldGenerated byaSingleSource ......................................... 174 9.2 RepresentationsoftheLorentzGroupon M .................. 176 c 9.3 LorentzInvarianceofthePrepotentialandtheConjugation ...... 180 9.4 TheFour-PotentialofaMovingSource ....................... 182 9.5 TheSymmetryoftheComplexFour-Potential ................. 184 9.6 ThePrepotentialandtheWaveEquation ...................... 185 9.7 The Electromagnetic Field Tensor of aMoving Source anditsSelf-Duality ........................................ 186 9.8 ThePrepotentialofaGeneralElectromagneticField ............ 187 References ........................................................ 189 Index ............................................................. 193 Notation R Thesetofrealnumbers Re(z) The real part of a complex number of complex-valued function Im(z) Theimaginarypartofacomplexnumberofcomplex-valued function c Thespeedoflightinvacuum,c=299,792,458metersper second xμ(σ),μ=0,1,2,3 Theworldlineofanobject,parameterizedbyσ x ·y TheMinkowskiinnerproductoftwofour-vectors x◦y TheEuclideaninnerproductoftwo3Dvectors τ Propertime(withdimensionsoflength) τ˜ An alternative and sometimes convenient parameter, used tosimplifytheEuler-Lagrangeequations δ TheKroneckerdelta ij uμ(σ) Thefour-velocityofanobject wμ(σ) Thefour-velocityofasource ημν TheMinkowskimetricdiag(1,−1,−1,−1) gμν Anarbitrarymetric lμ(x) Afour-covectorappearingintheactionfunctionandrepre- senting the direction of propagation of a field or the propertiesofamedium Aμ(x) Afour-covectorappearingintheactionfunctionandrepre- sentingthefour-potentialofanelectromagneticfield q Achargedparticleorthechargeofthisparticle m Themassofanobject (cid:7) Thepermittivityoffreespace 0 μ Thepermeabilityoffreespace 0 G Newton’sgravitationalconstant h,(cid:2) Planck’sconstantandthereducedPlanck’sconstant r TheSchwarzschildradius s fμ,ν ∂∂xfμν xi

See more

The list of books you might like