DEPARTAMENTO DE ECONOMÍA PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ DEPARTAMENTO DE ECONOMÍA PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ DOCUMENTO DE TRABAJO N° 357 DEPARTAMENTO DE ECONOMÍA A NOTE ON THE SIZE OF THE ADF TEST WITH ADDITIVE OUTLIERS AND FRACTIONAL ERRORS. PONTIFICIA UNIVERSIDAD CATÓLICA DE?L PERÚ A REAPRAISAL ABOUT THE (NON) STATIONARITY DEPARTAMENTO DE ECONOMÍA OF THE LATIN-AMERICAN INFLATION SERIES Gabriel Rodríguez y DionPiOsiNo TRIaFmICiIrAe zUNIVERSIDAD CATÓLICA DEL PERÚ DEPARTAMENTO DE ECONOMÍA PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ DEPARTAMENTO DE ECONOMÍA PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ DEPARTAMENTO DE ECONOMÍA PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ DEPARTAMENTO DE ECONOMÍA PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ DEPARTAMENTO DE ECONOMÍA PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ DEPARTAMENTO DE ECONOMÍA PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ DEPARTAMENTO DE ECONOMÍA DEPARTAMENTO DE ECONOMÍA DOCUMENTO DE TRABAJO N° 357 A NOTE ON THE SIZE OF THE ADF TEST WITH ADDITIVE OUTLIERS AND FRACTIONAL ERRORS. A REAPRAISAL ABOUT THE (NON) STATIONARITY OF THE LATIN-AMERICAN INFLATION SERIES Gabriel Rodríguez y Dionisio Ramirez Julio, 2013 DEPARTAMENTO DE ECONOMÍA DOCUMENTO DE TRABAJO 357 http://www.pucp.edu.pe/departamento/economia/images/documentos/DDD357.pdf © Departamento de Economía – Pontificia Universidad Católica del Perú, © Gabriel Rodríguez y Dionisio Ramirez Av. Universitaria 1801, Lima 32 – Perú. Teléfono: (51-1) 626-2000 anexos 4950 - 4951 Fax: (51-1) 626-2874 [email protected] www.pucp.edu.pe/departamento/economia/ Encargado de la Serie: Luis García Núñez Departamento de Economía – Pontificia Universidad Católica del Perú, [email protected] Gabriel Rodríguez y Dionisio Ramirez A Note on the Size of the ADF Test with Additive Outliers and Fractional Errors. A Reapraisal about the (Non) Stationarity of the Latin-American Inflation Series. Lima, Departamento de Economía, 2013 (Documento de Trabajo 357) PALABRAS CLAVE: Outliers aditivos, Errores ARFIMA, Test ADF. Las opiniones y recomendaciones vertidas en estos documentos son responsabilidad de sus autores y no representan necesariamente los puntos de vista del Departamento Economía. Hecho el Depósito Legal en la Biblioteca Nacional del Perú Nº 2013-11339. ISSN 2079-8466 (Impresa) ISSN 2079-8474 (En línea) Impreso en Cartolán Editora y Comercializadora E.I.R.L. Pasaje Atlántida 113, Lima 1, Perú. Tiraje: 100 ejemplares A Note on the Size of the ADF Test with Additive Outliers and Fractional Errors. A Reapraisal about the (Non)Stationarity of the Latin-American In(cid:135)ation Series Gabriel Rodr(cid:237)guez Dionisio Ramirez Ponti(cid:133)cia Universidad Cat(cid:243)lica del Perœ Universidad Castilla La Mancha Abstract ThisnoteanalyzestheempiricalsizeoftheaugmentedDickeyandFuller(ADF) statistic proposed by Perron and Rodr(cid:237)guez (2003) when the errors are frac- tional. This ADF is based on a searching procedure for additive outliers based on (cid:133)rst-di⁄erences of the data named (cid:28) . Simulations show that empirical size d of the ADF is not a⁄ected by fractional errors con(cid:133)rming the claim of Perron and Rodr(cid:237)guez (2003) that the procedure (cid:28) is robust to departures of the unit d root framework. In particular the results show low sensitivity of the size of the ADF statistic respect to the fractional parameter (d). However, as expected, when there is strong negative moving average autocorrelation or negative au- toregressive autocorrelation, the ADF statistic is oversized. These di¢ culties are (cid:133)xed when sample increases (from T =100 to T =200). Empirical applica- tion to eight quarterly Latin-American in(cid:135)ation series is also provided showing theimportanceoftakingintoaccountdummyvariablesforthedetectedadditive outliers. Keywords: Additive Outliers, ARFIMA Erros, ADF Test JEL: C2, C3, C5 Resumen En esta nota se analiza el tamaæo emp(cid:237)rico del estad(cid:237)stico Dickey y Fuller au- mentado (ADF), propuesto por Perron y Rodr(cid:237)guez (2003), cuando los errores son fraccionales. Este estad(cid:237)stico se basa en un procedimiento de bœsqueda de valoresat(cid:237)picosaditivosbasadoenlasprimerasdiferenciasdelosdatosdenomi- nado(cid:28) . Lassimulacionesmuestranqueeltamaæoemp(cid:237)ricodelestad(cid:237)sticoADF d no es afectado por los errores fraccionales con(cid:133)rmando el argumento de Perron y Rodr(cid:237)guez (2003) que el procedimiento (cid:28) es robusto a las desviaciones del d marcodera(cid:237)zunitaria. Enparticular,losresultadosmuestranunabajasensibil- idad del tamaæo del estad(cid:237)stico ADF respecto al parÆmetro fraccional (d). Sin embargo, como es de esperar, cuando hay una fuerte autocorrelaci(cid:243)n negativa de tipo promediom(cid:243)vilo autocorrelaci(cid:243)n autorregresiva negativa, elestad(cid:237)stico ADFtieneuntamaæoexactomayorqueelnominal. Estasdi(cid:133)cultadesdesapare- cen cuando aumenta la muestra (a partir de T =100 a T =200). La aplicaci(cid:243)n emp(cid:237)rica a ocho series de in(cid:135)aci(cid:243)n latinoamericana trimestral proporciona evi- denciadelaimportanciadetenerencuentalasvariables(cid:133)cticiasparacontrolar por los outliers aditivos detectados. Palabras Claves: Outliers Aditivos, Errores ARFIMA, Test ADF. Classi(cid:133)caci(cid:243)n JEL: C2, C3, C5 A Note on the Size of the ADF Test with Additive Outliers and Fractional Errors. A Reapraisal about the (Non)Stationarity of the Latin-American In(cid:135)ation Series 1 Gabriel Rodr(cid:237)guez2 Dionisio Ramirez Ponti(cid:133)cia Universidad Cat(cid:243)lica del Perœ Universidad Castilla La Mancha 1 Introduction Additve outliers a⁄ect inference of parameters in di⁄erent circunstances. For example they a⁄ect inference of the autoregressive and moving average estimates of ARMA(p;q) models; see Cheng and Liu (1993), Chan (1992, 1995). They also a⁄ect other topics like causality tests (see Balde and Ro- dr(cid:237)guez (2005)), fractional estimates (see Fajardo et al. (2009), Chareka et al. (2006)). In the context of a unit root, additive outliers have been also analyzed since the contribution of Franses and Haldrup (1994). These authors show that additive outliers contaminate the limiting distribution of the unit root statistics; see also Vogelsang (1999) and Perron and Rodr(cid:237)guez (2003). Vogelsang (1999) suggests to use M-tests based on GLS detrended data because they are robust to the presence of negative moving average au- tocorrelation which is induced by the presence of additive outliers. Another alternative procedure is to estimate an ADF statistic corrected for dummy variablesrelatedtotheidenti(cid:133)edadditiveoutliersinapreliminarystep. Ro- dr(cid:237)guez (2004) used four Latin-American in(cid:135)ation series and show that even the M-tests indicate a rejection of the null hypothesis of a unit root. When applyinganADFcorrectedfordummyvariables, somecountriesshowanon rejection of the null hypothesis of a unit root indicating nonstationarity of the in(cid:135)ation series which is an opposite results obtained from the standard unit root tests. 1We want to thank Carmen Armas Montalvo and Vanessa Belapatiæo for excellent researchassistanship. Iacknowledge(cid:133)nancialsupportfromtheDepartmentofEconomics of the Ponti(cid:133)cia Universidad Cat(cid:243)lica del Perœ and useful comments of Patricia Lengua Lafosse. 2Address for Correspondence: Gabriel Rodr(cid:237)guez, Department of Economics, Pon- ti(cid:133)cia Universidad Cat(cid:243)lica del Perœ, Av. Universitaria 1801, Lima 32, Lima, Perœ, Telephone: +511-626-2000 (4998), Fax: +511-626-2874. E-Mail Address: [email protected]. 1 The procedure mentioned above needs the location of the additive out- liers. Perron and Rodr(cid:237)guez (2003) have suggested a powerful test, denoted by (cid:28) , which works with (cid:133)rst-di⁄erenced data3. This procedure is more d powerful than other based on levels of the data, for example; see Perron and Rodr(cid:237)guez (2003) for a detailed discussion. These authors claim that (cid:28) is d powerful even for departures from the unit root case4. The purpose of this note is to show that this claim is correct. we do it analyzing the empirical sizeoftheADFstatistic(using(cid:28) tolocateadditiveoutliers)whentheDGP d contains ARFIMA(p;d;q) errors. The experiment deals with di⁄erent val- ues of the fractional parameter (d) to observe di⁄erent departures from the unit root hypothesis. Also di⁄erent structure of autocorrelation is analyzed (moving average and autoregressive). The Monte-Carlo simulations show that the ADF statistic corrected for dummyvariablesassociatedtotheadditiveoutlierssu⁄ersofsizedistortions in only few cases. For example, when the moving average parameter is close to -1 empirical size is greater than nominal size. Negative autoregressive autocorrelaci(cid:243)n has impact on the size of the ADF statistic too. However, most of these issues are (cid:133)xed when sample size increases from T = 100 to T = 200 in simulations. In general, the ADF test appears to be slightly undersized. When fractional parameter is higher, distortions appear but at the same time when correlation is higher. Therefore, fractional parameter itself does not cause problems or distorions on the size of the ADF test. After simulations, we present an empirical application using quarterly in(cid:135)ation series ranging from 1970:1 until 2010:4 of 8 countries. We use a sample of eigth countries and the spirit of this exercise is very similar to Rodr(cid:237)guez (2004) where four countries were only used. In this note, we add more countries and more observations. In particular, the Phillips and Perron (1988) statistic shows a strong rejection of the null hypothesis of a unit root which is not rare given the sensitivity of this statistic to the presence of strong negative moving average correlation which is the case here because additive outliers are clearly present and literature has shown that they are related to this type of correlation. Similar results are obtained 3Of course, there are many other procedures to identify outliers, for example, those proposed in Tsay (1986), Chang, Tiao and Chen (1988), Shin, Sharkar and Lee (1996), Chen and Liu (1993) and G(cid:243)mez and Maravall (1992a, 1992b). Another interesting ap- proach is proposed by Lucas (1995a, 1995b), and Hoek, Lucas and van Dijk (1995). See Rodr(cid:237)guez (2004) for a comparison with other approaches. 4However,thisprocedureisnotrobusttodeparturesfromtheassumptionofnormality in the errors. It is mentioned and discussed by Perron and Rodr(cid:237)guez (2003). See also Burridge and Taylor (2006) for more evidence about this drawback and the correction they propose based on the extreme value theory. 2 withtheADFstatisticandevenwiththeM-testsandMP testsusingGLS T detrended data as suggested by Elliott, Rothenberg and Stock (1996) and Ng and Perron (2001), respectively. Only Uruguay and Venezuela show non rejection of the null. However, when applying the ADF test augmented by dummy variables related to the location of the addittive outliers identi(cid:133)ed by the procedure (cid:28) , none of the countries reject the null hypothesis of a d unit root. This note is organized as follows. Section 2 presents the model, dis- cusses the issue of outlier detection and brie(cid:135)y revises the method proposed by Perron and Rodr(cid:237)guez (2003). In section 3, I present the results from the simulations. Section 4 shows the empirical application and Section 5 concludes. 2 The Issue of Outlier Detection and Testing for Unit Roots with Additive Outliers The issue of outlier detection in the unit root framework is the approach taken by Perron and Rodr(cid:237)guez (2003) which is based on Vogelsang (1999)5. The data-generating process entertained is of the following general form: m y = d + (cid:14) D(T ) +u (1) t t j ao;j t t j=1 X where D(T ) = 1 if t = T and 0 otherwise. This permits the presence ao;j t ao;j of m additive outliers occurring at dates T (j = 1;:::;m): The term d ao;j t speci(cid:133)es the deterministic components. In most cases, d = (cid:22) if the series is t non-trending or d = (cid:22)+(cid:12)t if the series is trending. The noise function is t integrated of order one, i.e, u = u +v ; where v is a stationary process. t t 1 t t (cid:0) While Perron and Rodr(cid:237)guez (2003), use an ARMA(p;q) for the process v , t in this paper, we assume that v is an ARFIMA(p;d;q) process. t 5Let t (T ) denote the t-statistic for testing (cid:14) = 0 in (1). Following Chen and Liu (cid:14) ao (1993),thepresenceofanadditiveoutliercanbetestedusing(cid:28) =sup t (T ):Assuming b Tao j (cid:14) ao that (cid:21) = Tao=T remains (cid:133)xed as T grows, Vogelsang (1999) showed tbhat as T ; ! 1 the limiting distribution of t (T ) is non-standard. More precisely, t (T ) H((cid:21)) = (cid:14) ao (cid:14) ao ) W(cid:3)((cid:21))=( 01W(cid:3)(r)2dr)1=2; whbere W(cid:3)((cid:21)) denotes a demeaned standardbWiener process: If (1) also includes a time trend, W(cid:3)((cid:21)) will denote a detrended Wiener process. Further- R more,fromthecontinuousmappingtheoremitfollowsthat,(cid:28) sup H((cid:21)) H(cid:3):This ) j j(cid:17) (cid:21) (0;1) distributionisinvariantwithrespecttoanynuisanceparameters,i2ncludingthecorrelation structure of the noise function. 3 As shown in Perron and Rodr(cid:237)guez (2003), the original procedure of Vogelsang (1999) has severe size distortions when applied in an iterative fashiontosearchforadditiveoutliers. Thereasonforthisisthatthelimiting distribution of the statistic is only valid in the (cid:133)rst step of the iterations as speci(cid:133)edinTheorem1ofPerronandRodr(cid:237)guez(2003). Insubsequentsteps, the asymptotic critical values used need to be modi(cid:133)ed. Perron and Rodr(cid:237)guez (2003) have proposed a more powerful iterative strategy using a test based on (cid:133)rst-di⁄erences of the data. Consider data generated by (1) with d = (cid:22), and a single outlier occurring at date T with t ao magnitude (cid:14). Then, (cid:1)y = (cid:14)[D(T ) D(T ) ]+v ; (2) t ao t ao t 1 t (cid:0) (cid:0) whereD(T ) = 1,ift = T (0,otherwise)andD(T ) = 1;ift = T 1 ao t ao ao t 1 ao (cid:0) (cid:0) (0, otherwise). If the data are trending, a constant should be included. In this case, we are interested in (cid:28) = sup t (T ) ; where t (T ) = d Taoj (cid:14) ao j (cid:14) ao ^(cid:14)=(2(R^ (0) R^ (1)) and R (j) is the autocovariance function of v at delay u u u t j.6 (cid:0) b b To detect for multiple outliers, we can follow a strategy similar to that suggested by Vogelsang (1999), by dropping the observation labelled as an outlier before proceeding to the next step. The important feature is that, unlike for the case of the test based on levels, the limit distribution of the test (cid:28) is the same as each step of the iterations when dealing with multiple d outliers. Thedisadvantageofthisprocedure, comparedtothatbasedonthe level of the data, is that the limiting distribution depends on the speci(cid:133)c distribution of the errors v , though not on the presence of serial correlation t andheteroskedasticity7. Thisproblemisexactlythesameasthatfor(cid:133)nding outliers in stationary time series. In this note, we analyze the empirical size of the ADF test corrected for detected additive outliers when errors v are ARFIMA(p;d;q) process. It t is equivalent to using the t-statistic for testing that (cid:11) = 1 in the following regression: k+1 k y = (cid:22)+(cid:11)y + (cid:14) D(T ) + d (cid:1)y +v ; (3) t t 1 j ao;j t j i t i t (cid:0) (cid:0) (cid:0) j=0 i=0 X X (2).6RT^uh(ejn),=R^T((cid:0)j1) isTta=(cid:0)c1jov^ntsv^ist(cid:0)tejnwtietshtiv^mtattheeolefaRst-(sjq)u.aresresidualsobtainedfromregression u P u 7The dependence of the distribution or departures of the normality of v has been t mentioned by Perron and Rodr(cid:237)guez (2003). However, Burridge and Taylor (2006) deals with this issue using extreme value theory. 4 where D(T ) = 1 if t = T and 0 otherwise, with T (j = 1;2;:::;m) ao;j t ao;j ao;j being the dates of the outliers identi(cid:133)ed using the statistic (cid:28) . Notice that d k +2 one-time dummy variables have to be included in (3) to remove all possible in(cid:135)uences of the additive outliers. 3 Monte Carlo Results In order to analyze the empirical size of the ADF statistic, we consider the following experiment. Let y follow (1) where u = u +v (a unit root t t t 1 t process) and v is an ARFIMA(p;d;q) process, that (cid:0)is (cid:26)(L)(1 L)dv = t t (cid:0) (cid:18)(L)(cid:15) , where (cid:15) is an i:i:d. N(0;1). More exactly, in one case we consider t t p = 1 ((cid:26)(L) = 1 (cid:26)L) and q = 0, that is (cid:26)(L)(1 L)dv = (cid:15) , while in the t t (cid:0) (cid:0) other p = 0 case and q = 1 ((cid:18)(L) = 1+(cid:18)L); that is (1 L)dv = (cid:18)(L)(cid:15) . t t (cid:0) The fractional parameter d [ 0:48 to 0:48] with a step of 0:12. 2 (cid:0) EachTableandeachvalueof(cid:18) or(cid:26)presentthreerowsnamed(cid:147)without(cid:148), (cid:147)with(cid:148), and (cid:147)total(cid:148). The row named (cid:147)without(cid:148) indicates the size of the ADF statistic when no additive outliers has been found. The word (cid:147)with(cid:148) indicates the size of the ADF statistic when additive outliers have been identi(cid:133)ed. Therefore, the row entitle (cid:147)total(cid:148)means simply the sum of the two previous rows. If size is correct we expect that this row should be close to the nominal size of 5.0%. In order to save space we present only selected Tables. Each experiment is performed using 10,000 replications, nominal size at 5.0% and we use tabulated critical values (Table 1 of Perron and Rodr(cid:237)guez (2003)) for T = 100 and T = 200. Other extensive Tables are available upon request. In all Tables, the total iterative procedure is applied, that is, we search for all outliers and procedure (cid:133)nish when no outliers are found. Two sets of Tables are presented. In one case, the lag lenght of (3) is (cid:133)xed to be k = 1 while in the other case, we use the procedure t-sig proposed by Campbell and Perron (1991) for k [0;5]. In each Table, three cases are presented. In the 2 (cid:133)rst case, no outliers are in the process, that is, (cid:14) = 0 for i = 1;2;3;4. In i the second case, we consider medium sized additive outliers: (cid:14) = 5;3;2;2. i The (cid:133)nal case is for high sized addtive outliers, that is, (cid:14) = 10;5;5;5. In i summary, the design of the experiment follow closely Perron and Rodr(cid:237)guez (2003). When there are outliers a maximum of four additive outliers is considered and they are located at positions 0:20T, 0:40T, 0:60T and 0:80T, respectively. Table1showstheresultsforthecasewhereerrorsareARFIMA(0;d;0). The (cid:133)rst set of columns are the case where no outliers are present in the 5 data. The other columns shows medium and high sized additive outliers, respectively. TheresultsshowthatthesizeoftheADFisoversizedforevery d < 0. More negative values of d imply more oversized ADF tests. This is true for the case where no outliers are found and when they are present in the data. For other values of d, the ADF is slighthly undersized but close to the nominal size of 5%. Given these results, in what follows, we do not consider cases where d < 0. Tables2a-2cshowsizeoftheADFtestforARFIMA(0;d;1)errors, that is when there exists moving average correlation. In order to save space, we only show results for d = 0:00; 0:24; and 0:48. Table 2a indicates that ADF test is oversized for (cid:18) = 0:8 and for (cid:18) = 0:4. Small distortion is also (cid:0) (cid:0) found for (cid:18) = 0:8. In all other cases of (cid:18) and for cases where there are or not additive outliers, exact size is close to 5%. Table 2b shows the case for d = 0:24. Again, ADF test is oversized for (cid:18) = 0:8 but distortions (cid:0) are smaller than before. In all other cases, size is better although slightly undersized. When d = 0:48 (Table 2c), that is, when memory of the errors is large the size of the ADF test is very close to the nominal size of 5%. It is true when there are or not additive outliers and for both sample sizes. In summary, there is some di¢ culties when (cid:18) goes to -1 but the performance is better when d goes to 0.5. Tables3a-3cshowsizeoftheADFtestforARFIMA(1;d;0)errors, that is, when there exists autoregressive autocorrelation. Again, in order to save space, we only show results for d = 0:00;0:24; and 0:48. Table 3a indicates that ADF test has good exact size except for the case where (cid:26) = 0:8 (cid:0) and when the process is contaminated for medium and high sized additive outliers. It is worth to mention that the distortions are smaller compared to the previous Tables and we observe that size is better when sample size is higher. Table 3b shows the case for d = 0:24. In this case, the ADF test has exact size close to the 5% although we observe small oversized results when (cid:26) = 0:8. This results is more evident when d = 0:48 (Table 3c) even when there is no outliers in the process. This problem is not (cid:133)xed when sample size is higher. It is more evident for extreme values of (cid:26) ( 0:8 and 0:8). (cid:0) Previous results (undersized or oversized results) may be due to the se- lection of the lag length which has been (cid:133)xed to unity. In order to observe if this issue is important, we present similar simulations as in the previous Ta- blesbutnowthelaglengthisselectedusingtheproceduret-sigassuggested by Campbell and Perron (1991) considering a k [0;5]. Table 4 presents 2 resultsforARFIMA(0;d;0)errorsandford 0. ThemessageisthatADF (cid:21) test has exact size close to the 5%. In some cases, it presents slight smaller exact size. 6