ebook img

A note on the modified q-Genocchi numbers and polynomials with weight (α,β) and their interpolation function at negative integers PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A note on the modified q-Genocchi numbers and polynomials with weight (α,β) and their interpolation function at negative integers

A NOTE ON THE MODIFIED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α,β) AND THEIR INTERPOLATION FUNCTION AT NEGATIVE INTEGERS 2 1 0 SERKANARACI,MEHMETAC¸IKGO¨Z,FENGQI,ANDHASSANJOLANY 2 n Abstract. Thepurposeofthispaperconcernstoestablishmodifiedq-Genocchi a numbers and polynomials with weight (α,β). In this paper we investigate J special generalized q-Genocchi polynomials and weapply the method of gen- 7 erating function, which are exploited to derive further classes of q-Genocchi 2 polynomials anddevelopq-Genocchi numbers andpolynomials. Byusingthe Laplace-Mellintransformationintegral,wedefineq-Zetafunctionwithweight ] O (α,β)andbypresentingalinkbetweenq-Zetafunctionwithweight(α,β)and q-Genocchinumberswithweight(α,β)weobtainaninterpolationformulafor C the q-Genocchi numbers and polynomials with weight (α,β). Also we derive . distribution formula (Multiplication Theorem) and Witt’s type formula for h modifiedq-Genocchinumbersandpolynomialswithweight(α,β)whichyields t a a deeper insight into the effectiveness of this type of generalizations for q- m Genocchi numbers and polynomials. Our new generating function possess a numberofinterestingpropertieswhichwestateinthispaper. [ 2 v 2 1. Introduction, Definitions and Notations 0 9 5 Recently, q-calculus has served as a bridge between mathematics and physics. . Therefore,thereisasignificantincreaseofactivityintheareaoftheq-calculusdue 2 1 to applications of the q-calculus in mathematics, statistics and physics. The ma- 1 jority of scientists in the world who use q-calculus today are physicists. q-Calculus 1 is a generalization of many subjects, like hypergeometric series, generating func- : v tions,complexanalysis,andparticlephysics. Inshort,q-calculusisquiteapopular i subject today. One of Important Branch of q-calculus in number theory is q-type X ofspecialgeneratingfunctions, for instance q-Bernoullinumbers, q-Eulernumbers, r and q-Genocchi numbers, here we introduce a new class of q-type generating func- a tion. We introduceq-Genocchinumbers with weight(α,β). When we define a new class of generating functions like, q-Genocchi numbers with weight (α,β), then we facetowiththisquestionthat“canwedefine anew q-Zetatypefunctioninrelated ofthis new classofq-type generatingfunction?”. We givea positiveanswerforour newclassofnumbersandpolynomials. Morepreciselyweshowthatourq-typegen- erating function is generalization of the Hurwitz Zeta function. Historically many authors have tried to give q-analogues of the Riemann Zeta function ζ(s), and its related functions. By just following the method of Kaneko et al. [M. Kaneko, N. KurokawaandM.Wakayama,AvariationofEuler’sapproachtotheRiemannZeta Date:December12,2011. 2000 Mathematics Subject Classification. Primary46A15,Secondary41A65. Key words and phrases. Genocchi numbers and polynomials, q-Genocchi numbers and poly- nomials,q-Genocchi numbersandpolynomialswithweightα. 1 2 SERKANARACI,MEHMETAC¸IKGO¨Z,FENGQI,ANDHASSANJOLANY function, Kyushu J. Math. 57 (2003), 175–192],who mainly used Euler-Maclaurin summation formula to present and investigate a q-analogue of the Riemann zeta function ζ(s), and gave a good and reasonable explanation that their q-analogue maybeabestchoice. Theyalsocommentedthatq-analogueofζ(s)canbeachieved by modifying their method. Furthermore it is clear that q-Genocchi polynomials of weight (α,β) are in a class of orthogonal polynomials and we know that most such special functions that are orthogonal are satisfied in multiplication theorem, sointhispresentpaperweshowthispropertyistrueforq-Genocchipolynomialsof weight(α,β). Inthisintroductorysection,wepresentthedefinitionsandnotations (and some of the Important properties and characteristics) of the various special functions, polynomials and numbers, which are potentially useful in the remainder of the paper. Assume that p be a fixed odd prime number. Throughoutthis paper we use the followingnotations. ByZ wedenotetheringofp-adicrationalintegers,Qdenotes p the field of rational numbers, Q denotes the field of p-adic rational numbers, and p C denotes the completion of algebraic closure of Q . Let N be the set of natural p p numbers and Z =N∪{0}. Let v be the normalized exponential valuation of C + p p with|p| =p−vp(p) =p−1.Whenonespeaksofq-extension,q isconsideredinmany p wayssuchasanindeterminate,acomplexnumberq ∈Corp-adicnumberq ∈C .If p q ∈Conenormallyassumethat|q|<1.Ifq ∈Cp,weassumethat|1−q|p <p−p−11 so that qx =exp(xlogq) for |x| ≤1. We use the following notation as follows: p 1−qx 1−(−q)x [x] = , [x] = q 1−q −q 1+q Note that limq→1[x]q =x; cf. [1-24]. For a fixed positive integer d with (d,f)=1, we set X = X =limZ/dpNZ, d ←− N X∗ = ∪ a+dpZ p 0<a<dp (a,p)=1 and a+dpNZ = x∈X |x≡a moddpN , p where a∈Z satisfies the condit(cid:8)ion 0≤a<dpN(cid:0). (cid:1)(cid:9) ByuseKoblitz[N.Koblitz, p-adicNumbersp-adicAnalysisandZetaFunctions, Springer-Verlag, New York Inc, 1977] notations, A p-adic distribution µ on X is a Q -linearvectorspacehomomorphismfromtheQ -vectorspaceoflocallyconstant p p functions on X to Q . If f : X →Q is locally constant, instead of writing µ(f) p p for the value of µ at f, we usually write fµ. Also it is known that we can write µ as follows: q R qx µ x+pNZ = q p [pN] q (cid:0) (cid:1) is a distribution on X for q ∈C with |1−q| ≤1. For p p f ∈UD(Z )={f |f :Z →C is uniformly differentiable function}, p p p ON THE MODIFIED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α,β)3 the fermionic p-adic q-integral on Z is defined by T. Kim as follows: p pN−1 (1.1) I−q(f) = Z f(x)dµ−q(x)=Nl→im∞ f(x)µ−q x+pNZp Z p x=0 X (cid:0) (cid:1) pN−1 1 = lim (−1)xf(x)qx N→∞[pN]−q x=0 X Let q →1, then we have fermionic integration on Z as follows: p pN−1 I−1(f)= Z f(x)dµ−1(x)=Nl→im∞ (−1)xf(x), Z p x=0 X So by applying f(x)=ext, we get ∞ 2t tn (1.2) t etxdµ (x)= = G Z −1 et+1 nn! Z p n=0 X Where G are Genocchi numbers. By using (1.2), we have n ∞ G tn Z extdµ−1(x)= nn++11n! Z p n=0 X so from above, we obtain ∞ ∞ tn G tn xndµ (x) = n+1 n=0 ZZp −1 !n! n=0(cid:18)n+1(cid:19)n! X X By comparing coefficients of tn on both sides of the above equation it is fairly n! straightforwardto deduce, G nn++11 = Z xndµ−1(x). Z p The definition of modified q-Euler numbers are given by [2] [2] , k =0 (1.3) ε = q, (qε+1)k−ε = q 0,q k,q 2 0, k >0 (cid:26) with usual the convention about replacing εk by ε cf. [15],[16]. It was known k,q thatthe modified q-euler numbers canbe representedby p-adic q-integralonZ as p follows: εn,q = q−t[t]nq dµ−q(t). Z Z p In [3,14,15,17], q-Genocchi numbers are defined as follows: [2] ,n=1 (1.4) G =0, and q(qG +1)n+G = q 0,q q n,q 0, n>1 (cid:26) n with the usual convention of replacing (G ) by G . q n,q In [6], (h,q)-Genocchi numbers are indicated as: n [2] , n=1 G(h) =0, and qh−2 qG(h)+1 +G(h) = q 0,q q n,q 0, n>1, (cid:16) (cid:17) (cid:26) 4 SERKANARACI,MEHMETAC¸IKGO¨Z,FENGQI,ANDHASSANJOLANY n with the usual convention about replacing G(h) by G(h). q n,q Recently, for n ∈Z+, Araci et al. are consi(cid:16)dered(cid:17)weighted q-Genocchi numbers by n [2] , n=1 (1.5) G(α) =0, q1−α qG(α)+1 +G(α) = q 0,q q n,q 0, n6=1, (cid:16) (cid:17) (cid:26) n e e e withtheusualconventionaboutreplacing G byG (formoreinformation, q n,q see [1]) (cid:16) (cid:17) For α,n ∈ Z and h ∈ N, Araci et al. [2e] definedeweighted (h,q)-Genocchi + numbers as follows: G(α,h) = q(h−1)x[x]n dµ (x). n+1,q qα −q Z Z p e Taekyun Kim, by using p-adic q-integral on Z , introduced a new class of num- p bers andpolynomials. He added a weightonq-Bernoullinumbers andpolynomials anddefined q-Bernoullinumbers with weightα. He is givensome interestingprop- erties concerning q-Bernoulli numbers and polynomials with weight α. After, by using p-adic q-integral on Z , severalmathematicians started to study on this new p branchofgeneratingfunctiontheoryandextendedmostofthesymmetricproperties of q-Bernoulli numbers and polynomials to q-Bernoulli numbers and polynomials with weight α (for more informations, see [1],[2],[4],[5],[6],[7],[8],[9],[10],[11],[12]). With the same motivation, we also introduce modified q-Genocchi numbers and polynomialswithweight(α,β). Also,we givesomeinteresting propertiesthis type ofpolynomials. Furthermore,wederivetheq-extensionsofzetatypefunctionswith weight (α,β) from the Mellin transformation to this generating function which in- terpolates the q-Genocchi polynomials with weight (α,β) at negative integers. 2. Modified q-Genocchi numbers and polynomials with weight (α,β) In this section, we derive some interesting properties Modified q-Genocchi num- bers and polynomials with weight (α,β). Lemma 1. For n∈Z ,we obtain + n−1 (2.1) I(β) q−βxf +(−1)n−1I(β) q−βxf =[2] (−1)n−l−1f(l), −q n −q qβ l=0 (cid:0) (cid:1) (cid:0) (cid:1) X Proof. Let be fn(x) = f(x+n) and I−(βq)(f) = Z f(x)dµ−qβ(x) by the (1.1), p we easily get R pN−1 1 −I−(βq) q−βxf1 = Nl→im∞[pN]−qβ x=0 f(x+1)(−1)x (cid:0) (cid:1) X 1 pN−1 f pN +f(0) = lim f(x)(−1)x−[2] lim N→∞[pN]−qβ x=0 qβ N→∞ (cid:0)1+(cid:1)qβpN X (2.2) = I−(βq) q−βxf −[2]qβ f(0) (cid:0) (cid:1) ON THE MODIFIED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α,β)5 and pN−1 1 I−(βq) q−βxf2 = ZZpq−βxf(x+2)dµ−qβ(x)=Nl→im∞[pN]−qβ x=0 f(x+2)(−1)x (cid:0) (cid:1) X −f(0)+f(1)−f pN +f pN +1 = I−(βq) q−βxf +[2]qβNl→im∞ 1+qβpN (cid:0) (cid:1) (cid:0) (cid:1) = I(β)(cid:0)q−βxf(cid:1)+[2] (f(1)−f(0)) −q qβ Thus, we have (cid:0) (cid:1) 1 I(β) q−βxf −I(β) q−βxf =[2] (−1)1−lf(l) −q 2 −q qβ l=0 (cid:0) (cid:1) (cid:0) (cid:1) X By continuing this process, we arrive at the desired result. (cid:3) Definition 1. Let α,n,β ∈ Z . We define modified q-Genocchi numbers with + weight (α,β) as follows: g(α,β) ∞ n+1,q m n (2.3) =[2] (−1) [m] n+1 qβ qα m=0 X Theorem 1. For α,n,β ∈Z , we get + (2.4) gn(α+,β1,)q = [2]qβ n n (−1)l 1 n+1 (1−qα)n l 1+qαl l=0(cid:18) (cid:19) X Proof. By (2.3), we develop as follows: g(α,β) n+1,q n+1 ∞ [2] = qβ (−1)m(1−qmα)n (1−qα)n m=0 X = [2]qβ ∞ (−1)m n n (−1)l(qmα)l (1−qα)n l m=0 l=0(cid:18) (cid:19) X X = [2]qβ n n (−1)l ∞ (−1)mqmαl (1−qα)n l l=0(cid:18) (cid:19) m=0 X X [2]qβ n n l 1 = (−1) . (1−qα)n l 1+qαl l=0(cid:18) (cid:19) X Thus, we complete the proof of Theorem. (cid:3) By the following Theorem,we get Witt’s type formula of this type polynomials. Theorem 2. For β,α,n∈Z , we get + g(α,β) (2.5) nn++1,1q = Z q−βx[x]nqαdµ−qβ (x). Z p 6 SERKANARACI,MEHMETAC¸IKGO¨Z,FENGQI,ANDHASSANJOLANY Proof. By using p-adic q-integral on Z , namely, replace f(x) by q−βx[x]n and p qα µ−q x+pNZp by µ−qβ x+pNZp into (1.1), we get (cid:0) (cid:1) (cid:0) 1(cid:1) n n Z q−βx[x]nqαdµ−qβ(x) = (1−qα)n l (−1)l Z qαlx−βxdµ−qβ(x) Z p l=0(cid:18) (cid:19) Z p X n pN−1 = 1 n (−1)l lim 1 −qαl x (1−qα)n l=0(cid:18)l(cid:19) N→∞[pN]−qβ x=0 X X (cid:0) (cid:1) 1 n n l [2]qβ 1+ qαl pN (2.6) = (−1) lim (1−qα)n l 1+qαl N→∞ 1+qβpN l=0(cid:18) (cid:19) (cid:0) (cid:1) X = [2]qβ n n (−1)l 1 (1−qα)n l 1+qαl l=0(cid:18) (cid:19) X Use of (2.4) and (2.6), we arrive at the desired result. (cid:3) The Witt’s type formula of modified q-Genocchi numbers with weight (α,β) asserted by Theorem 2, do aid in translating the various properties and results involving q-Genocchi numbers with weight (α,β) which we state some of them in g(1,1) this section. We put α→1 and β →1 into (2.5), we readily see n+1,q =ε . n+1 n,q Corollary 1. Let C(α,β)(t)= ∞ g(α,β)tn. Then we have q n=0 n,q n! ∞ P Cq(α,β)(t)=[2]qβt (−1)met[m]qα. m=0 X Proof. From (2.3) we easily get, ∞ (2.7) q−βxet[x]qαdµ−qβ (x)=[2]qβ t (−1)met[m]qα Z Z p m=0 X By expression (2.7), we have ∞ ∞ tn gn(α,q,β)n! =[2]qβt (−1)met[m]qα n=0 m=0 X X Thus, we complete the proof of Theorem. (cid:3) Now,weconsiderthe modifiedq-Genocchipolynomialspolynomialswithweight α as follows: (α,β) g (x) (2.8) n+1,q = q−βt[x+t]n dµ (t), n∈N and α∈Z n+1 Z qα −qβ + Z p From expression (2.8), we see readily gn(α+,1β,)q(x) = [2]qβ n n (−1)lqαlx 1 n+1 (1−qα)n l 1+qαl l=0(cid:18) (cid:19) X ∞ m n (2.9) = [2] (−1) [m+x] qβ qα m=0 X ON THE MODIFIED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α,β)7 Let C(α,β)(t,x)= ∞ g(α,β)(x)tn. Then we have q n=0 n,q n! ∞ P C(α,β)(t,x) = [2] t (−1)met[m+x]qα q qβ m=0 X ∞ tn (2.10) = g(α,β)(x) . n,q n! n=0 X By Lemma 1, we get the following Theorem: Theorem 3. For m∈N,and α,β,n∈Z , we get + g(α,β) g(α,β) (n) n−1 m+1,q +(−1)n−1 m+1,q =[2] (−1)n−l−1[l]m m+1 m+1 qβ qα l=0 X Proof. ByapplyingLemma1themethodologyandtechniquesusedaboveingetting someidentitiesforthegeneratingfunctionsofthemodifiedq-Genocchinumbersand polynomials with weight (α,β), we arrive at the desired result. (cid:3) Theorem 4. The following identity holds: [2] ,if n=1, g(α,β) =0, and g(α,β)(1)+g(α,β) = qβ 0,q n,q n,q 0, if n>1. (cid:26) Proof. In (2.2) it is known that I(β) q−βxf +I(β) q−βxf =[2] f(0) −q 1 −q qβ If we take f(x)=et[x]qα,(cid:0)then we(cid:1)have (cid:0) (cid:1) [2]qβ = q−βxet[x+1]qαdµ−qβ (x)+ q−βxet[x]qαdµ−q−β(x) Z Z Z p Z p ∞ tn−1 (2.11) = g(α,β)(1)+g(α,β) n,q n,q n! nX=0(cid:16) (cid:17) Therefore, we get the Proof of Theorem. (cid:3) Theorem 5. For d≡1(mod2), α,β ∈Z and n∈N, we get, + g(α,β)(dx)= [d]qnα−1 d−1(−1)ag(α,β) x+ a . n,q [d] n,qd d −qβ Xa=0 (cid:16) (cid:17) Proof. From (2.8), we can easily derive the following (2.12) ZZpq−βt[x+t]nqαdµ−qβ(t) = [d[d]−]nqqαβ da−=10(−1)aZZpq−βt(cid:20)x+d a +t(cid:21)nqdαdµ(−qd)β(t) X [d]n d−1 g(α,β) x+a (2.12) = qα (−1)a n+1,qd d . [d] n+1 −qβ a=0 (cid:0) (cid:1) X So,byapplyingexpression(2.12),wegetatthedesiredresultandproofiscomplete. (cid:3) 8 SERKANARACI,MEHMETAC¸IKGO¨Z,FENGQI,ANDHASSANJOLANY 3. Interpolation function of the polynomials g(α,β)(x) n,q In this section, we derive the interpolation function of the generating functions of modified q-Genocchi polynomials with weight α and we give the value of q- extensionzetafunctionwithweight(α,β)atnegativeintegersexplicitly. Fors∈C, by applying the Mellin transformation to (2.10), we obtain ∞ 1 ξ(α,β)(s,x|q) = ts−2 −C(α,β)(−t,x) dt Γ(s) q Z∞0 n ∞ o = [2]qβ (−1)m Γ1(s) ts−1e−t[m+x]qαdt m=0 Z0 X where Γ(s) is Euler gamma function. We have ∞ m (−1) ξ(α,β)(s,x|q)=[2] qβ [m+x]s m=0 qα X So, we define q-extension zeta function with weight (α,β) as follows: Definition 2. For s∈C and α,β ∈N, we have ∞ m (−1) (3.1) ξ(α,β)(s,x|q)=[2] qβ [m+x]s m=0 qα X ξ(α,β)(s,x|q) can be continued analytically to an entire function. Observe that, if q → 1, then ξ(α,β)(s,x|1) = ζ(s,x) which is the Hurwitz- Euler zeta functions. Relation between ξ(α,β)(s,x|q) and g(α,β)(x) are given by n,q the following theorem: Theorem 6. For α,β ∈N and n∈N, we get g(α,β) (x) ξ(α,β)(−n,x|q)= n+1,q . n+1 Proof. By substituting s=−n into (3.1), we arrive at the desired result. (cid:3) References [1] Araci,S.,Erdal,D.,andSeo,J-J.,Astudyonthefermionicp-adicq-integralrepresentationon Zp associatedwithweightedq-Bernsteinandq-Genocchipolynomials,AbstractandApplied Analysis,Volume2011,ArticleID649248, 10pages. [2] Araci,S., Seo, J-J.,and Erdal,D.,New construction weighted (h,q)-Genocchi numbers and polynomialsrelatedtozetatypefunctions,DiscreteDynamicsinNatureandSociety,Volume 2011,ArticleID487490, 7pages,doi:10.1155/2011/487490. [3] Araci, S., Erdal, D.,and Kang, D-J., Some new properties on the q-Genocchi numbers and polynomialsassociatedwithq-Bernsteinpolynomials,HonamMathematicalJ.33(2011),no. 2,pp.261-270. [4] Araci,S.,Aslan,N.,andSeo,J-J.,ANoteontheweightedTwistedDirichlet’stypeq-Euler numbersandpolynomials,HonamMathematicalJ.33(2011), no.3,pp.311-320. [5] Araci, S., A¸cıkg¨oz, M., and Seo, J-J., A study on the weighted q-Genocchi numbers and polynomialswiththeirInterpolation Function,Accepted inHonamMathematical Journal. [6] Araci, S., and A¸cıkg¨oz, M., and Park, K-H.,Some identities concerning the (h,q)-Genocchi numbers and polynomials via the p-adic q-integral on Zp and q-Bernstein polynomi- als,(submitted). [7] Kim,T., Onthe weighted q-Bernoullinumbers and polynomials, Advanced Studies inCon- temporaryMathematics 21(2011), no.2,p.207-215,http://arxiv.org/abs/1011.5305. ON THE MODIFIED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α,β)9 [8] Kim, T., Lee, S. H., Dolgy, D. V., Ryoo, C. S., A note on the generalized q-Bernoulli measures with weight α, Abstract and Applied Analysis, Article ID 867217, 9 pages, doi:10.1155/2011/867217. [9] Kim,T.,Choi, J., Kim,Y.H., Ryoo, C. S., Anote onthe weighted p-adicq-Eulermeasure onZp,Advn.Stud.Contemp. Math.21(2011), 35-40. [10] Hwang,K-W.,Dolgy, D-V.,Lee, S.H.,andKim,T.,OntheHigher-Orderq-Eulernumbers and polynomials with weight α, Discrete Dynamics in Nature and Society, Volume (2011), ArticleID354329, 12pages. [11] Kim,T.,andChoi,J.,Ontheq-Bernoullinumbersandpolynomialswithweightα,Abstract andAppliedAnalysis,Volume2011(2011), ArticleID392025, 14pages. [12] Kim, T., Dolgy, D-V., Lee, B., and Rim S-H., Identities on the weighted q-Euler numbers of higher order, Discrete Dynamics inNature and Society, Volume 2011 (2011), ArticleID 918364,6pages. [13] Kim,T.,Ontheq-extensionofEulerandGenocchinumbers,J.Math.Anal.Appl.326(2007) 1458-1465. [14] Kim, T., On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008)481-486. arXiv:0801.0978v1[math.NT] [15] Kim, T., The modified q-Euler numbers and polynomials, Advn. Stud. Contemp. Math. 16 (2008), 161-170. [16] Ozden,H.,Simsek,Y.,Rim,S-H.,Cangul,I-N.,Anoteonp-adicq-eulermeasure,Adv.Stud. Contemp.Math.14(2007), 233-239. [17] Kim,T.,q-Volkenbornintegration,Russ.J.Math.phys.9(2002),288-299. [18] Kim,T.,q-BernoullinumbersandpolynomialsassociatedwithGaussianbinomialcoefficients, Russ.J.Math.Phys.15(2008),51-57. [19] Kim, T., An invariant p-adic q-integrals on Zp, Applied Mathematics Letters, vol. 21, pp. 105-108,2008. [20] Kim, T., A Note on the q-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications,ArticleID71452, 8pages,doi:10.1155/2007/71452. [21] Kim,T.Choi,J.Kim,Y.H.andJang,L.C.,Onp-AdicAnalogueofq-BernsteinPolynomials andRelatedIntegrals,DiscreteDynamicsinNatureandSociety,ArticleID179430,9pages, doi:10.1155/2010/179430. [22] Kim, T., q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math.Phys.,14(2007), no.1,15–27. [23] Kim, T., New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), no.2,218–225. [24] Kim,T., Someidentities onthe q-Eulerpolynomialsof higher orderand q-Stirlingnumbers bythefermionicp-adicintegralonZp,Russ.J.Math.Phys.,16(2009), no.4,484–491. UniversityofGaziantep,FacultyofScienceandArts,DepartmentofMathematics, 27310Gaziantep,TURKEY E-mail address: [email protected] UniversityofGaziantep,FacultyofScienceandArts,DepartmentofMathematics, 27310Gaziantep,TURKEY E-mail address: [email protected] Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin300160,China E-mail address: [email protected] SchoolofMathematics,StatisticsandComputerScience,UniversityofTehran,Iran E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.