A NOTE ON THE MODIFIED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α,β) AND THEIR INTERPOLATION FUNCTION AT NEGATIVE INTEGERS 2 1 0 SERKANARACI,MEHMETAC¸IKGO¨Z,FENGQI,ANDHASSANJOLANY 2 n Abstract. Thepurposeofthispaperconcernstoestablishmodifiedq-Genocchi a numbers and polynomials with weight (α,β). In this paper we investigate J special generalized q-Genocchi polynomials and weapply the method of gen- 7 erating function, which are exploited to derive further classes of q-Genocchi 2 polynomials anddevelopq-Genocchi numbers andpolynomials. Byusingthe Laplace-Mellintransformationintegral,wedefineq-Zetafunctionwithweight ] O (α,β)andbypresentingalinkbetweenq-Zetafunctionwithweight(α,β)and q-Genocchinumberswithweight(α,β)weobtainaninterpolationformulafor C the q-Genocchi numbers and polynomials with weight (α,β). Also we derive . distribution formula (Multiplication Theorem) and Witt’s type formula for h modifiedq-Genocchinumbersandpolynomialswithweight(α,β)whichyields t a a deeper insight into the effectiveness of this type of generalizations for q- m Genocchi numbers and polynomials. Our new generating function possess a numberofinterestingpropertieswhichwestateinthispaper. [ 2 v 2 1. Introduction, Definitions and Notations 0 9 5 Recently, q-calculus has served as a bridge between mathematics and physics. . Therefore,thereisasignificantincreaseofactivityintheareaoftheq-calculusdue 2 1 to applications of the q-calculus in mathematics, statistics and physics. The ma- 1 jority of scientists in the world who use q-calculus today are physicists. q-Calculus 1 is a generalization of many subjects, like hypergeometric series, generating func- : v tions,complexanalysis,andparticlephysics. Inshort,q-calculusisquiteapopular i subject today. One of Important Branch of q-calculus in number theory is q-type X ofspecialgeneratingfunctions, for instance q-Bernoullinumbers, q-Eulernumbers, r and q-Genocchi numbers, here we introduce a new class of q-type generating func- a tion. We introduceq-Genocchinumbers with weight(α,β). When we define a new class of generating functions like, q-Genocchi numbers with weight (α,β), then we facetowiththisquestionthat“canwedefine anew q-Zetatypefunctioninrelated ofthis new classofq-type generatingfunction?”. We givea positiveanswerforour newclassofnumbersandpolynomials. Morepreciselyweshowthatourq-typegen- erating function is generalization of the Hurwitz Zeta function. Historically many authors have tried to give q-analogues of the Riemann Zeta function ζ(s), and its related functions. By just following the method of Kaneko et al. [M. Kaneko, N. KurokawaandM.Wakayama,AvariationofEuler’sapproachtotheRiemannZeta Date:December12,2011. 2000 Mathematics Subject Classification. Primary46A15,Secondary41A65. Key words and phrases. Genocchi numbers and polynomials, q-Genocchi numbers and poly- nomials,q-Genocchi numbersandpolynomialswithweightα. 1 2 SERKANARACI,MEHMETAC¸IKGO¨Z,FENGQI,ANDHASSANJOLANY function, Kyushu J. Math. 57 (2003), 175–192],who mainly used Euler-Maclaurin summation formula to present and investigate a q-analogue of the Riemann zeta function ζ(s), and gave a good and reasonable explanation that their q-analogue maybeabestchoice. Theyalsocommentedthatq-analogueofζ(s)canbeachieved by modifying their method. Furthermore it is clear that q-Genocchi polynomials of weight (α,β) are in a class of orthogonal polynomials and we know that most such special functions that are orthogonal are satisfied in multiplication theorem, sointhispresentpaperweshowthispropertyistrueforq-Genocchipolynomialsof weight(α,β). Inthisintroductorysection,wepresentthedefinitionsandnotations (and some of the Important properties and characteristics) of the various special functions, polynomials and numbers, which are potentially useful in the remainder of the paper. Assume that p be a fixed odd prime number. Throughoutthis paper we use the followingnotations. ByZ wedenotetheringofp-adicrationalintegers,Qdenotes p the field of rational numbers, Q denotes the field of p-adic rational numbers, and p C denotes the completion of algebraic closure of Q . Let N be the set of natural p p numbers and Z =N∪{0}. Let v be the normalized exponential valuation of C + p p with|p| =p−vp(p) =p−1.Whenonespeaksofq-extension,q isconsideredinmany p wayssuchasanindeterminate,acomplexnumberq ∈Corp-adicnumberq ∈C .If p q ∈Conenormallyassumethat|q|<1.Ifq ∈Cp,weassumethat|1−q|p <p−p−11 so that qx =exp(xlogq) for |x| ≤1. We use the following notation as follows: p 1−qx 1−(−q)x [x] = , [x] = q 1−q −q 1+q Note that limq→1[x]q =x; cf. [1-24]. For a fixed positive integer d with (d,f)=1, we set X = X =limZ/dpNZ, d ←− N X∗ = ∪ a+dpZ p 0<a<dp (a,p)=1 and a+dpNZ = x∈X |x≡a moddpN , p where a∈Z satisfies the condit(cid:8)ion 0≤a<dpN(cid:0). (cid:1)(cid:9) ByuseKoblitz[N.Koblitz, p-adicNumbersp-adicAnalysisandZetaFunctions, Springer-Verlag, New York Inc, 1977] notations, A p-adic distribution µ on X is a Q -linearvectorspacehomomorphismfromtheQ -vectorspaceoflocallyconstant p p functions on X to Q . If f : X →Q is locally constant, instead of writing µ(f) p p for the value of µ at f, we usually write fµ. Also it is known that we can write µ as follows: q R qx µ x+pNZ = q p [pN] q (cid:0) (cid:1) is a distribution on X for q ∈C with |1−q| ≤1. For p p f ∈UD(Z )={f |f :Z →C is uniformly differentiable function}, p p p ON THE MODIFIED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α,β)3 the fermionic p-adic q-integral on Z is defined by T. Kim as follows: p pN−1 (1.1) I−q(f) = Z f(x)dµ−q(x)=Nl→im∞ f(x)µ−q x+pNZp Z p x=0 X (cid:0) (cid:1) pN−1 1 = lim (−1)xf(x)qx N→∞[pN]−q x=0 X Let q →1, then we have fermionic integration on Z as follows: p pN−1 I−1(f)= Z f(x)dµ−1(x)=Nl→im∞ (−1)xf(x), Z p x=0 X So by applying f(x)=ext, we get ∞ 2t tn (1.2) t etxdµ (x)= = G Z −1 et+1 nn! Z p n=0 X Where G are Genocchi numbers. By using (1.2), we have n ∞ G tn Z extdµ−1(x)= nn++11n! Z p n=0 X so from above, we obtain ∞ ∞ tn G tn xndµ (x) = n+1 n=0 ZZp −1 !n! n=0(cid:18)n+1(cid:19)n! X X By comparing coefficients of tn on both sides of the above equation it is fairly n! straightforwardto deduce, G nn++11 = Z xndµ−1(x). Z p The definition of modified q-Euler numbers are given by [2] [2] , k =0 (1.3) ε = q, (qε+1)k−ε = q 0,q k,q 2 0, k >0 (cid:26) with usual the convention about replacing εk by ε cf. [15],[16]. It was known k,q thatthe modified q-euler numbers canbe representedby p-adic q-integralonZ as p follows: εn,q = q−t[t]nq dµ−q(t). Z Z p In [3,14,15,17], q-Genocchi numbers are defined as follows: [2] ,n=1 (1.4) G =0, and q(qG +1)n+G = q 0,q q n,q 0, n>1 (cid:26) n with the usual convention of replacing (G ) by G . q n,q In [6], (h,q)-Genocchi numbers are indicated as: n [2] , n=1 G(h) =0, and qh−2 qG(h)+1 +G(h) = q 0,q q n,q 0, n>1, (cid:16) (cid:17) (cid:26) 4 SERKANARACI,MEHMETAC¸IKGO¨Z,FENGQI,ANDHASSANJOLANY n with the usual convention about replacing G(h) by G(h). q n,q Recently, for n ∈Z+, Araci et al. are consi(cid:16)dered(cid:17)weighted q-Genocchi numbers by n [2] , n=1 (1.5) G(α) =0, q1−α qG(α)+1 +G(α) = q 0,q q n,q 0, n6=1, (cid:16) (cid:17) (cid:26) n e e e withtheusualconventionaboutreplacing G byG (formoreinformation, q n,q see [1]) (cid:16) (cid:17) For α,n ∈ Z and h ∈ N, Araci et al. [2e] definedeweighted (h,q)-Genocchi + numbers as follows: G(α,h) = q(h−1)x[x]n dµ (x). n+1,q qα −q Z Z p e Taekyun Kim, by using p-adic q-integral on Z , introduced a new class of num- p bers andpolynomials. He added a weightonq-Bernoullinumbers andpolynomials anddefined q-Bernoullinumbers with weightα. He is givensome interestingprop- erties concerning q-Bernoulli numbers and polynomials with weight α. After, by using p-adic q-integral on Z , severalmathematicians started to study on this new p branchofgeneratingfunctiontheoryandextendedmostofthesymmetricproperties of q-Bernoulli numbers and polynomials to q-Bernoulli numbers and polynomials with weight α (for more informations, see [1],[2],[4],[5],[6],[7],[8],[9],[10],[11],[12]). With the same motivation, we also introduce modified q-Genocchi numbers and polynomialswithweight(α,β). Also,we givesomeinteresting propertiesthis type ofpolynomials. Furthermore,wederivetheq-extensionsofzetatypefunctionswith weight (α,β) from the Mellin transformation to this generating function which in- terpolates the q-Genocchi polynomials with weight (α,β) at negative integers. 2. Modified q-Genocchi numbers and polynomials with weight (α,β) In this section, we derive some interesting properties Modified q-Genocchi num- bers and polynomials with weight (α,β). Lemma 1. For n∈Z ,we obtain + n−1 (2.1) I(β) q−βxf +(−1)n−1I(β) q−βxf =[2] (−1)n−l−1f(l), −q n −q qβ l=0 (cid:0) (cid:1) (cid:0) (cid:1) X Proof. Let be fn(x) = f(x+n) and I−(βq)(f) = Z f(x)dµ−qβ(x) by the (1.1), p we easily get R pN−1 1 −I−(βq) q−βxf1 = Nl→im∞[pN]−qβ x=0 f(x+1)(−1)x (cid:0) (cid:1) X 1 pN−1 f pN +f(0) = lim f(x)(−1)x−[2] lim N→∞[pN]−qβ x=0 qβ N→∞ (cid:0)1+(cid:1)qβpN X (2.2) = I−(βq) q−βxf −[2]qβ f(0) (cid:0) (cid:1) ON THE MODIFIED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α,β)5 and pN−1 1 I−(βq) q−βxf2 = ZZpq−βxf(x+2)dµ−qβ(x)=Nl→im∞[pN]−qβ x=0 f(x+2)(−1)x (cid:0) (cid:1) X −f(0)+f(1)−f pN +f pN +1 = I−(βq) q−βxf +[2]qβNl→im∞ 1+qβpN (cid:0) (cid:1) (cid:0) (cid:1) = I(β)(cid:0)q−βxf(cid:1)+[2] (f(1)−f(0)) −q qβ Thus, we have (cid:0) (cid:1) 1 I(β) q−βxf −I(β) q−βxf =[2] (−1)1−lf(l) −q 2 −q qβ l=0 (cid:0) (cid:1) (cid:0) (cid:1) X By continuing this process, we arrive at the desired result. (cid:3) Definition 1. Let α,n,β ∈ Z . We define modified q-Genocchi numbers with + weight (α,β) as follows: g(α,β) ∞ n+1,q m n (2.3) =[2] (−1) [m] n+1 qβ qα m=0 X Theorem 1. For α,n,β ∈Z , we get + (2.4) gn(α+,β1,)q = [2]qβ n n (−1)l 1 n+1 (1−qα)n l 1+qαl l=0(cid:18) (cid:19) X Proof. By (2.3), we develop as follows: g(α,β) n+1,q n+1 ∞ [2] = qβ (−1)m(1−qmα)n (1−qα)n m=0 X = [2]qβ ∞ (−1)m n n (−1)l(qmα)l (1−qα)n l m=0 l=0(cid:18) (cid:19) X X = [2]qβ n n (−1)l ∞ (−1)mqmαl (1−qα)n l l=0(cid:18) (cid:19) m=0 X X [2]qβ n n l 1 = (−1) . (1−qα)n l 1+qαl l=0(cid:18) (cid:19) X Thus, we complete the proof of Theorem. (cid:3) By the following Theorem,we get Witt’s type formula of this type polynomials. Theorem 2. For β,α,n∈Z , we get + g(α,β) (2.5) nn++1,1q = Z q−βx[x]nqαdµ−qβ (x). Z p 6 SERKANARACI,MEHMETAC¸IKGO¨Z,FENGQI,ANDHASSANJOLANY Proof. By using p-adic q-integral on Z , namely, replace f(x) by q−βx[x]n and p qα µ−q x+pNZp by µ−qβ x+pNZp into (1.1), we get (cid:0) (cid:1) (cid:0) 1(cid:1) n n Z q−βx[x]nqαdµ−qβ(x) = (1−qα)n l (−1)l Z qαlx−βxdµ−qβ(x) Z p l=0(cid:18) (cid:19) Z p X n pN−1 = 1 n (−1)l lim 1 −qαl x (1−qα)n l=0(cid:18)l(cid:19) N→∞[pN]−qβ x=0 X X (cid:0) (cid:1) 1 n n l [2]qβ 1+ qαl pN (2.6) = (−1) lim (1−qα)n l 1+qαl N→∞ 1+qβpN l=0(cid:18) (cid:19) (cid:0) (cid:1) X = [2]qβ n n (−1)l 1 (1−qα)n l 1+qαl l=0(cid:18) (cid:19) X Use of (2.4) and (2.6), we arrive at the desired result. (cid:3) The Witt’s type formula of modified q-Genocchi numbers with weight (α,β) asserted by Theorem 2, do aid in translating the various properties and results involving q-Genocchi numbers with weight (α,β) which we state some of them in g(1,1) this section. We put α→1 and β →1 into (2.5), we readily see n+1,q =ε . n+1 n,q Corollary 1. Let C(α,β)(t)= ∞ g(α,β)tn. Then we have q n=0 n,q n! ∞ P Cq(α,β)(t)=[2]qβt (−1)met[m]qα. m=0 X Proof. From (2.3) we easily get, ∞ (2.7) q−βxet[x]qαdµ−qβ (x)=[2]qβ t (−1)met[m]qα Z Z p m=0 X By expression (2.7), we have ∞ ∞ tn gn(α,q,β)n! =[2]qβt (−1)met[m]qα n=0 m=0 X X Thus, we complete the proof of Theorem. (cid:3) Now,weconsiderthe modifiedq-Genocchipolynomialspolynomialswithweight α as follows: (α,β) g (x) (2.8) n+1,q = q−βt[x+t]n dµ (t), n∈N and α∈Z n+1 Z qα −qβ + Z p From expression (2.8), we see readily gn(α+,1β,)q(x) = [2]qβ n n (−1)lqαlx 1 n+1 (1−qα)n l 1+qαl l=0(cid:18) (cid:19) X ∞ m n (2.9) = [2] (−1) [m+x] qβ qα m=0 X ON THE MODIFIED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α,β)7 Let C(α,β)(t,x)= ∞ g(α,β)(x)tn. Then we have q n=0 n,q n! ∞ P C(α,β)(t,x) = [2] t (−1)met[m+x]qα q qβ m=0 X ∞ tn (2.10) = g(α,β)(x) . n,q n! n=0 X By Lemma 1, we get the following Theorem: Theorem 3. For m∈N,and α,β,n∈Z , we get + g(α,β) g(α,β) (n) n−1 m+1,q +(−1)n−1 m+1,q =[2] (−1)n−l−1[l]m m+1 m+1 qβ qα l=0 X Proof. ByapplyingLemma1themethodologyandtechniquesusedaboveingetting someidentitiesforthegeneratingfunctionsofthemodifiedq-Genocchinumbersand polynomials with weight (α,β), we arrive at the desired result. (cid:3) Theorem 4. The following identity holds: [2] ,if n=1, g(α,β) =0, and g(α,β)(1)+g(α,β) = qβ 0,q n,q n,q 0, if n>1. (cid:26) Proof. In (2.2) it is known that I(β) q−βxf +I(β) q−βxf =[2] f(0) −q 1 −q qβ If we take f(x)=et[x]qα,(cid:0)then we(cid:1)have (cid:0) (cid:1) [2]qβ = q−βxet[x+1]qαdµ−qβ (x)+ q−βxet[x]qαdµ−q−β(x) Z Z Z p Z p ∞ tn−1 (2.11) = g(α,β)(1)+g(α,β) n,q n,q n! nX=0(cid:16) (cid:17) Therefore, we get the Proof of Theorem. (cid:3) Theorem 5. For d≡1(mod2), α,β ∈Z and n∈N, we get, + g(α,β)(dx)= [d]qnα−1 d−1(−1)ag(α,β) x+ a . n,q [d] n,qd d −qβ Xa=0 (cid:16) (cid:17) Proof. From (2.8), we can easily derive the following (2.12) ZZpq−βt[x+t]nqαdµ−qβ(t) = [d[d]−]nqqαβ da−=10(−1)aZZpq−βt(cid:20)x+d a +t(cid:21)nqdαdµ(−qd)β(t) X [d]n d−1 g(α,β) x+a (2.12) = qα (−1)a n+1,qd d . [d] n+1 −qβ a=0 (cid:0) (cid:1) X So,byapplyingexpression(2.12),wegetatthedesiredresultandproofiscomplete. (cid:3) 8 SERKANARACI,MEHMETAC¸IKGO¨Z,FENGQI,ANDHASSANJOLANY 3. Interpolation function of the polynomials g(α,β)(x) n,q In this section, we derive the interpolation function of the generating functions of modified q-Genocchi polynomials with weight α and we give the value of q- extensionzetafunctionwithweight(α,β)atnegativeintegersexplicitly. Fors∈C, by applying the Mellin transformation to (2.10), we obtain ∞ 1 ξ(α,β)(s,x|q) = ts−2 −C(α,β)(−t,x) dt Γ(s) q Z∞0 n ∞ o = [2]qβ (−1)m Γ1(s) ts−1e−t[m+x]qαdt m=0 Z0 X where Γ(s) is Euler gamma function. We have ∞ m (−1) ξ(α,β)(s,x|q)=[2] qβ [m+x]s m=0 qα X So, we define q-extension zeta function with weight (α,β) as follows: Definition 2. For s∈C and α,β ∈N, we have ∞ m (−1) (3.1) ξ(α,β)(s,x|q)=[2] qβ [m+x]s m=0 qα X ξ(α,β)(s,x|q) can be continued analytically to an entire function. Observe that, if q → 1, then ξ(α,β)(s,x|1) = ζ(s,x) which is the Hurwitz- Euler zeta functions. Relation between ξ(α,β)(s,x|q) and g(α,β)(x) are given by n,q the following theorem: Theorem 6. For α,β ∈N and n∈N, we get g(α,β) (x) ξ(α,β)(−n,x|q)= n+1,q . n+1 Proof. By substituting s=−n into (3.1), we arrive at the desired result. (cid:3) References [1] Araci,S.,Erdal,D.,andSeo,J-J.,Astudyonthefermionicp-adicq-integralrepresentationon Zp associatedwithweightedq-Bernsteinandq-Genocchipolynomials,AbstractandApplied Analysis,Volume2011,ArticleID649248, 10pages. [2] Araci,S., Seo, J-J.,and Erdal,D.,New construction weighted (h,q)-Genocchi numbers and polynomialsrelatedtozetatypefunctions,DiscreteDynamicsinNatureandSociety,Volume 2011,ArticleID487490, 7pages,doi:10.1155/2011/487490. [3] Araci, S., Erdal, D.,and Kang, D-J., Some new properties on the q-Genocchi numbers and polynomialsassociatedwithq-Bernsteinpolynomials,HonamMathematicalJ.33(2011),no. 2,pp.261-270. [4] Araci,S.,Aslan,N.,andSeo,J-J.,ANoteontheweightedTwistedDirichlet’stypeq-Euler numbersandpolynomials,HonamMathematicalJ.33(2011), no.3,pp.311-320. [5] Araci, S., A¸cıkg¨oz, M., and Seo, J-J., A study on the weighted q-Genocchi numbers and polynomialswiththeirInterpolation Function,Accepted inHonamMathematical Journal. [6] Araci, S., and A¸cıkg¨oz, M., and Park, K-H.,Some identities concerning the (h,q)-Genocchi numbers and polynomials via the p-adic q-integral on Zp and q-Bernstein polynomi- als,(submitted). [7] Kim,T., Onthe weighted q-Bernoullinumbers and polynomials, Advanced Studies inCon- temporaryMathematics 21(2011), no.2,p.207-215,http://arxiv.org/abs/1011.5305. ON THE MODIFIED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT (α,β)9 [8] Kim, T., Lee, S. H., Dolgy, D. V., Ryoo, C. S., A note on the generalized q-Bernoulli measures with weight α, Abstract and Applied Analysis, Article ID 867217, 9 pages, doi:10.1155/2011/867217. [9] Kim,T.,Choi, J., Kim,Y.H., Ryoo, C. S., Anote onthe weighted p-adicq-Eulermeasure onZp,Advn.Stud.Contemp. Math.21(2011), 35-40. [10] Hwang,K-W.,Dolgy, D-V.,Lee, S.H.,andKim,T.,OntheHigher-Orderq-Eulernumbers and polynomials with weight α, Discrete Dynamics in Nature and Society, Volume (2011), ArticleID354329, 12pages. [11] Kim,T.,andChoi,J.,Ontheq-Bernoullinumbersandpolynomialswithweightα,Abstract andAppliedAnalysis,Volume2011(2011), ArticleID392025, 14pages. [12] Kim, T., Dolgy, D-V., Lee, B., and Rim S-H., Identities on the weighted q-Euler numbers of higher order, Discrete Dynamics inNature and Society, Volume 2011 (2011), ArticleID 918364,6pages. [13] Kim,T.,Ontheq-extensionofEulerandGenocchinumbers,J.Math.Anal.Appl.326(2007) 1458-1465. [14] Kim, T., On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008)481-486. arXiv:0801.0978v1[math.NT] [15] Kim, T., The modified q-Euler numbers and polynomials, Advn. Stud. Contemp. Math. 16 (2008), 161-170. [16] Ozden,H.,Simsek,Y.,Rim,S-H.,Cangul,I-N.,Anoteonp-adicq-eulermeasure,Adv.Stud. Contemp.Math.14(2007), 233-239. [17] Kim,T.,q-Volkenbornintegration,Russ.J.Math.phys.9(2002),288-299. [18] Kim,T.,q-BernoullinumbersandpolynomialsassociatedwithGaussianbinomialcoefficients, Russ.J.Math.Phys.15(2008),51-57. [19] Kim, T., An invariant p-adic q-integrals on Zp, Applied Mathematics Letters, vol. 21, pp. 105-108,2008. [20] Kim, T., A Note on the q-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications,ArticleID71452, 8pages,doi:10.1155/2007/71452. [21] Kim,T.Choi,J.Kim,Y.H.andJang,L.C.,Onp-AdicAnalogueofq-BernsteinPolynomials andRelatedIntegrals,DiscreteDynamicsinNatureandSociety,ArticleID179430,9pages, doi:10.1155/2010/179430. [22] Kim, T., q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math.Phys.,14(2007), no.1,15–27. [23] Kim, T., New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), no.2,218–225. [24] Kim,T., Someidentities onthe q-Eulerpolynomialsof higher orderand q-Stirlingnumbers bythefermionicp-adicintegralonZp,Russ.J.Math.Phys.,16(2009), no.4,484–491. UniversityofGaziantep,FacultyofScienceandArts,DepartmentofMathematics, 27310Gaziantep,TURKEY E-mail address: [email protected] UniversityofGaziantep,FacultyofScienceandArts,DepartmentofMathematics, 27310Gaziantep,TURKEY E-mail address: [email protected] Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin300160,China E-mail address: [email protected] SchoolofMathematics,StatisticsandComputerScience,UniversityofTehran,Iran E-mail address: [email protected]