ebook img

A Note on Special Smarandache Curves in The Null Cone Q3 PDF

2018·0.22 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Note on Special Smarandache Curves in The Null Cone Q3

Acta Universitatis Apulensis No. 56/2018 ISSN: 1582-5329 pp. 111-124 http://www.uab.ro/auajournal/ doi: 10.17114/j.aua.2018.56.10 A NOTE ON SPECIAL SMARANDACHE CURVES IN THE NULL CONE Q3 F. Almaz, M.A. Ku¨lahci Abstract. As it is well-known, the geometry of curve in three-dimensions is actually characterized by Frenet vectors. In this paper, we obtain Smarandache curves by using cone frame formulas in null cone Q3 . Also, we give an example related to these curves. 2010 Mathematics Subject Classification: 53A40, 53A35. Keywords: smarandache curve, asymptotic orthonormal frame, null cone. 1. Introduction Human being were bewitched by curves and curved shapes long before they took into account them as mathematical objects. But the greatest effect in the research of curves was, of course, the discovery of the calculus. Geometry before calculus includes only the simplest curves. Smarandache geometry is a geometry which has at least one Smarandachely denied axiom [4]. An axiom is said to be Smarandachely denied, if it behaves in at least two different ways within the same space. Smarandache curve is defined as a regular curve whose position vector is composed by Frenet frame vectors of another regular curve. The popularity of Smarandache curves in various ambient spaces have been classfied in [1]-[7], [13]-[16]. In this study, we define special Smarandache curves such as xαβ,xβy,xαy,αβy-Smarandache curves according to asymptotic orthonor- mal frame in the null cone Q3 and we examine the curvatures and the asymptotic orthonormalframe’svectorsofSmarandachecurves. Wealsogiveanexamplerelated to these curves. 111 F. Almaz, M.A. Ku¨lahci – A Note on Special Smarandache Curves ... 2. Preliminaries Some basics of the curves in the null cone are provided from, [8]-[9]. Let E4 be the 4−dimensional pseudo-Euclidean space with the 1 g(X,Y) = (cid:104)X,Y(cid:105) = x y +x y +x y −x y (cid:101) 1 1 2 2 3 3 4 4 for all X = (x ,x ,x ,x ) Y = (y ,y ,y ,y ) ∈ E4. E4 is a flat pseudo-Riemannian 1 2 3 4 1 2 3 4 1 1 manifold of signature (3,1). Let M be a submanifold of E4. If the pseudo-Riemannian metric g of E4 in- (cid:101) 1 1 duces a pseudo-Riemannian metric g(respectively, a Riemannian metric, a degener- ate quadratic form) on M, then M is called a timelike( respectively, spacelike, de- generate) submanifold of E3. Let c be a fixed point in E4. The pseudo-Riemannian 1 1 lightlike cone(quadric cone ) is defined by Q3(c) = (cid:8)x ∈ E4 : g(x−c,x−c) = 0(cid:9), 1 1 where the point c is called the center of Q3(c). When c = 0, we simply denote Q3(0) 1 1 by Q3 be and call it the null cone. Let E4 be 4-dimensional Minkowski space and Q3 the lightlike cone in E4. A 1 1 vector V (cid:54)= 0 in E4 is called spacelike, timelike or lightlike, if (cid:104)V,V(cid:105) > 0, (cid:104)V,V(cid:105) < 0 1 (cid:112) or (cid:104)V,V(cid:105) = 0, respectively. The norm of a vector x ∈ E4 is given by (cid:107)x(cid:107) = (cid:104)x,x(cid:105), 1 [12]. We assume that curve x : I → Q3 ⊂ E4 is a regular curve in Q3 for t ∈ I. In the 1 following, we always assume that the curve is regular. A frame field {x,α,β,y} on E4 is called an asymptotic orthonormal frame field, 1 if (cid:104)x,x(cid:105) = (cid:104)y,y(cid:105) = (cid:104)x,α(cid:105) = (cid:104)y,α(cid:105) = (cid:104)β,α(cid:105) = (cid:104)y,β(cid:105) = (cid:104)x,β(cid:105) = 0, (cid:104)x,y(cid:105) = (cid:104)α,α(cid:105) = (cid:104)β,β(cid:105) = 1. Using x(cid:48)(s) = α(s) we know that {x(s),α(s),β(s),y(s)} from an asymptotic orthonormal frame along the curve x(s) and the cone frenet formulas of x(s) are given by x(cid:48)(s) = α(s) α(cid:48)(s) = κ(s)x(s)−y(s) (2.1) β(cid:48)(s) = τ(s)x(s) y(cid:48)(s) = −κ(s)α(s)−τ(s)β(s) where the functions κ(s) and τ(s) are called cone curvature functions of the curve x(s), [10]. 112 F. Almaz, M.A. Ku¨lahci – A Note on Special Smarandache Curves ... Let x : I → Q3 ⊂ E4 be a spacelike curve in Q3 with an arc length parameter 1 s. Then x = x(s) = (x ,x ,x ,x ) can be written as 1 2 3 4 1 x(s) = (2f,2g,1−f2−g2,1+f2+g2) (2.2) (cid:112) 2 f2+g2 s s for some non constant function f(s) and g(s), [11]. 3. Smarandache Curves in The Null Cone Q3 In this section, we define binary Smarandache curves according to the asymptotic orthonormal frame in Q3. Also, we obtain the asymptotic orthonormal frame and cone curvature functions of the Smarandache partners lying on Q3 using cone frenet formulas. Smarandache curve γ = γ(s∗(s)) of the curve x is a regular unit speed curve lying fully on Q3. Let {x,α,β,y} and (cid:8)γ,α ,β ,y (cid:9) be the moving asymptotic γ γ γ orthonormal frames of x and γ, respectively. Definition 1. Let x be unit speed spacelike curve lying on Q3 with the moving asymptotic orthonormal frame {x,α,β,y}. Then, xαβ− Smarandache curve of x is defined by 1 γ (s∗) = √ (ax(s)+bα(s)+cβ(s)), (3.1) xαβ b2+c2 where a,b,c ∈ R+. 0 Theorem 1. Let x be unit speed spacelike curve in Q3 with the moving asymptotic orthonormal frame {x,α,β,y} and cone curvatures κ(s),τ(s) and let γ be xαβ− xαβ (cid:110) (cid:111) Smarandache curve with asymptotic orthonormal frame γ ,α ,β ,y . xαβ xαβ xαβ xαβ Then the following relations hold: (cid:110) (cid:111) i)Theasymptoticorthonormalframe γ ,α ,β ,y ofthexαβ-Smaran- xαβ xαβ xαβ xαβ dache curve γ is given as xαβ γ  √ a √ b √ c 0 x xαβ b2+c2 b2+c2 b2+c2 α   bκ+cτ a 0 −bα  xαβ =  Ψ Ψ Ψ  , (3.2) β   B B B B β xαβ 1 2 3 4 y Υ Υ Υ Υ y xαβ 1 2 3 4 113 F. Almaz, M.A. Ku¨lahci – A Note on Special Smarandache Curves ... where (cid:112) Ψ Ψ = a2−2b(bκ+cτ),w = √ (3.3) b2+c2 bκ+cτ a 1 A = ,A = ,A = ; (3.4) 1 Ψ 2 Ψ 3 w and √ b2+c2 B = (Ψ(cid:48)(bκ+cτ)+Ψ(bκ(cid:48)+cτ(cid:48))+aΨκ), (3.5) 1 Ψ3 √ b2+c2 (cid:112) B = (Ψ(bκ+cτ)−a−Ψκ b2+c2), 2 Ψ3 √ −τ(b2+c2) b2+c2 (cid:112) B = ,B = (−aΨ+ b2+c2); 3 Ψ2 4 Ψ3 aD bD cD Υ = −B − √ ,Υ = −B − √ ,Υ = −B − √ , 1 1 2 b2+c2 2 2 2 b2+c2 3 3 2 b2+c2 Υ = −B 4 4 and (A(cid:48) +κA )(−A +A(cid:48)) 1 D = 2 1 2 2 3 + (A +A(cid:48) −κA )2+(τA )2 w2 w2 1 2 3 3 or (b2+c2) (cid:112) D = (−2(Ψ(cid:48)(bκ+cτ)+Ψ(bκ(cid:48)+cτ(cid:48))+aΨκ)(aΨ+ b2+c2) Ψ6 (cid:112) τ2(b2+c2) +(Ψ(bκ+cτ)−a−Ψκ b2+c2)2)+ Ψ2 ii) The cone curvatures κ (s∗) and τ (s∗) of the curve γ is given by γ γ xαβ xαβ xαβ D κ (s∗) = − γ xαβ 2 (cid:113) τ (s∗) = 2(Υ −κ(cid:48))Υ +(Υ −κ)2+Υ2−κ2 , (3.6) γxαβ 1 4 2 3 γxαβ where (cid:90) 1 (cid:112) s∗ = √ a2−2b(bκ+cτ)ds. b2+c2 114 F. Almaz, M.A. Ku¨lahci – A Note on Special Smarandache Curves ... Proof. i) We assume that the curve x is a unit speed spacelike curve with the asymptotic orthonormal frame {x,α,β,y} and cone curvatures κ,τ. Differentiating the equation (3.1) with respect to s and considering (2.1), we have (cid:18) (cid:19) (cid:16)a(cid:17) bκ+cτ 1 γ(cid:48) (s∗) = α(s)+( )x(s)+ y(s), (3.7) xαβ Ψ Ψ w where ds∗ 1 (cid:112) w = = √ a2−2b(bκ+cτ), (3.8) ds b2+c2 (cid:112) Ψ = a2−2b(bκ+cτ). (3.9) It can be easily seen that the tangent vector γ(cid:48) (s∗) = α (s∗) is a unit space- xαβ xαβ like vector. Differentiating (3.7), we obtain equation as follows γ(cid:48)(cid:48) (s∗) = B x(s)+B α(s)+B β(s)+B y(s), (3.10) xαβ 1 2 3 4 where B = A(cid:48)1+κA2,B = A1+A(cid:48)2−κA3,B = −τA3,B = −A2+A(cid:48)3. 1 w 2 w 3 w 4 w 1 (cid:68) (cid:69) y (s∗) = −γ(cid:48)(cid:48) − γ(cid:48)(cid:48) ,γ(cid:48)(cid:48) γ (3.11) xαβ xαβ 2 xαβ xαβ xαβ By the help of previous equation (3.11), we obtain y (s∗) = Υ x(s)+Υ α(s)+Υ β(s)+Υ y(s), (3.12) xαβ 1 2 3 4 where Υ = −B − √aD ,Υ = −B − √bD ,Υ = −B − √cD ,Υ = −B . 1 1 2 b2+c2 2 2 2 b2+c2 3 3 2 b2+c2 4 4 (cid:68) (cid:69) ii) Using equations κ (s∗) = −1 γ(cid:48)(cid:48) ,γ(cid:48)(cid:48) and γxαβ 2 xαβ xαβ τ2 (s∗) = (cid:104)x(cid:48)(cid:48)(cid:48)−κα−κ(cid:48)x,x(cid:48)(cid:48)(cid:48)−κα−κ(cid:48)x(cid:105)−κ2 (s∗). γ γ xαβ xαβ The curvatures κ (s∗) and τ (s∗) of the γ (s∗) are explicity obtained by γ γ xαβ xαβ xαβ 1 κ (s∗) = − D γ xαβ 2 τ2 (s∗) = 2(Υ −κ(cid:48))Υ +(Υ −κ)2+Υ2−κ2 . (3.13) γxαβ 1 4 2 3 γxαβ Thus, the theorem is proved. 115 F. Almaz, M.A. Ku¨lahci – A Note on Special Smarandache Curves ... Definition 2. Let x be unit speed spacelike curve lying on Q3 with the moving asymptotic orthonormal frame {x,α,β,y}. Then, xβy−smarandache curve of x is defined by 1 γ (s∗) = √ (ax(s)+bβ(s)+cy(s)), (3.14) xβy 2ac+b2 where a,b.c ∈ R+. 0 Theorem 2. Let x be unit speed spacelike curve in Q3 with the moving asymptotic orthonormal frame {x,α,β,y} and cone curvatures κ(s),τ(s) and let γ be xβy− xβy (cid:110) (cid:111) Smarandache curve with asymptotic orthonormal frame γ ,α ,β ,y . xβy xβy xβy xβy Then the following relations hold: (cid:110) (cid:111) i)Theasymptoticorthonormalframe γ ,α ,β ,y ofthexβy−Smaran- xβy xβy xβy xβy dache curve γ is given as xβy   γ  √ a 0 √ b √ c x xβy 2ac+b2 2ac+b2 2ac+b2 α   bτ a−cκ −cτ 0 α  xβy =  η η η  , (3.15) β   B∗ B∗ B∗ B∗ β xβy  1 2 3 4  y ω ω ω ω y xβy 1 2 3 4 where (cid:112) η ds∗ η = a2−2ac+c2(κ2+τ2),ω = √ = ; 2ac+b2 ds bτ a−cκ −cτ A = ,A = ,A = ; 1 η 2 η 3 η A(cid:48) +κA +τA A +A(cid:48) A(cid:48) −A B∗ = 1 2 3,B∗ = 1 2,B∗ = 3,B∗ = 2 1 w 2 w 3 w 4 w and aT bT ω = −B∗− √ ,ω = −B∗,ω = −B∗− √ , 1 1 2 2ac+b2 2 2 3 3 2 2ac+b2 cT ω = −B∗− √ , 4 4 2 2ac+b2 T = 1 (cid:0)−2A (A(cid:48) +κA +τA )+(A +A(cid:48))2+A(cid:48)2(cid:1). ω2 2 1 2 3 1 2 3 or   2ac+b2 2(cκ−a)(b(τ(cid:48)η−τη(cid:48))+η(cid:0)κa−c(cid:0)κ2+τ2(cid:1)(cid:1)) η3 T = η  + 1 (cid:16)(η(bτ −cκ)+η(cid:48)(a−cκ))2+ c2(τη(cid:48)−τ(cid:48)η)2(cid:17) . η4 η 116 F. Almaz, M.A. Ku¨lahci – A Note on Special Smarandache Curves ... ii) The cone curvature κ (s∗) and τ (s∗) of the curve γ is given by γ γ xβy xβy xβy −T κ (s∗) = , γ 2 xβy τ2 (s∗) = 2(ω −κ(cid:48))ω +(ω −κ)2+ω2−κ2 (3.16) γ 1 4 2 3 γ xβy xβy where (cid:90) 1 (cid:112) s∗ = √ a2−2ac+c2(κ2+τ2)ds. (3.17) 2ac+b2 . Proof. i) We assume that the curve x is a unit speed spacelike curve with the asymptotic orthonormal frame {x,α,β,y} and cone curvatures κ,τ. Differentiating the equation (3.14) with respect to s and considering (2.1), we have γ(cid:48) (s∗) = bτ→−x(s)+ a−cκ→−α(s)− cτ→−β(s) (3.18) xβy η η η or γ(cid:48) (s∗) = A →−x +A →−α +A →−β. xβy 1 2 3 By considering (3.17), we get γ(cid:48) (s∗) = α(s) = α . (3.19) xβy xβy →− Here,itcanbeeasilyseenthatthetangentvector α isaunitspacelikevector. xβy Differentiating (3.19) and using (3.17), we obtain γ(cid:48)(cid:48) (s∗) = B∗→−x +B∗→−α +B∗→−β −B∗→−y, (3.20) xβy 1 2 3 4 where B∗ = A(cid:48)1+κA2+τA3,B∗ = A1+A(cid:48)2,B∗ = A(cid:48)3,B∗ = −A2. 1 w 2 w 3 w (cid:68)4 w (cid:69) By the help of equation y (s∗) = −γ(cid:48)(cid:48) − 1 γ(cid:48)(cid:48) ,γ(cid:48)(cid:48) γ , we write xβy xβy 2 xβy xβy xβy y (s∗) = ω x(s)+ω α(s)+ω β(s)+ω y(s), (3.21) xβy 1 2 3 4 where aT ω = −B∗− √ ,ω = −B∗, 1 1 2 2ac+b2 2 2 bT cT ω = −B∗− √ ,ω = −B∗− √ . 3 3 2 2ac+b2 4 4 2 2ac+b2 ii) 1 (cid:68) (cid:69) κ (s∗) = − γ(cid:48)(cid:48) ,γ(cid:48)(cid:48) , γ xβy 2 xβy xβy 117 F. Almaz, M.A. Ku¨lahci – A Note on Special Smarandache Curves ... τ2 (s∗) = (cid:104)β −κα−κ(cid:48)x,β−κα−κ(cid:48)x(cid:105)−κ2 . (3.22) γ γ xβy xβy By using (3.22), the curvatures κ (s∗) and τ (s∗) of the γ (s∗) are explicity γ γ xβy xβy xβy obtained 1 (cid:68) (cid:69) −T κ (s∗) = − γ(cid:48)(cid:48) ,γ(cid:48)(cid:48) = , γ xβy 2 xβy xβy 2 τ2 (s∗) = 2(ω −κ(cid:48))ω +(ω −κ)2+ω2−κ2 γ 1 4 2 3 γ xβα xα where   2ac+b2 2(cκ−a)(b(τ(cid:48)η−τη(cid:48))+η(cid:0)κa−c(cid:0)κ2+τ2(cid:1)(cid:1)) η3 T = η  + 1 (cid:16)(η(bτ −cκ)+η(cid:48)(a−cκ))2+ c2(τη(cid:48)−τ(cid:48)η)2(cid:17) . η4 η Definition 3. Let x be unit speed spacelike curve lying on Q3 with the moving asymptotic orthonormal frame {x,α,β,y}. Then, xαy− Smarandache curve of x is defined by 1 γ (s∗) = √ (ax(s)+bα(s)+cy(s)), (3.23) xαy 2ac+b2 where a,b,c ∈ R+. 0 Theorem 3. Let x be unit speed spacelike curve in Q3 with the moving asymp- totic orthonormal frame {x,α,β,y} and cone curvatures κ,τ and let γ be xαy− xαy (cid:110) (cid:111) Smarandachecurvewithasymptoticorthonormalframe γ ,α ,β ,y .Then xαy xαy xαy xαy the following relations hold: (cid:110) (cid:111) i)Theasymptoticorthonormalframe γ ,α ,β ,y ofthexαy−Smaran- xαy xαy xαy xαy dache curve γ is given as xαy   γ  √2aac+b2 √2abc+b2 0 √2acc+b2 x αxαy  ρ ρ ρ ρ α  xαy =  ρ(cid:48)+κρ1+ρ τ ρ(cid:48)+ρ 2−κρ ρ(cid:48)−3τρ −ρ +4ρ(cid:48)  , β   1 2 3 2 1 4 3 4 2 4 β xαy  M M M M  y ρ(cid:48)+κρ +ρ τ ρ(cid:48)+ρ −κρ ρ(cid:48)+τρ −ρ +ρ(cid:48) y xαy − 1 2 3 −aφ − 2 1 4 −bφ − 3 4 − 2 4 −cφ M M M M (3.24) where bκ a−cκ −cτ −b ρ = ,ρ = ,ρ = ,ρ = 1 Ω 2 Ω 3 Ω 4 Ω (cid:112) Ω Ω = a2−2(ac+b2)κ+c2(κ2+τ2);M = √ , (3.25) 2ac+b2 118 F. Almaz, M.A. Ku¨lahci – A Note on Special Smarandache Curves ... 1 L = (2(ρ(cid:48) +κρ +ρ τ)(−ρ +ρ(cid:48))+(ρ(cid:48) +ρ −κρ )2+(ρ(cid:48) −τρ )2), M2 1 2 3 2 4 2 1 4 3 4 L φ = √ . 2 2ac+b2 ii) The cone curvatures κ (s∗) and τ (s∗) of the curve γ is given by γ γ xαy xαy xαy L κ (s∗) = − , (3.26) γ xαy 2 ρ(cid:48) +κρ +ρ τ −ρ +ρ(cid:48) τ2 (s∗) = 2( 1 2 3 +aφ+κ(cid:48))( 2 4 +cφ) γxαy M M ρ(cid:48) +ρ −κρ ρ(cid:48) +τρ L2 +( 2 1 4 +bφ+κ)2+( 3 4)2− (3.27) M M 4 where (cid:90) 1 (cid:112) s∗ = √ a2−2(ac+b2)κ+c2(κ2+τ2)ds. (3.28) 2ac+b2 Proof. i) Let the curve x be a unit speed spacelike curve with the asymptotic or- thonormal frame {x,α,β,y} and cone curvatures κ,τ. Differentiating the equation (3.23) with respect to s and considering (2.1), we find ds∗ 1 (cid:16) −−→ −−→ −−→ −−→(cid:17) γ(cid:48) (s∗) = √ bκx(s)+(a−cκ)α(s)−cτβ(s)−by(s) . xαy ds 2ac+b2 This can be written as following bκ−−→ a−cκ−−→ cτ−−→ b−−→ α (s∗) = x(s)+ α(s)− β(s)− y(s), (3.29) xαy Ω Ω Ω Ω where (cid:112) Ω = a2−2(ac+b2)κ+c2(κ2+τ2). (3.30) Differentiating (3.29) and using (3.30), we get ρ(cid:48) +κρ +ρ τ ρ(cid:48) +ρ −κρ γ(cid:48)(cid:48) = ( 1 2 3 )x+( 2 1 4)α xαy M M ρ(cid:48) −τρ −ρ +ρ(cid:48) +( 3 4)β +( 2 4)y, (3.31) M M where ρ = bκ,ρ = a−cκ,ρ = −cτ,ρ = −b. 1 Ω 2 Ω 3 Ω 4 Ω 1 (cid:68) (cid:69) (cid:68) (cid:69) y (s∗) = −γ(cid:48)(cid:48) − γ(cid:48)(cid:48) ,γ(cid:48)(cid:48) γ , and γ(cid:48)(cid:48) ,γ(cid:48)(cid:48) = L. (3.32) xαy xαy 2 xαy xαy xαy xαy xαy 119 F. Almaz, M.A. Ku¨lahci – A Note on Special Smarandache Curves ... By the help of equation (3.32), we obtain ρ(cid:48) +κρ +ρ τ ρ(cid:48) +ρ −κρ y (s∗) = (− 1 2 3 −aφ)x(s)+(− 2 1 4 −bφ)α(s) xαy M M ρ(cid:48) +τρ −ρ +ρ(cid:48) +(− 3 4)β(s)+(− 2 4 −cφ)y(s), (3.33) M M where L 1 φ = √ ,L = (2(ρ(cid:48) +κρ +ρ τ)(−ρ +ρ(cid:48)) 2 2ac+b2 M2 1 2 3 2 4 +(ρ(cid:48) +ρ −κρ )2+(ρ(cid:48) −τρ )2), 2 1 4 3 4 ii) Using (3.22), we have (3.26) and (3.27). Definition 4. Let x be unit speed spacelike curve lying on Q3 with the moving asymptotic orthonormal frame {x,α,β,y}. Then, αβy−Smarandache curve of x is defined by 1 γ (s∗) = √ (aα(s)+bβ(s)+cy(s)), (3.34) αβy a2+b2 where a,b,c ∈ R+. 0 Theorem 4. Let x be unit speed spacelike curve in Q3 with the moving asymp- totic orthonormal frame {x,α,β,y} and cone curvatures κ,τ and let γ be αβy− αβy (cid:110) (cid:111) Smarandache curve with asymptotic orthonormal frame γ ,α ,β ,y . αβy αβy αβy αβy Then the following relations hold: (cid:110) (cid:111) i)Theasymptoticorthonormalframe γ ,α ,β ,y oftheαβy−Smaran- αβy αβy αβy αβy dache curve γ is given as αβy γ   0 √ a √ b √ c x αβy a2+b2 a2+b2 a2+b2 α   A A A A α  αβy =  1 2 3 4  , β   C C C C β  αβy  1 2 3 4  y −C −C − √aM −C − √bM −C − √cM y αβy 1 2 2 a2+b2 3 2 a2+b2 4 2 a2+b2 (3.35) where (cid:112) ξ ds∗ ξ = c2τ2+(c2−2a2)κ2−2abτ;w = √ = a2+b2 ds 120

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.