ebook img

A Note on Practical Stability of Nonlinear Vibration Systems with Impulsive Effects PDF

8 Pages·1.813 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Note on Practical Stability of Nonlinear Vibration Systems with Impulsive Effects

HindawiPublishingCorporation JournalofAppliedMathematics Volume2012,ArticleID340450,7pages doi:10.1155/2012/340450 Research Article A Note on Practical Stability of Nonlinear Vibration Systems with Impulsive Effects Qishui Zhong,1 Hongcai Li,2 Hui Liu,2 and Juebang Yu3 1InstituteofAstronautics&Aeronautics,UniversityofElectronicScienceandTechnologyofChina, Chengdu610054,China 2NationalKeyLabofVehicularTransmission,BeijingInstituteofTechnology,Beijing100081,China 3CollegeofElectronicEngineering,UniversityofElectronicScienceandTechnologyofChina, Chengdu610054,China CorrespondenceshouldbeaddressedtoQishuiZhong,[email protected] Received23March2012;Accepted26July2012 AcademicEditor:JunjieWei Copyrightq2012QishuiZhongetal.ThisisanopenaccessarticledistributedundertheCreative CommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductionin anymedium,providedtheoriginalworkisproperlycited. This paper addresses the issue of vibration characteristics of nonlinear systems with impulsive effects.ByutilizingaT-Sfuzzymodeltorepresentanonlinearsystem,ageneralstrictpractical stabilitycriterionisderivedfornonlinearimpulsivesystems. 1. Introduction In recent years, nonlinear vibration and its control have been widely studied due to undesirable or harmful behaviors under many circumstances (cid:3)1–6(cid:4). Furthermore, during working condition, plates usually work with disturbances which can be described with impulsiveeffects,andimpulsivedifferentialequationsusuallyusedtodealtwiththiskindof problem.Anumberofpapershavedealwiththetheoryofimpulsivedifferentialequations (cid:3)7–10(cid:4) and its applications to many kind of systems (cid:3)11, 12(cid:4). Impulsive control has been demonstratedtobeaneffectiveandattractivecontrolmethodtostabilizelinearandnonlinear systems(cid:3)11,13(cid:4),especiallytostabilizevariouschaoticvibrationsystems(cid:5)e.g.,see(cid:3)14–16(cid:4)(cid:6). Furthermore, a highly nonlinear system can usually be represented by the T-S fuzzy model(cid:3)17(cid:4).TheT-SfuzzymodelisdescribedbyfuzzyIF-THENruleswheretheconsequent parts represent local linear models for nonlinear systems. Then we can use linear theory to analyzechaoticsystemsbymeansofT-Sfuzzymodelsatacertaindomain(cid:3)18,19(cid:4). In the study of the Lyapunov stability, an interesting set of problems deals with bringing sets close to a certain state, rather than the state x (cid:7) 0 (cid:3)20(cid:4). The desired state of 2 JournalofAppliedMathematics system may be mathematically unstable and yet the system may oscillate sufficiently near thisstatethatitsperformanceisacceptable.Manyproblemsfallintothiscategoryincluding thetravelofaspacevehiclebetweentwopoints,anaircraftoramissilewhichmayoscillate around a mathematically unstable course yet its performance may be acceptable, and the problem in a chemical process of keeping the temperature within certain bounds. Such considerations led to the notion of practical stability which is neither weaker nor stronger than the Lyapunov stability (cid:3)21, 22(cid:4). In a practical control problem, one aims at controlling a system into a certain region of interest instead of an exact point. If one wants to control a systemtoanexactpoint,theexpensemaybeprohibitivelyhighinsomecases. Inthispaper,westudythepracticalstabilityforthenonlinearimpulsivesystembased onT-Sfuzzymodel.Afterageneralstrictlypracticalstabilitycriterionisderived,somesimple andeasilyverifiedsufficientconditionsaregiventostabilizethenonlinearvibrationsystem. Notation: A > 0 (cid:5)< 0(cid:6) means A is a symmetrical positive (cid:5)negative(cid:6) definite matrix. R(cid:9), R(cid:9), and N stand for, respectively, the set of all positive real numbers, nonnegative real numbers, and the set of natural numbers. (cid:2)x(cid:2) denotes the Euclidian norm of vector x, and λ (cid:5)A(cid:6)andλ (cid:5)A(cid:6)meantheminimalandmaximaleigenvaluesofmatrixA,respectively. min max 2. Problem Formulation Considerthefollowingnonlinearsystem x˙(cid:5)t(cid:6)(cid:7)f(cid:5)x(cid:5)t(cid:6)(cid:6), (cid:5)2.1(cid:6) where x(cid:5)t(cid:6) ∈ Rn is the state variable, f ∈ C(cid:3)Rn,Rn(cid:4). We can construct the fuzzy model for (cid:5)2.1(cid:6)asfollows:rule(cid:5)i(cid:6):ifz1(cid:5)t(cid:6)isMi1,...,andzp(cid:5)t(cid:6)isMip,THENx(cid:5)t(cid:6)(cid:7)Aix(cid:5)t(cid:6),i(cid:7)1,2,...,r, inwhichzi(cid:5)t(cid:6),...,zp(cid:5)t(cid:6)arethepremisevariables,eachMij (cid:5)j (cid:7)1,2,...,p(cid:6)isafuzzyset,and Ai ∈ Rn×n isaconstantmatrix.Withacenter-averagedefuzzifier,theoverallfuzzysystemis representedas (cid:2)r x˙(cid:5)t(cid:6)(cid:7) hi(cid:5)t(cid:6)Aix(cid:5)t(cid:6), (cid:5)2.2(cid:6) i(cid:7)1 (cid:3) w(cid:4)anhpld(cid:7)e1r(cid:3)Meri(cid:7)irl1(cid:5)zhilis(cid:5)(cid:5)tt(cid:6)(cid:6)t(cid:6)h(cid:7),ea1n.ndNuMomteibl(cid:5)etzhrla(cid:5)tto(cid:6)sf(cid:6)yisfsutetzhmzey(cid:5)g2ri.a2md(cid:6)peclaoicnfamltoioecnamlslb,yerhresihp(cid:5)tir(cid:6)pesoe(cid:7)fnztls(cid:5)wyt(cid:6)sit(cid:5)ient(cid:6)m/M(cid:5)(cid:5)2il..1ri(cid:7)O(cid:6)1.fwcoi(cid:5)ut(cid:6)r(cid:6)s,e,whii(cid:5)(cid:5)tt(cid:6)(cid:6)≥(cid:7)0 Disturbances, acting on system (cid:5)2.1(cid:6), are given by a sequence {tk,Ik(cid:5)x(cid:5)tk(cid:6)(cid:6)}, where 0 < t1 < t2 < ··· < tk < ···,tk → ∞ask → ∞,andIk ∈ C(cid:3)Rn,Rn(cid:4)denotestheincremental changeofthestateattimetk.Thus,thefollowingimpulsivedifferentialequationisobtained (cid:2)r x˙(cid:5)t(cid:6)(cid:7) hi(cid:5)t(cid:6)Aix(cid:5)t(cid:6), ∀t≥0, t/(cid:7)tk, i(cid:7)1 (cid:5)2.3(cid:6) Δx(cid:5)t(cid:6)(cid:7)I (cid:5)x(cid:5)t(cid:6)(cid:6), t(cid:7)t , k ∈N, k k inwhichΔx(cid:5)t(cid:6)(cid:7)x(cid:5)t(cid:9)k(cid:6)−x(cid:5)tk(cid:6),x(cid:5)t(cid:9)k(cid:6)(cid:7)tl→imt(cid:9)x(cid:5)tk(cid:6),k ∈N. k JournalofAppliedMathematics 3 AssumethatIk(cid:5)0(cid:6)≡0forallksothatthetrivialsolutionof(cid:5)2.3(cid:6)exists.DenoteS(cid:5)ρ(cid:6)(cid:7) {x∈Rn :(cid:2)x(cid:2)<ρ}. We will introduce the following classes of function spaces, definitions, and theorems forfutureuse: K (cid:7){a∈C(cid:3)R(cid:9),R(cid:9)(cid:4):aisstrictlyincreasinganda(cid:5)0(cid:6)(cid:7)0}. CK (cid:7){a∈C(cid:3)R2(cid:9),R(cid:9)(cid:4):a(cid:5)t,u(cid:6)∈Kforeacht∈R(cid:9)}. Definition2.1. LetV :R(cid:9)×Rn → R(cid:9),thenV issaidtobelongtoclassυ0if: (cid:5)1(cid:6)V iscontinuousin(cid:5)tk−1,tk(cid:4)×Rnandforeachx∈Rn,k (cid:7)1,2,..., (cid:5) (cid:6) (cid:5) (cid:6) (cid:5)t,y(cid:6)l→im(cid:5)t(cid:9),x(cid:6)V t,y lim(cid:7)V t(cid:9)k,x (cid:5)2.4(cid:6) k exits; (cid:5)2(cid:6)V islocallyLipschitzianinx. Definition2.2. For(cid:5)t,x(cid:6)∈(cid:5)tk−1,tk(cid:4)×Rn,wedefinethederivativesofV(cid:5)t,x(cid:6)as (cid:7) (cid:5) (cid:6) (cid:8) D(cid:9)V(cid:5)t,x(cid:6)(cid:7) lim sup1 V t(cid:9)s,x(cid:9)sf(cid:5)t,x(cid:6) −V(cid:5)t,x(cid:6) , (cid:5)2.5(cid:6) s→0(cid:9) s (cid:7) (cid:5) (cid:6) (cid:8) D−V(cid:5)t,x(cid:6)(cid:7) lim inf1 V t(cid:9)s,x(cid:9)sf(cid:5)t,x(cid:6) −V(cid:5)t,x(cid:6) . (cid:5)2.6(cid:6) s→0− s Definition2.3. Thetrivialsolutionofthesystem(cid:5)2.1(cid:6)issaidtobe (cid:5)1(cid:6)practicallystable,ifgiven(cid:5)λ,A(cid:6)with0 < λ < A,onehas(cid:2)x (cid:2) < λimplies(cid:2)x(cid:5)t(cid:6)(cid:2) < 0 A,t≥t0forsomet0 ∈R(cid:9); (cid:5)2(cid:6)strictlystable,if(cid:5)1(cid:6)holdsandforeveryμ ≤ λthereexistsB < μsuchthat(cid:2)x (cid:2) > μ 0 implies(cid:2)x(cid:5)t(cid:6)(cid:2)>B,t≥t . 0 Theorem2.4(cid:5)see(cid:3)23(cid:4)(cid:6). Supposethat (cid:5)1(cid:6)0<λ<A<ρ; (cid:5)2(cid:6)thereexistsV1 : R(cid:9)×S(cid:5)ρ(cid:6) → R(cid:9),V1 ∈ v0,a1 ∈ CK,b1 ∈ Ksuchthata1(cid:5)t0,λ(cid:6) ≤ b1(cid:5)A(cid:6) forsomet0 ∈R(cid:9),andfor(cid:5)t,x(cid:6)∈R(cid:9)×S(cid:5)ρ(cid:6), b (cid:5)(cid:2)x(cid:2)(cid:6)≤V (cid:5)t,x(cid:6)≤a (cid:5)t ,(cid:2)x(cid:2)(cid:6), 1 1 1 0 D(cid:9)V1(cid:5)t,x(cid:6)≤0, t/(cid:7)tk, (cid:5)2.7(cid:6) V (cid:5)t(cid:9),x(cid:9)I (cid:5)x(cid:6)(cid:6)≤V (cid:5)t,x(cid:6), t(cid:7)t , 1 k 1 k 4 JournalofAppliedMathematics (cid:5)3(cid:6)thereexistsV2 :R(cid:9)×S(cid:5)ρ(cid:6) → R(cid:9),V2 ∈v0,a2,b2 ∈Ksuchthatfor(cid:5)t,x(cid:6)∈R(cid:9)×S(cid:5)ρ(cid:6), b (cid:5)(cid:2)x(cid:2)(cid:6)≤V (cid:5)t,x(cid:6)≤a (cid:5)(cid:2)x(cid:2)(cid:6) 2 2 2 D−V2(cid:5)t,x(cid:6)≥0, t/(cid:7)tk, (cid:5)2.8(cid:6) V (cid:5)t(cid:9),x(cid:9)I (cid:5)x(cid:6)(cid:6)≥V (cid:5)t,x(cid:6), t(cid:7)t . 2 k 2 k Then,thetrivialsolutionof (cid:5)2.1(cid:6)isstrictlypracticallystable. 3. Main Results Inthissection,wewillgivesomestrictpracticalstabilitycriteriaofnonlinearvibrationsystem (cid:5)2.3(cid:6). Theorem3.1. Thetrivialsolutionofsystem(cid:5)2.3(cid:6)isstrictlypracticallystableifthereexistsamatrix P >0,α≤0andthefollowingconditionshold: PAi(cid:9)ATiP ≤αI, i(cid:7)1,...,r, (cid:5)3.1(cid:6) λ (cid:5)P(cid:6) (cid:2)x(cid:5)tk(cid:6)(cid:9)Ik(cid:5)x(cid:5)tk(cid:6)(cid:6)(cid:2)2 ≤ λmin(cid:5)P(cid:6)(cid:2)x(cid:5)tk(cid:6)(cid:2)2, k ∈N. (cid:5)3.2(cid:6) max Proof. Consider the Lyapunov function V (cid:5)x(cid:5)t(cid:6)(cid:6) (cid:7) (cid:5)1/2(cid:6)xT(cid:5)t(cid:6)Px(cid:5)t(cid:6) and V (cid:5)x(cid:5)t(cid:6)(cid:6) (cid:7) 1 2 exp(cid:5)−xT(cid:5)t(cid:6)Px(cid:5)t(cid:6)(cid:6).Ityieldsthat 1 1 λ (cid:5)P(cid:6)(cid:2)x(cid:5)t(cid:6)(cid:2)2 ≤V (cid:5)x(cid:5)t(cid:6)(cid:6)≤ λ (cid:5)P(cid:6)(cid:2)x(cid:5)t(cid:6)(cid:2)2, min 1 max 2 (cid:9) (cid:10) 2 (cid:9) (cid:10) (cid:5)3.3(cid:6) exp −λ (cid:5)P(cid:6)(cid:2)x(cid:5)t(cid:6)(cid:2)2 ≥V (cid:5)x(cid:5)t(cid:6)(cid:6)≥exp −λ (cid:5)P(cid:6)(cid:2)x(cid:5)t(cid:6)(cid:2)2 . min 2 max Whent/(cid:7)tk,sincePAi(cid:9)ATiP ≤αI,i(cid:7)1,2,...,r andα≤0,thederivativesofthemare D(cid:9)V (cid:5)x(cid:5)t(cid:6)(cid:6)(cid:7) 1x˙T(cid:5)t(cid:6)Px(cid:5)t(cid:6)(cid:9)xT(cid:5)t(cid:6)Px˙(cid:5)t(cid:6) 1 2 (cid:2)r (cid:11) (cid:12) (cid:7) 1 h(cid:5)t(cid:6)xT(cid:5)t(cid:6) PA (cid:9)ATP x(cid:5)t(cid:6) i i i 2 i(cid:7)1 α ≤ (cid:2)x(cid:5)t(cid:6)(cid:2)2 2 (cid:5) (cid:6) ≤0, t∈(cid:5)tk−1,tk(cid:6), k ∈N, x∈S ρ , (cid:5)3.4(cid:6) (cid:9) (cid:10)(cid:9) (cid:10) D−V2(cid:5)x(cid:5)t(cid:6)(cid:6)(cid:7)−exp −xT(cid:5)t(cid:6)Px(cid:5)t(cid:6) x˙T(cid:5)t(cid:6)Px(cid:5)t(cid:6)(cid:9)xT(cid:5)t(cid:6)Px˙(cid:5)t(cid:6) (cid:13) (cid:14) (cid:9) (cid:10) (cid:2)r (cid:11) (cid:12) (cid:7)−exp −xT(cid:5)t(cid:6)Px(cid:5)t(cid:6) hi(cid:5)t(cid:6)xT(cid:5)t(cid:6) PAi(cid:9)ATiP x(cid:5)t(cid:6) i(cid:7)1 JournalofAppliedMathematics 5 (cid:9) (cid:10) ≥−αexp −xT(cid:5)t(cid:6)Px(cid:5)t(cid:6) (cid:2)x(cid:5)t(cid:6)(cid:2)2 (cid:5) (cid:6) ≥0, t∈(cid:5)tk−1,tk(cid:6), k ∈N, x∈S ρ . (cid:5)3.5(cid:6) Let a (cid:5)x(cid:6) (cid:7) xT(cid:5)t(cid:6)Px(cid:5)t(cid:6), b (cid:5)x(cid:6) (cid:7) (cid:5)1/4(cid:6)V (cid:5)x(cid:5)t(cid:6)(cid:6), a (cid:5)x(cid:6) (cid:7) 2exp(cid:5)−xT(cid:5)t(cid:6)Px(cid:5)t(cid:6)(cid:6), and b (cid:5)x(cid:6) (cid:7) 1 1 1 2 2 exp(cid:5)−xT(cid:5)t(cid:6)Px(cid:5)t(cid:6)(cid:6),wecaneasilyobtain b (cid:5)(cid:2)x(cid:2)(cid:6)≤V (cid:5)x(cid:5)t(cid:6)(cid:6)≤a (cid:5)t ,(cid:2)x(cid:2)(cid:6), 1 1 1 0 (cid:5)3.6(cid:6) b (cid:5)(cid:2)x(cid:2)(cid:6)≤V (cid:5)x(cid:5)t(cid:6)(cid:6)≤a (cid:5)(cid:2)x(cid:2)(cid:6). 2 2 2 Whent(cid:7)tk,accordingto(cid:5)3.2(cid:6)and(cid:5)3.6(cid:6),wehave V (cid:5)x(cid:5)t(cid:6)(cid:9)I (cid:5)x(cid:5)t(cid:6)(cid:6)(cid:6)(cid:7) 1(cid:5)x(cid:5)t(cid:6)(cid:9)I (cid:5)x(cid:5)t(cid:6)(cid:6)(cid:6)TP(cid:5)x(cid:5)t(cid:6)(cid:9)I (cid:5)x(cid:5)t(cid:6)(cid:6)(cid:6) 1 k k k 2 1 ≤ λ (cid:5)P(cid:6)(cid:2)(cid:5)x(cid:5)t(cid:6)(cid:9)I (cid:5)x(cid:5)t(cid:6)(cid:6)(cid:6)(cid:2)2 max k 2 (cid:5)3.7(cid:6) 1 ≤ λ (cid:5)P(cid:6)(cid:2)(cid:5)x(cid:5)t(cid:6)(cid:6)(cid:2)2 min 2 ≤V (cid:5)x(cid:5)t(cid:6)(cid:6), 1 (cid:9) (cid:10) V2(cid:5)x(cid:5)t(cid:6)(cid:9)Ik(cid:5)x(cid:5)t(cid:6)(cid:6)(cid:6)(cid:7)exp (cid:5)−(cid:5)x(cid:5)t(cid:6)(cid:9)Ik(cid:5)x(cid:5)t(cid:6)(cid:6)(cid:6)TP(cid:5)x(cid:5)t(cid:6)(cid:9)Ik(cid:5)x(cid:5)t(cid:6)(cid:6)(cid:6) ≥exp(cid:5)−λmax(cid:5)P(cid:6)(cid:2)(cid:5)x(cid:5)t(cid:6)(cid:9)Ik(cid:5)x(cid:5)t(cid:6)(cid:6)(cid:6)(cid:2)(cid:6)2 (cid:9) (cid:10) (cid:5)3.8(cid:6) ≥exp −λ (cid:5)P(cid:6)(cid:2)(cid:5)x(cid:5)t(cid:6)(cid:6)(cid:2)2 min ≥V (cid:5)x(cid:5)t(cid:6)(cid:6). 2 Then,withTheorem2.4,thetrivialsolutionofsystem(cid:5)2.3(cid:6)isstrictlypracticalstable. Remark 3.2. If system (cid:5)2.3(cid:6) is practically stabilizable, we can design a general linear or nonlinearimpulsivecontrollaw{tk,Ik(cid:5)x(cid:5)tk(cid:6)(cid:6)}forsystem(cid:5)2.1(cid:6),whichcanmakethesystem oscillatesufficientlyneartheaimedstateandtheperformanceisconsideredacceptable,that is, the vibration of system (cid:5)2.1(cid:6) is depressed in the sense of practical stability under the impulsivecontrol. If Ik(cid:5)x(cid:5)tk(cid:6)(cid:6) (cid:7) Ckx(cid:5)tk(cid:6),k ∈ N, where each Ck ∈ Rn×n is constant matrix, then system (cid:5)2.3(cid:6)isrewrittenby (cid:2)r x˙(cid:5)t(cid:6)(cid:7) hi(cid:5)t(cid:6)Aix(cid:5)t(cid:6), ∀t≥0, t/(cid:7)tk, i(cid:7)1 (cid:5)3.9(cid:6) Δx(cid:5)t(cid:6)(cid:7)C x(cid:5)t(cid:6), t(cid:7)t , k ∈N. k k 6 JournalofAppliedMathematics From(cid:5)3.2(cid:6),itiseasilyobtainedthat λ (cid:5)P(cid:6) (cid:2)I(cid:9)Ck(cid:2)2 ≤ λmin(cid:5)P(cid:6), k ∈N. (cid:5)3.10(cid:6) max Then,wehavethefollowingcorollary. Corollary3.3. Thetrivialsolutionofsystem(cid:5)3.9(cid:6)isstrictlypracticallystableifthereexistamatrix P >0,α≤0andtheconditions(cid:5)3.1(cid:6)and(cid:5)3.10(cid:6)hold. 4. Conclusions In this paper, some strict practical stability criteria have been put forward for nonlinear impulsive systems based on their T-S models. The reported results are helpful to consider the vibration characteristics of nonlinear systems with impulsive disturbances and also to controlthevibrationofnonlinearsystemviatheimpulsivecontrollaw. Acknowledgments This work was supported by the National Natural Science Foundation of China under Grants no. 50905018 and 51075033, the Foundation of Science and Technology on Vehicle Transmission Laboratory, the Fundamental Research Funds for the Central Universities under Grant no. ZYGX2009J088, and Sichuan Science & Technology Plan under Grant no. 2011JY0001. References (cid:3)1(cid:4) B.Lehman,J.Bentsman,S.VerduynLunel,andE.I.Verriest,“Vibrationalcontrolofnonlineartime lag systems with bounded delay: averaging theory, stabilizability, and transient behavior,” IEEE TransactionsonAutomaticControl,vol.39,no.5,pp.898–912,1994. (cid:3)2(cid:4) A.E.Alshorbagy,M.A.Eltaher,andF.F.Mahmoud,“Freevibrationcharacteristicsofafunctionally gradedbeambyfiniteelementmethod,”AppliedMathematicalModelling,vol.35,no.1,pp.412–425, 2011. (cid:3)3(cid:4) B. Farshi and A. Assadi, “Development of a chaotic nonlinear tuned mass damper for optimal vibrationresponse,”CommunicationsinNonlinearScienceandNumericalSimulation,vol.16,no.11,pp. 4514–4523,2011. (cid:3)4(cid:4) B.K.Eshmatov,“Nonlinearvibrationsanddynamicstabilityofviscoelasticorthotropicrectangular plates,”JournalofSoundandVibration,vol.300,no.3–5,pp.709–726,2007. (cid:3)5(cid:4) X.Zhou,Y.Wu,Y.Li,andZ.Wei,“HopfbifurcationanalysisoftheLiusystem,”Chaos,Solitons& Fractals,vol.36,no.5,pp.1385–1391,2008. (cid:3)6(cid:4) X.Zhou,Y.Wu,Y.Li,andH.Xue,“Adaptivecontrolandsynchronizationofanovelhyperchaotic systemwithuncertainparameters,”AppliedMathematicsandComputation,vol.203,no.1,pp.80–85, 2008. (cid:3)7(cid:4) V.Lakshmikantham,D.D.Bainov,andP.S.Simeonov,TheoryofImpulsiveDifferentialEquations,Series inModernAppliedMathematics,WorldScientific,Singapore,1989. (cid:3)8(cid:4) Q. Zhong, J. Bao, Y. Yu, and X. Liao, “Exponential stabilization for discrete Takagi-Sugeno fuzzy systemsviaimpulsivecontrol,”Chaos,Solitons&Fractals,vol.41,no.4,pp.2123–2127,2009. (cid:3)9(cid:4) X.H.Tang,Z.He,andJ.S.Yu,“Stabilitytheoremfordelaydifferentialequationswithimpulses,” AppliedMathematicsandComputation,vol.131,no.2-3,pp.373–381,2002. JournalofAppliedMathematics 7 (cid:3)10(cid:4) T. Yang, “Impulsive control,” IEEE Transactions on Automatic Control, vol. 44, no. 5, pp. 1081–1083, 1999. (cid:3)11(cid:4) Q.Zhong,J.Bao,Y.Yu,andX.Liao,“ImpulsivecontrolforT-Sfuzzymodel-basedchaoticsystems,” MathematicsandComputersinSimulation,vol.79,no.3,pp.409–415,2008. (cid:3)12(cid:4) M.DeLaSenandN.Luo,“Anoteonthestabilityoflineartime-delaysystemswithimpulsiveinputs,” IEEETransactionsonCircuitsandSystems.I,vol.50,no.1,pp.149–152,2003. (cid:3)13(cid:4) X. Liu and G. Ballinger, “Uniform asymptotic stability of impulsive delay differential equations,” Computers&MathematicswithApplications,vol.41,no.7-8,pp.903–915,2001. (cid:3)14(cid:4) X.Liu,“Impulsivestabilizationandcontrolofchaoticsystem,”NonlinearAnalysis:Theory,Methods& Applications,vol.47,no.2,pp.1081–1092,2001. (cid:3)15(cid:4) J.Sun,“Impulsivecontrolofanewchaoticsystem,”MathematicsandComputersinSimulation,vol.64, no.6,pp.669–677,2004. (cid:3)16(cid:4) Q.S.Zhong,J.F.Bao,Y.B.Yu,andX.F.Liao,“Impulsivecontrolforfractional-orderchaoticsystems,” ChinesePhysicsLetters,vol.25,no.8,pp.2812–2815,2008. (cid:3)17(cid:4) T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,”IEEETransactionsonSystems,ManandCybernetics,vol.15,no.1,pp.116–132,1985. (cid:3)18(cid:4) Y.W.Wang,Z.H.Guan,andH.O.Wang,“ImpulsivesynchronizationforTakagi-Sugenofuzzymodel anditsapplicationtocontinuouschaoticsystem,”PhysicsLetters,SectionA,vol.339,no.3–5,pp.325– 332,2005. (cid:3)19(cid:4) Y.-W.Wang,Z.-H.Guan,H.O.Wang,andJ.-W.Xiao,“ImpulsivecontrolforT-Sfuzzysystemand itsapplicationtochaoticsystems,”InternationalJournalofBifurcationandChaosinAppliedSciencesand Engineering,vol.16,no.8,pp.2417–2423,2006. (cid:3)20(cid:4) I.M.Stamova,“VectorLyapunovfunctionsforpracticalstabilityofnonlinearimpulsivefunctional differentialequations,”JournalofMathematicalAnalysisandApplications,vol.325,no.1,pp.612–623, 2007. (cid:3)21(cid:4) V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Practical Stability of Nonlinear Systems, World Scientific,Teaneck,NJ,USA,1990. (cid:3)22(cid:4) T. Yang, J. A. K. Suykens, and L. O. Chua, “Impulsive control of nonautonomous chaotic systems using practical stabilization,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering,vol.8,no.7,pp.1557–1564,1998. (cid:3)23(cid:4) S.Li,X.Song,andA.Li,“Strictpracticalstabilityofnonlinearimpulsivesystemsbyemployingtwo Lyapunov-like functions,” Nonlinear Analysis: Real World Applications, vol. 9, no. 5, pp. 2262–2269, 2008. Advances in Advances in Journal of Journal of Operations Research Decision Sciences Applied Mathematics Algebra Probability and Statistics Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 The Scientific International Journal of World Journal Differential Equations Hhtintpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Submit your manuscripts at http://www.hindawi.com International Journal of Advances in Combinatorics Mathematical Physics Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Journal of Journal of Mathematical Problems Abstract and Discrete Dynamics in Complex Analysis Mathematics in Engineering Applied Analysis Nature and Society Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 International Journal of Journal of Mathematics and Discrete Mathematics Mathematical Sciences Journal of International Journal of Journal of Function Spaces Stochastic Analysis Optimization Hhtintpd:a/w/iw Pwuwbl.ihsihnidnagw Ci.ocropmoration Volume 2014 Hhtintpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014 Hhtitnpd:/a/wwiw Pwub.hliisnhdinawg iC.coormporation Volume 2014

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.