ebook img

A note on Mumford-Roitman argument on Chow schemes PDF

0.11 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A note on Mumford-Roitman argument on Chow schemes

ANOTE ON MUMFORD-ROITMAN ARGUMENTON CHOWSCHEMES 7 KALYANBANERJEE 1 0 2 ABSTRACT. Inthisnotewearegoingtounderstandtwoquestions.One n isthefiberofthenaturalmapfromaprojectivealgebraicgroupG to a G/Γ, where Γ denotes the Γ-equivalence onG. The other one is to J defineanaturalmapfromHilbertschemeofthegenericfiberofafi- 2 brationX →StotheChowgroupofrelativezerocyclesonX →Sand 1 tounderstandthefibersofthismap. ] G A h. 1. INTRODUCTION t a In the breakthrough paper [M], Mumford had sketched an outline of m thefactthatthefibersofthenaturalmapfromthesymmetricpowersofa [ smoothprojectivevarietyX totheChowgroupofX arecountableunions 1 v ofZariskiclosedsubsetsinsidethesymmetricpowersof X. Inthepaper 1 by[R]Roitmanhasproventhatthefibersareindeedcountableunionof 3 4 Zariskiclosedsubsetsinsidethesymmetricpowersofthesmoothprojec- 3 0 tivevarietyX. Thatisthedepartingpointofthisarticle.Weaskthesame 1. questionbutforΓ-equivalenceonprojectivealgebraicgroups.HereΓisa 0 smoothprojectivecurve.Twopointsg,honGaresaidtobeΓ-equivalent, 7 1 ifthereexiststwopoints0,∞onΓ,andarationalmap f fromΓtoG such : v that i X r a f(0)=g, f(∞)=h. Now we consider the natural map θ fromG toG/Γ, where Γ denotes theΓ-equivalencerelationandaskwhatisthekernelofθorthefiberofθ overe,theidentityelementofG.Soourmaintheoremofthisarticleisas follows. LetG beaprojectivealgebraicgroupoveranuncountable,algebraically closedgroundfieldk. Letθ denotethenaturalmapfromG toG/Γ. Then θ−1([e])isacountableunionoftranslatesofanabelianvariety A ofG. 0 0MathematicsClassificationNumber:14L40,14L10 0Keywords:Projectivealgebraicgroups,R-equivalence 1 ToprovethatwemainlyusedtheRoitman’stechniquetostratifyθ−1([e]), in terms of quasi-projective schemes and show that the Zariski closure of each of them is again in θ−1([e]), obtaining that θ−1([e]) is a count- ableunionofZariskiclosedsubsetsofG. Thentheuncountabilityofthe groundfieldiscomingintothepicture,givingusthefactthatoneofthese Zariskiclosedsubsetsisactuallyanabelianvarietyandweobtaintheoth- ers as the translates of the abelian variety. Over complex numbers the pictureismuchmoreinteresting,becausewecanusetheanalyticstruc- tureofG, thatitisa complexcompactmanifoldandθ−1([e])isa locally compact hausdorff topological subgroup of it. Hence it is a Baire sub- spaceofG givingusthatonlyfinitenumberoftranslatesgiveusθ−1([e]). Thisisourfinaltheorem. LetG beaprojectivealgebraicgroupoverC. Considerthenaturalmap θfromG toG/Γ. Thenθ−1([e])isafiniteunionoftranslatesofanabelian subvariety A ofG.Henceθ−1([e])isanalgebraicsubgroupofG. 0 Thenextsectionisdevotedtorelativezerocycleswhichwasfirstintro- ducedbySuslinandVoevodskyin[SV]. WedefinetheChowgroupofrel- ativezerocycles andproduceanaturalmapfromtheHilbertschemeof lengthd zerodimensionalsubschemesonthegenericfiberofafibration X → S, (X,S smooth projective) to the Chow group of relative zero cy- cleson X →S. Weprovethatthefibersofthismapiscountableunionof ZariskiclosedsubschemesintheHilbertscheme. Hereweusethetech- niquescomingfrom[R]toprovethisresult,alsoasketchofthisproofwas givenbyMumfordin[M]. Acknowledgements: The authorwould like to thankthe ISF-UGC grant for funding this project and is grateful to the hospitality of Indian Statistical In- stitute, Bangalore Center for hosting this project. The author also thanks the anonymousrefereeforpointingoutaninaccuracyaboutR-equivalence inthe earlierversion ofthepaper. FinallytheauthorisgratefultoVladimir Guletskii fortellingtheproblemaboutgeneralizationoftheMumford-Roitmanargument forthecaseofrelativecycles,totheauthor. 2. PRELIMINARIES Let G be a projective algebraic group over a ground field k. Two k- pointsonG aresaidtobeΓ-equivalentifthereexistsa chainofrational maps from Γ connecting them. Precisely, let a,b be two k-points onG. 2 They are said to be Γ-equivalent if there exists rational morphisms f : Γ→G ,0,∞inΓsuchthat f(0)=a, f(∞)=b. Let Γ(e) be the class of the identity e of G under the above relation, that is collection of all k-points of G, Γ-equivalent to e. Then Γ(e) is a subgroupofG andG/Γ(e)isagroup. 2.1. Mumford-Roitmantechniques. Let us considerthefollowingmap θ:G→G/Γ(e),defineby θ(g)=[g] where [g] denotes the class of g in G/Γ(e). Since the addition law in G/Γ(e)isdefinedtobe [g]+[h]=[g+h] wegetthatθ isahomomorphismofgroups. Weareinterestedtounder- standwhatisthekernelofθorθ−1([e]).Therewasasimilarsuchquestion askedforthenaturalmapfromthesymmetricpowerofafixeddegreeof analgebraicvarietytotheChowgroupofzerocycles. Itwassketchedin Mumford’sarticle [M] and later proved by Roitman in [R], that the fiber over zero of a such a naturalmap is a countableunionof Zariski closed subsetsofthesymmetricpowerofthegivenalgebraicvariety. Inthissec- tionwearegoingtoadaptthetechniquespresentintheRoitman’sproof in[R]tooursetuptoderiveatthefactthatθ−1([e])isacountableunion oftranslatesofanalgebraicvariety. Proposition 2.2. Let θ be the natural map from G to G/Γ(e) defined as above. Then θ−1([e]) is a countable union of translates of Zariski closed subsetsofG. Proof. Considerθ−1([e]). Supposethatg belongstoθ−1([e]),thatmeans thatthereexists f :Γ→G suchthat f(0)=g and f(∞)=e. Nowtheidea intheRoitman’sproofistostratifyθ−1([e])bythedegreeof f. Consider Td(e)={g ∈G|∃f ∈Homv(Γ,G),f(0)=g,f(∞)=e}. Here Homd(Γ,G) is the hom-scheme parametrizing the degree d mor- phisms from Γ to G, it is known to be a quasi-projective subscheme of 3 the Hilbert scheme of Γ×G, parametrizingsubvarieties of Γ×G having Hilbertpolynomiald. Itiseasytoseethat θ−1([e])=∪d∈NTd(e). NowweprovethateachTd(e)isaquasi-projectivesubschemeofG. For thatconsidertheCartesiandiagram V =Homd(Γ,G)× G // G d G×G (cid:15)(cid:15) (cid:15)(cid:15) Homd(Γ,G) ev // G×G Wherethemorphismev isgivenby ev(f)=(f(0),f(∞)) andthemorphismfromG toG×G isgivenbyg 7→(g,e). Thenitiseasy tocheckthatTd(e)isnothingbutπ(V ), whereπ istheprojectionfrom d V to G. Since V is a quasi-projective scheme, we get that π(V ) is a d d d quasi-projective subscheme ofG. Therefore Td(e) is a quasi-projective subschemeofG. NowweprovethatTd(e)isasubsetofθ−1([e])provingthatθ−1([e])is acountableunionofZariskiclosedsubsetsofG. Let g belongstoTd(e). Thenwehavetoprovethatthereexists f :Γ→G suchthat f(0)=g, f(∞)=e. LetW beanirreduciblecomponentofTd(e)whoseZariskiclosurecon- tainsthepointg. LetU beanaffineneighborhoodofg suchthatU∩W isnon-empty. LetustakeanirreduciblecurveC passingthroughg inU. LetC¯ betheZariskiclosureofC inW¯ . NowembeddingG inG×G bythe homomorphismg 7→(g,e),wehavetheregularmorphism ev :Homd(Γ,G)→G×G givenby ev(f)=(f(0),f(∞)) andTd(e)istheimageofthemorphismev.Thenwecanchooseaquasi- projectivecurveT inHomd(Γ,G)suchthattheclosureofev(T)isC¯. We 4 givedetailsoftheconstructionofT. Letusconsiderev−1(C¯). Itisofdi- mension greater or equal than 1. So it contains a curve. Consider two distinct points onC, consider their inverse images, then there will be a curve in ev−1(C) which map to the curve C. Then this curve is our re- quiredcurveT. Now let T¯ be the closure of T in PN. Let T be the normalization of k e T¯ and let T be the inverse image of T in T. Consider the evaluation f0 e morphism f :T ×Γ→T ×Γ⊂Homd(Γ,G)×Γ→e G 0 f0 where e:(f,t)7→ f(t). Thisdefines a rationalmapfrom T ×ΓtoG, sinceT is non-singular,on e e each fiber T ×{Q}, f defines a regularmap from T toC¯. So theregular e 0 e morphismT →T →C¯ extendstoaregularmorphismT →C¯. LetP bea f0 e pointinthefiberofthismorphismoverg.Foranyclosedk-pointQ onΓ, T ×{Q}mapsontoC¯.Thenwegetthatthereexistsx ,x onΓsuchthat 0 1 f | (P)=g, f | =e. 0 Te×{x0} 0 Te×{x1} Thisgivesusthatg isΓ-equivalenttoe. Sowegetthatθ−1([e])contains Td(e). So we can write θ−1([e]) as a countable union of Zariski closed (cid:3) subsetsofG. 3. VARIETIES OVER UNCOUNTABLE GROUND FIELDS Inthissectionweprovethatθ−1([e])isacountableunionoftranslates ofanabelianvariety,whenthegroundfieldisuncountable. Firstweprovethefollowingfewlemmas. Lemma3.1. LetX beaprojectivevarietyoveranuncountablegroundfield k.ThenX cannotbewrittenasacountableunionofproperZariskiclosed subsetsofitself. Proof. Suppose that X can be written as a countable union of proper Zariskiclosed subsetsof it. By Noether’s normalizationthereexistsa fi- nitemap from X →Pm where m =dim(X). Since X can bewrittenas a k countable union of Zariski closed subset of itself, we can write Pm as a k countableunionofZariskiclosedsubsetsofitself,say Pmk =∪i∈NZi . 5 SincethecollectionofZ ’siscountableandthegroundfieldkisuncount- i able,wegetthatthereexistsahyperplaneH notcontainedinanyofthe Z ’s. Sowecanwrite i Pmk −1=H =∪i∈N(Zi∩H). Continuingthisprocess we obtainthatP1 is a countableunionof its k- k (cid:3) points,whichcontradictstheassumptionthatk isuncountable. Lemma3.2. Letk beuncountable. Let Z =∪i∈NZi beacountable union ofZariskiclosedsubsetsembeddedinsomePm. Thenwecanwrite Z asa k uniqueirredundantcountable unionofirreducibleZariskiclosedsubsets ofPm,thatis Z =∪i∈NAi suchthat A 6⊂A fori 6= j andthisdecompositionisunique. i j Proof. WewriteeachZ asafiniteunionofirreduciblecomponentssay, j Z =∪ki Z′ i l=1 il . Thenwegetthat Z =∪ (∪Z′ ∪···Z′ ) i i1 ik forsimplicitywewritetheaboveas ∪ B i i whereeachB isirreducible.NowordertheB ’sbysetinclusionandonly i i consider those B ’s which are maximal with respect to inclusion. Then i we get an irredundant decomposaition cup B . Now we have to prove i i thatthisdecompositionisunique. Supposethatthereexistsanotherde- composition∪j∈NAj.ThenobservethateachAj iscontainedinsomeBi, otherwise,wecanwrite Aj =∪i∈N(Aj ∩Bi) where A ∩B isaproperclosedsubsetof A ,whichcontradictsthepre- j i j vious lemma 3.1. Similarly B is contained in some A , so we get that i k A = A andconsequently A =B . Sowegetthatthedecompositionis j k j i (cid:3) unique. Proposition3.3. θ−1([e])isacountableunionoftranslatesofanabelian subvarietyofG. 6 Proof. Bytheprevioustwolemmas3.1,3.2wegetthatθ−1([e])isacount- able union of Zariski closed closed subsets in G such that the union is irredundant. So let θ−1([e]) is a countable union say ∪i∈NAi, such that A 6⊂ A for i 6= j. Then we claim that there exists a unique A among i j 0 these A ’s which passes through e and moreover this A is an abelian i 0 variety. So suppose that there exists A ,···,A passing throughe, then 0 m consider A +···+ A . Since θ−1([e]) is a subgroup of G, we get that 0 m A +···+A isasubsetofθ−1([e]). Sinceitistheimageofthemorphism 0 m A ×···×A →G givenby 1 m (a ,···,a )7→a +···+a 1 m 1 m itisirreducibleandZariskiclosed. Thereforebylemma3.1,itmustland insidesome A . Alsosincee belongsto A ,···,A ,wegetthat A ⊂ A + j 0 m i 1 ···+A ⊂ A , for all i = 0,···,m. So by the irredundancy we get that m j A = A =···= A . So A istheuniqueirreducibleZariskiclosedsubset 0 1 m 0 inthedecomposition∪ A suchthatitpassesthroughe. i i Now we claim that A is an abelian variety. For thatsupposethat x ∈ 0 A . Thenconsider−x+A ,sincetranslationby−xisahomeomorphism, 0 0 −x+A is Zariski closed and irreducible. Hence by 3.1, it is a subset of 0 someA .Nowebelongsto−x+A andtherepassesauniqueA through j 0 0 e so we get that A = A and hence −x+A ⊂ A . Now we show that j 0 0 0 A +A isinside A . Forthatweobservethat A +A istheimageofthe 0 0 0 0 0 regularmorphismfrom A ×A toG givenby 0 0 (a,b)7→a+b. Thenagainbylemma3.1, A +A isinsidesome A and A isinside A + 0 0 j 0 0 A ,sowegetthat A =A . So A isanabelianvariety. 0 j 0 0 Thereforewecanwrite θ−1([e])=∪x∈θ−1([e])(x+A0) wheretheabove unionis disjoint. We provethattheabove unionis ac- tually countable. So let us consider x+A , since it is Zariski closed ir- 0 reducible, it mustland insidesome A . So we get that A ⊂−x+A , by j 0 j similarargumentwegetthat−x+A ⊂ A sowegetthat A = A ,which j k k 0 inturngivesusthatx+A =A ,sincethereareonlycountablymanyA ’s 0 j j wegetonlycountablymanyx+A ’sgivingus 0 θ−1([e])=∪i∈Nxi +A0. 7 (cid:3) 4. PROJECTIVE ALGEBRAIC GROUPS OVER C In this section we are going to understand that θ−1([e]) is actually a finiteunionoftranslatesofanabeliansubvarietyofG,whentheground fieldiscomplexnumbers. Proposition4.1. LetGbeaprojectivealgebraicgroupoverC.Thenθ−1([e]) isafiniteunionoftranslatesof A . 0 Before going to the proof of the theorem we recall the definition of a Bairespace. AtopologicalspaceX iscalledBaire,ifanycountableunion of closed sets having non-empty interior implies that one of them has non-empty interior. Any complete metric space or a locally compact HausdorffspaceisBaire. AlsoifX isanon-emptyBairespace,whichisa countableunionofclosedsubsets,thenitfollowsthatoneoftheclosed subsetshasnon-emptyinterior. Proof. Bytheproposition3.3 ker(θ)=∪i∈N(xi +A0) since A isanabeliansubvarietyinG itisclosedintheanalytictopology. 0 Also G is a metric space and A is closed, so it is complete under this 0 metric.Nowweclaimthatker(θ)iscompleteunderthismetric.Sotakea Cauchysequence{y } inker(θ). Weclaimthatthereexistssomen ∈N n n 0 such that for all n ≥ n , y belongs to one of the x +A . Suppose the 0 n i 0 opposite. Thatis foreach N, thereexistsn,m ≥N such that y belongs n toonex +A and y belongstox +A ,where(x +A )∩(x +A )=;. i 0 m j 0 i 0 j 0 Nowgivenanyǫ>0,thereexistsN ∈Nsuchthatforn,m≥N wehave d(x ,x )<ǫ. n m Now take ǫ to beless than theinfimumof d(y ,a), where y belongsto n n x +A anda∈x +A ,where(x +A )∩(x +A )=;. Thenforlargem i 0 j 0 i 0 j 0 wehave d(y ,y )<ǫ n m butontheotherhand d(y ,y )≥inf(d(y ,a)), n m n 8 whereavariesinx +A .Sincex +A iscompactintheanalytictopology j 0 j 0 wehavethat,thereexistsb suchthat inf(d(y ,a))=d(y ,b). n n Nowifd(y ,b)=0thenwehave y =b,but(x +A )∩(x +A )=;. So n n i 0 j 0 d(y ,b)>0,thereforechoosingǫtobelessthaninf(d(y ,a))wegetthat n n d(y ,y )≥ǫ n m contradicting the fact that {y } is Cauchy. So there exists N ∈ N such n n thatforalln≥N wehave y belongstoonefixedx +A . Sincex+A is n i 0 0 completeforeachx∈G,wegetthatthesequence{y } convergesinx + n n i A . Henceker(θ)iscomplete.SoitisaBairespace. Thereforethereexists 0 one x such that the interior of x +A is non-empty. Since translation i i 0 by−x isahomeomorphismwegetthattheinteriorof A isnon-empty. i 0 Now A isatopologicalsubgroupofker(θ)whoseinteriorisnon-empty. 0 So A is open in ker(θ). Therefore each x +A is open in ker(θ). So we 0 i 0 haveanopencoverofker(θ). Sinceker(θ)completeinthegivenmetric, itisclosedin A .SoitiscompactintheanalytictopologyofG.Therefore 0 wegetthatafinitelymanyx +A coverker(θ). Soker(θ)isafiniteunion i 0 oftranslatesof A . Sinceeachx +A isZariskiclosedandirreduciblein 0 i 0 (cid:3) G,wegetthatker(θ)isanalgebraicsubgroupofG. 5. RELATIVE RATIONAL EQUIVALENCE AND THE MUMFORD-ROITMAN TYPE ARGUMENT NowwewouldliketogeneralizetheMumford-Roitmanargumentsay- ing that the natural map from the Chow variety of a smooth projective variety to the Chow group of the variety itself, has the fibers equal to a countableunionofZariskiclosedsubsetsoftheChowvariety. Allthisis happeningover an uncountableground k. Now we supposethat X is a smooth-projectiveschemeoveranotherNoetherianschemeS. Thenwe observe that there is a natural map from the k(S)-points of the Hilbert schemeHilbd(X/S)toCH (X/S). Weprovethatthefibersofthismapis 0 acountableunionofZariskiclosedsubschemesinHilbd(X/S)(η),where ηisthegenericpointofS. Firstofallwerecallthedefinitionoftherelativecyclesonthescheme X/S dueto[SV]. Arelativecycleofrelativedimensionr on X,isanalge- braiccyclesuchthatallitsprimecomponentsmapstothegenericpoint 9 η of S and for any k-point P on S, the pullback with respect to any fat point corresponding to P coincide. Now observe that any r-cycle on X whichisflatoverS,thatisitscompositionof Z →X →S isflatisarela- tivecycle. InviewofthisweconsidertheHilbertschemeHilbd(X/S)and itsk(S) points,which is nothingbutHilbd(X ), that is thelengthd zero η [d] dimensionalsubschemesofX .WedenoteitbyX ,andwehaveanatu- η η [d] Z ralmapfromX to (X/S)associatingazerodimensionalsubscheme η 0 oflengthd toitsfundamentalcycle. Forsakeofconvenienceweidentify [d] X withitsimageundertheHilbert-Chowmorphismtothesymmetric η powerSymdX ,anddenoteitbythesamenotationX[d]. η η Z We define the rational equivalence on (X/S) as follows. Let Z ,Z 0 1 2 be two relative cycles of relative dimension 0, they are said to be ratio- nallyequivalentifthereexistsamorphism f :P1 →SymdX andarelative S effectivezerocycleB,suchthatimageof f andsupportofB iscontained inX[d,d],and f(0,s)=Z +B;,f(∞,s)=Z +B Inthefollowingwedenote η 1 2 X[d1,···,dn]tobeQ X[d1]. η i η [d,d] Proposition5.1. Thenaturalmapθ fromX toCH (X/S)hasfibers X/S η 0 [d,d] equaltoacountableunionofZariskiclosedsubschemesof X . η [d,d] Proof. Let W be the subset of X consisting of pairs (A,B), where d η u,v θ (A,B) is relativelyrationallyequivalentto0 onCH (X/S). LetW X/S 0 d [d,d] bethesubsetofX whichconsistsofpairs(A,B),suchthatthereexists η f inHomv(P1,X[d+u,d])with f(0,s)=(A+C,C)and f(∞,s)=(B+D,D). S η Thenwehave(A,B)relativelyrationallyequivalent.Thenitiseasytosee u,v thatW is a subset ofW . On the other hand suppose that (A,B) be- d d longstoWd. Thenthereexists f :P1 →X[d,d] andarelativezerocycleC, S η [d,d] suchthatimageof f iscontainedinX andwehave η f(0,s)=A+C,f(∞,s)=B+C thenwecanfindu,v suchthat(A,B)belongstoWd . u,v u,v [d,d] Now we prove that the setsW is a quasiprojectivevariety in X d η and its Zariski closure is contained in W . Then we can write W as a d d [d,d] countable union of Zariski closed subsets of X . Consider the mor- η phismefromHomv(P1,X[d+u,u])→X[d+u,u,d+u,u],bysendingamorphism S η η f tothepair(f (0),f (∞)).TheothermorphismfromX[d,u,d,u]toX[d+u,u,d+u,u] η η η η givenby(A,C,B,D)7→(A+C,C,B+D,D). Thenifweconsiderthefiber 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.