ANOTE ON MUMFORD-ROITMAN ARGUMENTON CHOWSCHEMES 7 KALYANBANERJEE 1 0 2 ABSTRACT. Inthisnotewearegoingtounderstandtwoquestions.One n isthefiberofthenaturalmapfromaprojectivealgebraicgroupG to a G/Γ, where Γ denotes the Γ-equivalence onG. The other one is to J defineanaturalmapfromHilbertschemeofthegenericfiberofafi- 2 brationX →StotheChowgroupofrelativezerocyclesonX →Sand 1 tounderstandthefibersofthismap. ] G A h. 1. INTRODUCTION t a In the breakthrough paper [M], Mumford had sketched an outline of m thefactthatthefibersofthenaturalmapfromthesymmetricpowersofa [ smoothprojectivevarietyX totheChowgroupofX arecountableunions 1 v ofZariskiclosedsubsetsinsidethesymmetricpowersof X. Inthepaper 1 by[R]Roitmanhasproventhatthefibersareindeedcountableunionof 3 4 Zariskiclosedsubsetsinsidethesymmetricpowersofthesmoothprojec- 3 0 tivevarietyX. Thatisthedepartingpointofthisarticle.Weaskthesame 1. questionbutforΓ-equivalenceonprojectivealgebraicgroups.HereΓisa 0 smoothprojectivecurve.Twopointsg,honGaresaidtobeΓ-equivalent, 7 1 ifthereexiststwopoints0,∞onΓ,andarationalmap f fromΓtoG such : v that i X r a f(0)=g, f(∞)=h. Now we consider the natural map θ fromG toG/Γ, where Γ denotes theΓ-equivalencerelationandaskwhatisthekernelofθorthefiberofθ overe,theidentityelementofG.Soourmaintheoremofthisarticleisas follows. LetG beaprojectivealgebraicgroupoveranuncountable,algebraically closedgroundfieldk. Letθ denotethenaturalmapfromG toG/Γ. Then θ−1([e])isacountableunionoftranslatesofanabelianvariety A ofG. 0 0MathematicsClassificationNumber:14L40,14L10 0Keywords:Projectivealgebraicgroups,R-equivalence 1 ToprovethatwemainlyusedtheRoitman’stechniquetostratifyθ−1([e]), in terms of quasi-projective schemes and show that the Zariski closure of each of them is again in θ−1([e]), obtaining that θ−1([e]) is a count- ableunionofZariskiclosedsubsetsofG. Thentheuncountabilityofthe groundfieldiscomingintothepicture,givingusthefactthatoneofthese Zariskiclosedsubsetsisactuallyanabelianvarietyandweobtaintheoth- ers as the translates of the abelian variety. Over complex numbers the pictureismuchmoreinteresting,becausewecanusetheanalyticstruc- tureofG, thatitisa complexcompactmanifoldandθ−1([e])isa locally compact hausdorff topological subgroup of it. Hence it is a Baire sub- spaceofG givingusthatonlyfinitenumberoftranslatesgiveusθ−1([e]). Thisisourfinaltheorem. LetG beaprojectivealgebraicgroupoverC. Considerthenaturalmap θfromG toG/Γ. Thenθ−1([e])isafiniteunionoftranslatesofanabelian subvariety A ofG.Henceθ−1([e])isanalgebraicsubgroupofG. 0 Thenextsectionisdevotedtorelativezerocycleswhichwasfirstintro- ducedbySuslinandVoevodskyin[SV]. WedefinetheChowgroupofrel- ativezerocycles andproduceanaturalmapfromtheHilbertschemeof lengthd zerodimensionalsubschemesonthegenericfiberofafibration X → S, (X,S smooth projective) to the Chow group of relative zero cy- cleson X →S. Weprovethatthefibersofthismapiscountableunionof ZariskiclosedsubschemesintheHilbertscheme. Hereweusethetech- niquescomingfrom[R]toprovethisresult,alsoasketchofthisproofwas givenbyMumfordin[M]. Acknowledgements: The authorwould like to thankthe ISF-UGC grant for funding this project and is grateful to the hospitality of Indian Statistical In- stitute, Bangalore Center for hosting this project. The author also thanks the anonymousrefereeforpointingoutaninaccuracyaboutR-equivalence inthe earlierversion ofthepaper. FinallytheauthorisgratefultoVladimir Guletskii fortellingtheproblemaboutgeneralizationoftheMumford-Roitmanargument forthecaseofrelativecycles,totheauthor. 2. PRELIMINARIES Let G be a projective algebraic group over a ground field k. Two k- pointsonG aresaidtobeΓ-equivalentifthereexistsa chainofrational maps from Γ connecting them. Precisely, let a,b be two k-points onG. 2 They are said to be Γ-equivalent if there exists rational morphisms f : Γ→G ,0,∞inΓsuchthat f(0)=a, f(∞)=b. Let Γ(e) be the class of the identity e of G under the above relation, that is collection of all k-points of G, Γ-equivalent to e. Then Γ(e) is a subgroupofG andG/Γ(e)isagroup. 2.1. Mumford-Roitmantechniques. Let us considerthefollowingmap θ:G→G/Γ(e),defineby θ(g)=[g] where [g] denotes the class of g in G/Γ(e). Since the addition law in G/Γ(e)isdefinedtobe [g]+[h]=[g+h] wegetthatθ isahomomorphismofgroups. Weareinterestedtounder- standwhatisthekernelofθorθ−1([e]).Therewasasimilarsuchquestion askedforthenaturalmapfromthesymmetricpowerofafixeddegreeof analgebraicvarietytotheChowgroupofzerocycles. Itwassketchedin Mumford’sarticle [M] and later proved by Roitman in [R], that the fiber over zero of a such a naturalmap is a countableunionof Zariski closed subsetsofthesymmetricpowerofthegivenalgebraicvariety. Inthissec- tionwearegoingtoadaptthetechniquespresentintheRoitman’sproof in[R]tooursetuptoderiveatthefactthatθ−1([e])isacountableunion oftranslatesofanalgebraicvariety. Proposition 2.2. Let θ be the natural map from G to G/Γ(e) defined as above. Then θ−1([e]) is a countable union of translates of Zariski closed subsetsofG. Proof. Considerθ−1([e]). Supposethatg belongstoθ−1([e]),thatmeans thatthereexists f :Γ→G suchthat f(0)=g and f(∞)=e. Nowtheidea intheRoitman’sproofistostratifyθ−1([e])bythedegreeof f. Consider Td(e)={g ∈G|∃f ∈Homv(Γ,G),f(0)=g,f(∞)=e}. Here Homd(Γ,G) is the hom-scheme parametrizing the degree d mor- phisms from Γ to G, it is known to be a quasi-projective subscheme of 3 the Hilbert scheme of Γ×G, parametrizingsubvarieties of Γ×G having Hilbertpolynomiald. Itiseasytoseethat θ−1([e])=∪d∈NTd(e). NowweprovethateachTd(e)isaquasi-projectivesubschemeofG. For thatconsidertheCartesiandiagram V =Homd(Γ,G)× G // G d G×G (cid:15)(cid:15) (cid:15)(cid:15) Homd(Γ,G) ev // G×G Wherethemorphismev isgivenby ev(f)=(f(0),f(∞)) andthemorphismfromG toG×G isgivenbyg 7→(g,e). Thenitiseasy tocheckthatTd(e)isnothingbutπ(V ), whereπ istheprojectionfrom d V to G. Since V is a quasi-projective scheme, we get that π(V ) is a d d d quasi-projective subscheme ofG. Therefore Td(e) is a quasi-projective subschemeofG. NowweprovethatTd(e)isasubsetofθ−1([e])provingthatθ−1([e])is acountableunionofZariskiclosedsubsetsofG. Let g belongstoTd(e). Thenwehavetoprovethatthereexists f :Γ→G suchthat f(0)=g, f(∞)=e. LetW beanirreduciblecomponentofTd(e)whoseZariskiclosurecon- tainsthepointg. LetU beanaffineneighborhoodofg suchthatU∩W isnon-empty. LetustakeanirreduciblecurveC passingthroughg inU. LetC¯ betheZariskiclosureofC inW¯ . NowembeddingG inG×G bythe homomorphismg 7→(g,e),wehavetheregularmorphism ev :Homd(Γ,G)→G×G givenby ev(f)=(f(0),f(∞)) andTd(e)istheimageofthemorphismev.Thenwecanchooseaquasi- projectivecurveT inHomd(Γ,G)suchthattheclosureofev(T)isC¯. We 4 givedetailsoftheconstructionofT. Letusconsiderev−1(C¯). Itisofdi- mension greater or equal than 1. So it contains a curve. Consider two distinct points onC, consider their inverse images, then there will be a curve in ev−1(C) which map to the curve C. Then this curve is our re- quiredcurveT. Now let T¯ be the closure of T in PN. Let T be the normalization of k e T¯ and let T be the inverse image of T in T. Consider the evaluation f0 e morphism f :T ×Γ→T ×Γ⊂Homd(Γ,G)×Γ→e G 0 f0 where e:(f,t)7→ f(t). Thisdefines a rationalmapfrom T ×ΓtoG, sinceT is non-singular,on e e each fiber T ×{Q}, f defines a regularmap from T toC¯. So theregular e 0 e morphismT →T →C¯ extendstoaregularmorphismT →C¯. LetP bea f0 e pointinthefiberofthismorphismoverg.Foranyclosedk-pointQ onΓ, T ×{Q}mapsontoC¯.Thenwegetthatthereexistsx ,x onΓsuchthat 0 1 f | (P)=g, f | =e. 0 Te×{x0} 0 Te×{x1} Thisgivesusthatg isΓ-equivalenttoe. Sowegetthatθ−1([e])contains Td(e). So we can write θ−1([e]) as a countable union of Zariski closed (cid:3) subsetsofG. 3. VARIETIES OVER UNCOUNTABLE GROUND FIELDS Inthissectionweprovethatθ−1([e])isacountableunionoftranslates ofanabelianvariety,whenthegroundfieldisuncountable. Firstweprovethefollowingfewlemmas. Lemma3.1. LetX beaprojectivevarietyoveranuncountablegroundfield k.ThenX cannotbewrittenasacountableunionofproperZariskiclosed subsetsofitself. Proof. Suppose that X can be written as a countable union of proper Zariskiclosed subsetsof it. By Noether’s normalizationthereexistsa fi- nitemap from X →Pm where m =dim(X). Since X can bewrittenas a k countable union of Zariski closed subset of itself, we can write Pm as a k countableunionofZariskiclosedsubsetsofitself,say Pmk =∪i∈NZi . 5 SincethecollectionofZ ’siscountableandthegroundfieldkisuncount- i able,wegetthatthereexistsahyperplaneH notcontainedinanyofthe Z ’s. Sowecanwrite i Pmk −1=H =∪i∈N(Zi∩H). Continuingthisprocess we obtainthatP1 is a countableunionof its k- k (cid:3) points,whichcontradictstheassumptionthatk isuncountable. Lemma3.2. Letk beuncountable. Let Z =∪i∈NZi beacountable union ofZariskiclosedsubsetsembeddedinsomePm. Thenwecanwrite Z asa k uniqueirredundantcountable unionofirreducibleZariskiclosedsubsets ofPm,thatis Z =∪i∈NAi suchthat A 6⊂A fori 6= j andthisdecompositionisunique. i j Proof. WewriteeachZ asafiniteunionofirreduciblecomponentssay, j Z =∪ki Z′ i l=1 il . Thenwegetthat Z =∪ (∪Z′ ∪···Z′ ) i i1 ik forsimplicitywewritetheaboveas ∪ B i i whereeachB isirreducible.NowordertheB ’sbysetinclusionandonly i i consider those B ’s which are maximal with respect to inclusion. Then i we get an irredundant decomposaition cup B . Now we have to prove i i thatthisdecompositionisunique. Supposethatthereexistsanotherde- composition∪j∈NAj.ThenobservethateachAj iscontainedinsomeBi, otherwise,wecanwrite Aj =∪i∈N(Aj ∩Bi) where A ∩B isaproperclosedsubsetof A ,whichcontradictsthepre- j i j vious lemma 3.1. Similarly B is contained in some A , so we get that i k A = A andconsequently A =B . Sowegetthatthedecompositionis j k j i (cid:3) unique. Proposition3.3. θ−1([e])isacountableunionoftranslatesofanabelian subvarietyofG. 6 Proof. Bytheprevioustwolemmas3.1,3.2wegetthatθ−1([e])isacount- able union of Zariski closed closed subsets in G such that the union is irredundant. So let θ−1([e]) is a countable union say ∪i∈NAi, such that A 6⊂ A for i 6= j. Then we claim that there exists a unique A among i j 0 these A ’s which passes through e and moreover this A is an abelian i 0 variety. So suppose that there exists A ,···,A passing throughe, then 0 m consider A +···+ A . Since θ−1([e]) is a subgroup of G, we get that 0 m A +···+A isasubsetofθ−1([e]). Sinceitistheimageofthemorphism 0 m A ×···×A →G givenby 1 m (a ,···,a )7→a +···+a 1 m 1 m itisirreducibleandZariskiclosed. Thereforebylemma3.1,itmustland insidesome A . Alsosincee belongsto A ,···,A ,wegetthat A ⊂ A + j 0 m i 1 ···+A ⊂ A , for all i = 0,···,m. So by the irredundancy we get that m j A = A =···= A . So A istheuniqueirreducibleZariskiclosedsubset 0 1 m 0 inthedecomposition∪ A suchthatitpassesthroughe. i i Now we claim that A is an abelian variety. For thatsupposethat x ∈ 0 A . Thenconsider−x+A ,sincetranslationby−xisahomeomorphism, 0 0 −x+A is Zariski closed and irreducible. Hence by 3.1, it is a subset of 0 someA .Nowebelongsto−x+A andtherepassesauniqueA through j 0 0 e so we get that A = A and hence −x+A ⊂ A . Now we show that j 0 0 0 A +A isinside A . Forthatweobservethat A +A istheimageofthe 0 0 0 0 0 regularmorphismfrom A ×A toG givenby 0 0 (a,b)7→a+b. Thenagainbylemma3.1, A +A isinsidesome A and A isinside A + 0 0 j 0 0 A ,sowegetthat A =A . So A isanabelianvariety. 0 j 0 0 Thereforewecanwrite θ−1([e])=∪x∈θ−1([e])(x+A0) wheretheabove unionis disjoint. We provethattheabove unionis ac- tually countable. So let us consider x+A , since it is Zariski closed ir- 0 reducible, it mustland insidesome A . So we get that A ⊂−x+A , by j 0 j similarargumentwegetthat−x+A ⊂ A sowegetthat A = A ,which j k k 0 inturngivesusthatx+A =A ,sincethereareonlycountablymanyA ’s 0 j j wegetonlycountablymanyx+A ’sgivingus 0 θ−1([e])=∪i∈Nxi +A0. 7 (cid:3) 4. PROJECTIVE ALGEBRAIC GROUPS OVER C In this section we are going to understand that θ−1([e]) is actually a finiteunionoftranslatesofanabeliansubvarietyofG,whentheground fieldiscomplexnumbers. Proposition4.1. LetGbeaprojectivealgebraicgroupoverC.Thenθ−1([e]) isafiniteunionoftranslatesof A . 0 Before going to the proof of the theorem we recall the definition of a Bairespace. AtopologicalspaceX iscalledBaire,ifanycountableunion of closed sets having non-empty interior implies that one of them has non-empty interior. Any complete metric space or a locally compact HausdorffspaceisBaire. AlsoifX isanon-emptyBairespace,whichisa countableunionofclosedsubsets,thenitfollowsthatoneoftheclosed subsetshasnon-emptyinterior. Proof. Bytheproposition3.3 ker(θ)=∪i∈N(xi +A0) since A isanabeliansubvarietyinG itisclosedintheanalytictopology. 0 Also G is a metric space and A is closed, so it is complete under this 0 metric.Nowweclaimthatker(θ)iscompleteunderthismetric.Sotakea Cauchysequence{y } inker(θ). Weclaimthatthereexistssomen ∈N n n 0 such that for all n ≥ n , y belongs to one of the x +A . Suppose the 0 n i 0 opposite. Thatis foreach N, thereexistsn,m ≥N such that y belongs n toonex +A and y belongstox +A ,where(x +A )∩(x +A )=;. i 0 m j 0 i 0 j 0 Nowgivenanyǫ>0,thereexistsN ∈Nsuchthatforn,m≥N wehave d(x ,x )<ǫ. n m Now take ǫ to beless than theinfimumof d(y ,a), where y belongsto n n x +A anda∈x +A ,where(x +A )∩(x +A )=;. Thenforlargem i 0 j 0 i 0 j 0 wehave d(y ,y )<ǫ n m butontheotherhand d(y ,y )≥inf(d(y ,a)), n m n 8 whereavariesinx +A .Sincex +A iscompactintheanalytictopology j 0 j 0 wehavethat,thereexistsb suchthat inf(d(y ,a))=d(y ,b). n n Nowifd(y ,b)=0thenwehave y =b,but(x +A )∩(x +A )=;. So n n i 0 j 0 d(y ,b)>0,thereforechoosingǫtobelessthaninf(d(y ,a))wegetthat n n d(y ,y )≥ǫ n m contradicting the fact that {y } is Cauchy. So there exists N ∈ N such n n thatforalln≥N wehave y belongstoonefixedx +A . Sincex+A is n i 0 0 completeforeachx∈G,wegetthatthesequence{y } convergesinx + n n i A . Henceker(θ)iscomplete.SoitisaBairespace. Thereforethereexists 0 one x such that the interior of x +A is non-empty. Since translation i i 0 by−x isahomeomorphismwegetthattheinteriorof A isnon-empty. i 0 Now A isatopologicalsubgroupofker(θ)whoseinteriorisnon-empty. 0 So A is open in ker(θ). Therefore each x +A is open in ker(θ). So we 0 i 0 haveanopencoverofker(θ). Sinceker(θ)completeinthegivenmetric, itisclosedin A .SoitiscompactintheanalytictopologyofG.Therefore 0 wegetthatafinitelymanyx +A coverker(θ). Soker(θ)isafiniteunion i 0 oftranslatesof A . Sinceeachx +A isZariskiclosedandirreduciblein 0 i 0 (cid:3) G,wegetthatker(θ)isanalgebraicsubgroupofG. 5. RELATIVE RATIONAL EQUIVALENCE AND THE MUMFORD-ROITMAN TYPE ARGUMENT NowwewouldliketogeneralizetheMumford-Roitmanargumentsay- ing that the natural map from the Chow variety of a smooth projective variety to the Chow group of the variety itself, has the fibers equal to a countableunionofZariskiclosedsubsetsoftheChowvariety. Allthisis happeningover an uncountableground k. Now we supposethat X is a smooth-projectiveschemeoveranotherNoetherianschemeS. Thenwe observe that there is a natural map from the k(S)-points of the Hilbert schemeHilbd(X/S)toCH (X/S). Weprovethatthefibersofthismapis 0 acountableunionofZariskiclosedsubschemesinHilbd(X/S)(η),where ηisthegenericpointofS. Firstofallwerecallthedefinitionoftherelativecyclesonthescheme X/S dueto[SV]. Arelativecycleofrelativedimensionr on X,isanalge- braiccyclesuchthatallitsprimecomponentsmapstothegenericpoint 9 η of S and for any k-point P on S, the pullback with respect to any fat point corresponding to P coincide. Now observe that any r-cycle on X whichisflatoverS,thatisitscompositionof Z →X →S isflatisarela- tivecycle. InviewofthisweconsidertheHilbertschemeHilbd(X/S)and itsk(S) points,which is nothingbutHilbd(X ), that is thelengthd zero η [d] dimensionalsubschemesofX .WedenoteitbyX ,andwehaveanatu- η η [d] Z ralmapfromX to (X/S)associatingazerodimensionalsubscheme η 0 oflengthd toitsfundamentalcycle. Forsakeofconvenienceweidentify [d] X withitsimageundertheHilbert-Chowmorphismtothesymmetric η powerSymdX ,anddenoteitbythesamenotationX[d]. η η Z We define the rational equivalence on (X/S) as follows. Let Z ,Z 0 1 2 be two relative cycles of relative dimension 0, they are said to be ratio- nallyequivalentifthereexistsamorphism f :P1 →SymdX andarelative S effectivezerocycleB,suchthatimageof f andsupportofB iscontained inX[d,d],and f(0,s)=Z +B;,f(∞,s)=Z +B Inthefollowingwedenote η 1 2 X[d1,···,dn]tobeQ X[d1]. η i η [d,d] Proposition5.1. Thenaturalmapθ fromX toCH (X/S)hasfibers X/S η 0 [d,d] equaltoacountableunionofZariskiclosedsubschemesof X . η [d,d] Proof. Let W be the subset of X consisting of pairs (A,B), where d η u,v θ (A,B) is relativelyrationallyequivalentto0 onCH (X/S). LetW X/S 0 d [d,d] bethesubsetofX whichconsistsofpairs(A,B),suchthatthereexists η f inHomv(P1,X[d+u,d])with f(0,s)=(A+C,C)and f(∞,s)=(B+D,D). S η Thenwehave(A,B)relativelyrationallyequivalent.Thenitiseasytosee u,v thatW is a subset ofW . On the other hand suppose that (A,B) be- d d longstoWd. Thenthereexists f :P1 →X[d,d] andarelativezerocycleC, S η [d,d] suchthatimageof f iscontainedinX andwehave η f(0,s)=A+C,f(∞,s)=B+C thenwecanfindu,v suchthat(A,B)belongstoWd . u,v u,v [d,d] Now we prove that the setsW is a quasiprojectivevariety in X d η and its Zariski closure is contained in W . Then we can write W as a d d [d,d] countable union of Zariski closed subsets of X . Consider the mor- η phismefromHomv(P1,X[d+u,u])→X[d+u,u,d+u,u],bysendingamorphism S η η f tothepair(f (0),f (∞)).TheothermorphismfromX[d,u,d,u]toX[d+u,u,d+u,u] η η η η givenby(A,C,B,D)7→(A+C,C,B+D,D). Thenifweconsiderthefiber 10