ebook img

A note on local $W^{1,p}$-regularity estimates for weak solutions of parabolic equations with singular divergence-free drifts PDF

0.19 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A note on local $W^{1,p}$-regularity estimates for weak solutions of parabolic equations with singular divergence-free drifts

A NOTE ON LOCAL W1,p-REGULARITY ESTIMATES FOR WEAK SOLUTIONS OF PARABOLIC EQUATIONS WITH SINGULAR DIVERGENCE-FREE DRIFTS TUOCPHAN 7 Abstract. WeinvestigateweightedSobolevregularityofweaksolutionsofnon-homogeneousparabolicequa- 1 tionswithsingulardivergence-freedrifts. Assumingthatthedriftssatisfysomemildregularityconditions,we 0 establishlocalweightedLp-estimatesforthegradientsofweaksolutions.Ourresultsimprovetheclassicalone 2 totheborderlinecasebyreplacingthe L -assumptiononsolutionsbysolutionsintheJohn-NirenbergBMO ∞ n space. Theresultsarealsogeneralizedtoparabolicequationsindivergenceformwithsmalloscillationelliptic a symmetriccoefficientsandthereforeimprovemanyknownresults. J 2 1. Introductionandmainresults ] P WeinvestigatelocalweightedLp-estimatesforthegradientsofweaksolutionsofparabolicequationswith A lowregularity ofthedivergence-free drifts. Atypical exampleistheparabolic equation . h (1.1) u ∆u b u = 0, Rn (0, ), t t a − − ·∇ × ∞ m wherethedriftb : Rn (0, ) Rn isofdivergence-free, i.e. div(b(,t)) = 0indistributional sensefora.e. × ∞ → · [ t. Due to its relevance in many applications such as in fluid dynamics, and biology, the equation (1.1) has been investigated by many mathematicians (for example [15, 16, 28, 33]). Local boundedness, Harnack’s 1 v inequality, andHo¨lder’sregularity areestablished in[15,24,28,31,33]withpossible singulardrifts. Many 7 otherclassicalresultswithregulardriftscanbefoundin[14,17,18,19]. Ho¨lder’sregularityforthefractional 1 Laplacetypeequations oftheform(1.1)areextensively studiedrecently (see[7,13,29]). 4 Unlike the mentioned work, this note investigates the Sobolev regularity of weak solutions of (1.1) in 0 0 weighted spaces. Our goal is to establish local weighted estimates of Caldero´n-Zygmund type for weak 1. solutions of (1.1) with some mild requirements on the regularity of the drifts b. We study the following 0 parabolic equationthatismoregeneral than(1.1): 7 1 (1.2) u div[a(x,t) u] b u = div(F), t : − ∇ − ·∇ v where a = (aij)n is a given symmetric n n matrix of bounded measurable functions, and F,b are given Xi i,j=1 × vectorfieldswithdiv(b) = 0indistribution sense. Theexactrequired regularity conditions ofa,b,F willbe r specified. a To state our results, we introduce some notation. For each r > 0, and z = (x ,t ) Rn R, we denote 0 0 0 Q(z )theparabolic cylinder inRn+1 ∈ × 0 Q (z )= B (x ) Γ (t ), where Γ (t )= (t r2,t +r2), and B (x ) = x Rn : x x < r . r ) r 0 r 0 r 0 0 0 r 0 0 × − { ∈ k − k } Whenz = (0,0),wealsowrite 0 Q = Q (0,0), for 0 < r < . r r ∞ Asweareinterested inthelocalregularity, wereduceourstudytotheequation (1.3) u div[a(x,t) u] b u = div(F), in Q , t 2 − ∇ − ·∇ forgiven a: Q : Rn n, b,F : Q Rn, 2 × 2 → → and (1.4) div(b(,t)) = 0, indistribution sensein B , fora.e. t Γ . 2 2 · ∈ 1 2 TUOCPHAN Forthecoefficient matrixa,weassumethat a = (aki)n : Q Rn n issymmetric,measurable k,i=1 2 → × (1.5)  andthereexistsΛsuchthat Λ 1ξ2 a(x,t)ξ,ξ Λξ2, fora.e. (x,t) Q , and ξ Rn. − 2 Wealsorequirethatth|e|m≤athrixahasais≤mall| o|scillation. Therefore, w∈eneedthefol∀low∈ingdefinition. Definition1.1. Leta : Q Rn n beameasurablematrixvaluedfunction. ForgivenR > 0,wedefine 2 × → 1 [a] = sup sup a(x,t) a¯ (t)2dxdt, BMO(Q1) 0<ρ≤1(y,s)∈Q1 |Qρ(y,s)| ZQρ(y,s)| − Bρ(y) | wherea¯ (t) = a(x,t)dxistheaverage ofainthesetU B . U U ⊂ 2 > For the regularity of the vector field b, we need the following function space, which was introduced in [20,25] Definition1.2. For x Rn and r > 0, alocally square integrable function f defined inaneighborhood of 0 ∈ B (x )issaidtobein 1,2(B (x ))ifthereisk [0, )suchthat r 0 r 0 V ∈ ∞ (1.6) f(x)2ϕ(x)2dx k ϕ(x)2dx, ϕ C (B (x )). Z | | ≤ Z |∇ | ∀ ∈ 0∞ r 0 Br(x0) Br(x0) Wedenote b 2 = inf k [0, )suchthat(1.6)holds . k k 1,2(Br(x0)) { ∈ ∞ } V Inthispaper, thenumbers s,s (1, ),α > 0andλarefixedandsatisfying ′ ∈ ∞ 1 1 (1.7) + = 1, (n+2) λ s , α = λ(s 1). ′ s s − ≤ ≤ − ′ Wealsodenote Lp(Q,ω)theweightedLebesguespacewithweightω: 1/p Lp(Q,ω) = f : Q R : f := f(x,t)pω(x,t)dxdt < , 1 < p < . Lp(Q,ω) → k k Z | | ! ∞ ∞ n Q o Atthismoment,wereferthereaders toSection2forthedefinition ofweaksolutions of (1.3),thedefinition of of Muckenhoupt A weights, and the definition of fractional Hardy-Littlewood maximal functions . q α M Ourmain result isthe following theorem onlocal weighted W1,p-regularity estimates for weaksolutions of (1.3). Theorem 1.3. LetΛ,M bepositive numbers, p (2, ), andω A . Let s,s ,λ,αbeasin(1.7). Then, 0 p/2 ′ ∈ ∞ ∈ there exists a sufficiently small number δ = δ(Λ,M ,s,λ,[ω] ,p,n) > 0 such that the following holds: 0 Ap/2 Supposethatasatisfies(1.5), F L2(Q ),andb L (Γ , 1,2(B ))suchthat (1.4)holds,and 2 ∞ 2 2 ∈ ∈ V [[a]] < δ, b M . BMO(Q1) k kL∞(Γ2,V1,2(B2)) ≤ 0 Thenforeveryweaksolutionuof (1.3),thefollowingestimateholds (1.8) ZQ1|∇u|pω(z)dz ≤C(cid:20)kFkLpp(Q2,ω)+[u]sp′,λ,Q1(cid:13)Mα,Q2(|b|s)2/s(cid:13)Lp/p2/2(Q2,ω)+ω(Q1)k∇ukLp2(Q2)(cid:21), (cid:13) (cid:13) (cid:13) (cid:13) aslongasitsrighthandsideisfinite. Here,[u] istheparabolic semi-Campanato’s normofuon Q , s′,λ,Q1 1 1/s ′ [u]s′,λ,Q1 = sup ρ−λ? |u(x,t)−u¯Qρ(z)|s′dxdt , 0<ρ<1,z∈Q1 Qρ(z)  andC > 0isaconstant depending onlyonΛ,M ,s,λ,p,nand[ω] . 0 Ap/2 LOCALGRADIENTESTIMATES,EQUATIONSWITHDIVERGENCE-FREEDRIFTS 3 We now point out a few remarks regarding Theorem 1.3. Firstly, observe that the standard Caldero´n- Zygmundtheorycanbeapplied directlyto(1.3)toobtain u C u b + , k∇ kLp(Q1) ≤ k kL∞(Q2)k kLp(Q2) ··· h i aslongasu L (Q ). Theorem1.3improvesthisCaldero´n-Zygmundestimatetheoryfortheequation(1.3) ∞ 2 ∈ totheborderlinecase,replacingtheassumptionu L (Q )byu BMO(Q ). Indeed,ifwetakeλ = 0(and ∞ 2 1 ∈ ∈ thenα = 0),thentheestimate(1.8)reducesto (1.9) u C u b + . k∇ kLp(Q1,ω) ≤ k kBMO(Q1)k kLp(Q2,ω) ··· h i Secondly, the weighted W1,p-regularity estimates are useful in some applications. For example, in [2, 3], theweighted W1,p-regularity estimates arekeyingredients forproving theexistence anduniqueness ofvery weaksolutionsofsomeclassesofellipticequations. Moreover,withsomespecificchoiceofω,theweighted estimate (1.8) is known to produce the regularity estimates for u in Morrey spaces, see for example [1, 4, ∇ 10,21]. Lastly,whenα > 0,because I ,theRieszpotential oforderα,weobservethatthefractional α α M ≤ Hardy-Littlewoodmaximalfunctionoforderαofb,i.e. (bs)2/s,ismoreregularthanb. Thisfactenables α M | | theestimate (1.8)tobeuseful insomeapplications. Tosee this, wejust simply consider thestationary case (i.e. u is time independent), n 3 and s = 2. Assume, for example, that b Ln, (B ) 1,2(B ), where ∞ 2 2 ≥ ∈ ⊂ V Ln, istheweak Ln-space, and assume also that F isregular enough. Then, itisproved in[28,33]that uis ∞ Ho¨lder. Therefore, [u] < withsomeλ > 0. Fromthis, and(1.7),weseethatα > 0,andwethencan 2,λ,B1 ∞ findsomesmallconstant ε > 0suchthat 0 (b) C b < , forall p < n+ε . Mα,B2 | | Lp(B2) ≤ k kLn,∞(B2) ∞ 0 (cid:13) (cid:13) (cid:13) (cid:13) Therefore,(1.8)givesth(cid:13)eestimate(cid:13)of u withsome p [2,n+ε ). Thisestimatewith p > nisuseful k∇ kLp(B1) ∈ 0 in[12]toprovetheregularity,anduniquenessofveryweakW1,q-solutionofthestationaryequationof (1.3), with1 < q< 2. Detailsofthisdiscussion anditsapplication canbealsofoundin[26]. Wefinallywouldliketopointoutthatthespace 1,2(Rn)isalreadyappearedin[20,25,33]. Inparticular, in[33],thespace L ( 1,2(Rn))isusedtostudytheVboundedness ofweaksolutionoftheequation(1.1). For ∞t V n 3,thespace 1,2(Rn)isalreadyappeared in[20,25]. Moreover, itisknownthat(see[25]) ≥ V (1.10) Ln(Rn) Mp,p(Rn) 1,2(Rn) 2< p n, ⊂ ⊂ V ∀ ≤ andtherefore L (Ln(Rn)) L (Mp,p(Rn)) L ( 1,2(Rn)), ∞t ⊂ ∞t ⊂ ∞t V whereMp,p(Rn)denotes the homogeneous Morrey space. Specifically, for0 < p nand0 < λ < p,the function f Lp (Rn)belongs tothespaceMp,λ(Rn)if ≤ ∈ loc 1 p f = sup rλ n f(x)p < . k kMp,λ(Rn) Br(x0)⊂Rn( − ZBr(x0)| | ) ∞ Weuseperturbationapproachintroducedin[6]toproveTheorem1.3. Ourapproachisalsoinfluencedby [5,11,21,23,32]. Toimplementtheapproach,weintroducethefunction B(x,t)= [u] b(x,t) s,which s′,λ,Q1| | isinvariantunderthestandarddilation,andtranslation. Thisfunctionalsocapturesthecancellationduetothe (cid:0) (cid:1) divergence-free ofthevectorfieldb,whichisthemainreasonsothattheestimate(1.9)holdstheborderline case. TheresultsonthedoublingpropertyandreverseHo¨lder’sinequalityfortheMuckenhouptweightsdue toR.R.Coifman,andC.Feffermanin[8]arealsousedfrequently toderivetheweightedestimates. We conclude the section by introducing the organization of the paper. Section 2 gives definitions, nota- tions, andsomepreliminaries results needed inthepaper. Somesimpleenergy estimates forweaksolutions of (1.3) is given in Section 3. The main step in the perturbation technique, the approximation estimates, is carriedoutinSection4. Section5isabouttheproofofTheorem1.3. 4 TUOCPHAN 2. Definitionsofweaksolutions, andpreliminariesonweightedinequalities 2.1. Definitionsofweaksolutions. Foreachz = (x ,t ) Rn R,andforanyparabolic cylinder Q (z ), 0 0 0 R 0 ∈ × wedenote∂ Q (z )theparabolic boundary ofQ (z ),i.e. p R 0 R 0 ∂ Q (z )= (B (x ) t R2 ) (∂B (x ) [t R2,t +R2]). p R 0 R 0 0 R 0 0 0 ×{ − } ∪ × − Thefollowingstandarddefinitions ofweaksolutions arealsorecalled. Definition 2.1. Let Q be a parabolic cube. For every f L2(Q ),F,b L2(Q )n, wesay that u is a weak r r r ∈ ∈ solutionof u div[a u] b u = div(F)+ f, in Q , t r − ∇ − ·∇ ifu L2(Γ ,H1(B )),u L2(Γ ,H 1(B )),and r r t r − r ∈ ∈ u,ϕ dt+ a u, ϕ b uϕ dxdt = [fϕ F, ϕ ]dxdt, ZΓrh t iH−1(Br),H10(Br)) ZQrhh ∇ ∇ i− ·∇ i ZQr −h ∇ i forallϕ φ C (Q ) :φ = 0on∂ Q . ∞ r p r ∈ { ∈ } Thefollowingdefinitionofweaksolution isalsoneededinthepaper. Definition2.2. LetQ beaparaboliccube. Forevery f L2(Q ),F,b L2(Q )n,andforg L2(Γ ,H1(B )), r r r r r ∈ ∈ ∈ wesaythatuisaweaksolutionof u div[a u] b u = div(F)+ f, in Q , t r − ∇ − ·∇ ( u = g, on ∂pQr, ifuisaweaksolution of u div[a u] b u = div(F)+ f, in Q , t r − ∇ − ·∇ inthesenseof Definition2.1andu g φ L2(Γ ,H1(B ) :φ = 0on∂ Q . r r p r − ∈ { ∈ } 2.2. Munckenhoupt weights and Hardy-Littlewood maximal functions. For each 1 q < , a non- negative, locally integrable function µ : Rn+1 [0, )issaidtobeintheclassofparabol≤ic A of∞Mucken- q → ∞ houptweightsif q 1 1 − [µ]Aq := sup ? µ(x,t)dxdt! ? µ(x,t)1−qdxdt! < ∞, if q > 1, r>0,z Rn+1 Qr(z) Qr(z) ∈ [µ] := sup µ(x,t)dxdt µ 1 < if q = 1. A1 r>0,z Rn+1 ?Qr(z) !(cid:13) − (cid:13)L∞(Qr(z)) ∞ ∈ (cid:13) (cid:13) (cid:13) (cid:13) ItiswellknownthattheclassofA -weightssatisfiesthereverseHo¨lder’sinequality andthedoubling prop- p erties, see for example [8, 9, 30]. In particular, a measure with an A -weight density is, in some sense, p comparablewiththeLebesguemeasure. Lemma2.3([8]). For1 < q< ,thefollowing statementsholdtrue ∞ (i) If µ A , then for every parabolic cube Q Rn+1 and every measurable set E Q, µ(Q) q [µ]Aq∈|QE| pµ(E). ⊂ ⊂ ≤ (ii) If µ (cid:16)A| |(cid:17), then there isC = C([µ] ,n) and β = β([µ] ,n) > 0 such that µ(E) C E βµ(Q), for ∈ q Aq Aq ≤ |Q| everyparabolic cube Q Rn+1 andeverymeasurable set E Q. (cid:16)| |(cid:17) ⊂ ⊂ Let us also recall the definition of the parabolic fractional Hardy-Littlewood maximal operators which will beneededinthepaper Definition 2.4. Let α R, the parabolic Hardy-Littlewood fractional maximal function of order α of a locallyintegrable functi∈on f onRn isdefinedby ( f)(x,t) = supρα f(y,s) dyds. Mα ? | | ρ>0 Qρ(x,t) LOCALGRADIENTESTIMATES,EQUATIONSWITHDIVERGENCE-FREEDRIFTS 5 If f isdefinedinaregionU Rn R,thenwedenote ⊂ × f = (χ f). α,U α U M M Moreover,whenα = 0,wewrite f = f, f = f. 0 U 0,U M M M M The following boundedness of the Hardy-Littlewood maximal operator is due to Muckenhout [22]. For theproofofthislemma,onecanfinditin[9,30]. Lemma2.5. Assumethatµ A forsome1 < q< . Then,thefollowings hold. q ∈ ∞ (i) Strong(q,q): ThereexistsaconstantC =C([µ] ,n,q)suchthat Aq C. Lq(Rn+1,µ) Lq(Rn+1,µ) kMk → ≤ (ii) Weak(1,1): ThereexistsaconstantC =C(n)suchthatforanyλ> 0,wehave C (x,t) Rn+1 : (f) > λ f(x,t)dxdt. (cid:12)(cid:12)(cid:8) ∈ M (cid:9)(cid:12)(cid:12) ≤ λ ZRn+1| | (cid:12) (cid:12) 2.3. Some useful measure theory lemmas. Wecollect some results needed in the paper. Our first lemma isthestandardresultininmeasuretheory. Lemma 2.6. Assume that g 0 is a measurable function in a bounded subset U Rn+1. Let θ > 0 and ̟ > 1begivenconstants. Ifµ≥isaweightinL1 (Rn+1),thenforany1 p< ⊂ loc ≤ ∞ g Lp(U,µ) S := ̟pjµ( x U : g(x) > θ̟j )< . ∈ ⇔ { ∈ } ∞ Xj 1 ≥ Moreover,thereexistsaconstantC > 0suchthat C 1S g p C(µ(U)+S), − ≤ k kLp(U,µ) ≤ whereC depends onlyonθ,̟and p. Thefollowing lemmaiscommonly used, anditisaconsequence oftheVitali’s covering lemma. Theproof ofthislemmacanbefoundin[21,Lemma3.8]. Lemma 2.7. Let µ be an A weight for some q (1, ) be a fixed number. Assume that E K Q are q 1 ∈ ∞ ⊂ ⊂ measurablesetsforwhichthereexistsǫ,ρ (0,1/4)suchthat 0 ∈ (i) µ(E) < ǫµ(Q (z))forallz Q ,and 1 1 ∈ (ii) forallz Q andρ (0,ρ ],ifµ(E Q (z)) ǫµ(Q (z)),then Q (z) Q K. 1 0 ρ ρ ρ 1 ∈ ∈ ∩ ≥ ∩ ⊂ Thenwithε = ε(20)nq[µ]2 sothatthefollowingestimateholds 1 Aq µ(E) ǫ µ(K). 1 ≤ 3. Caccioppoli’stypeestimates Suppose thatasatisfies (1.5),andb L (Γ , 1,2(B ))n L2(Q )n withdiv(b) = 0. Inthis section, letu ∞ 2 2 2 ∈ V ∩ beaweaksolutionof u div[a(x,t) u] b(x,t) u = div(F), in Q . t 2 − ∇ − ·∇ Also,letvbeaweaksolutionof v div[a¯ (t) v] = 0, Q , t − B7/4 ∇ 7/4 ( v = u, ∂pQ7/4. The meanings for weak solutions of these equations are given in Definition 2.1 and Definition 2.2, respec- tively. Wewillderivesomefundamental estimatesforuandv. 6 TUOCPHAN Lemma3.1. Letw = u v,thenthereexistsaconstantC depending ononlyΛ,nsuchthat − sup w2(x,t)dx+ w2dxdt t∈Γ7/4ZB7/4 ZQ7/4|∇ | C b 2 +1 u2dxdt+ F2dxdt . ≤ "(cid:16)k kL∞(Γ2,V1,2(B2)) (cid:17)ZQ7/4|∇ | ZQ7/4| | # Proof. Notethatwisaweaksolution of w div[a¯ (t) w+(a a¯ (t)) u] b u = div(F), in Q , t − B7/4 ∇ − B7/4 ∇ − ·∇ 7/4 ( w = 0, on ∂pQ7/4. Multiplying theequationwithw,andusingtheintegration bypartsin x,weseethat 1 d w2(x,t)dx+ a¯ (t) w, w dx 2dt Z Z h B7/4 ∇ ∇ i B7/4 B7/4 = (a a¯ (t)) u, w dx+ [b u]wdx F wdx. −Z h − B7/4 ∇ ∇ i Z ·∇ −Z ·∇ B7/4 B7/4 B7/4 Then,byintegrating thisequalityintimeandusingtheellipticity condition (1.5),weobtain 1 sup w2dx+Λ 1 w2dxdt − (3.1) 2 Γ7/4 ZB7/4 ZQ7/4|∇ | (a a¯ (t)) u, w dxdt + b uwdxdt+ F w dxdt. ≤ Z |h − B7/4 ∇ ∇ i| Z | ·∇ | Z | ·∇ | Q7/4 Q7/4 Q7/4h i Wenow estimate terms by terms ofthe right hand side of (3.1). FromHo¨lder’s inequality, and the Young’s inequality,andthefactthatw = 0on∂ Q ,thesecondtermintherighthandsideof (3.1)canbeestimated p 7/4 as 1/2 1/2 b w udxdt b2w2dxdt u2dxdt Z | || ||∇ | ≤ (Z | | ) (Z |∇ | ) Q7/4 Q7/4 Q7/4 1/2 1/2 (3.2) b w2dxdt u2dxdt ≤ k kL∞(Γ2,V1,2(B2))(ZQ7/4|∇ | ) (ZQ7/4|∇ | ) Λ 1 − w2dxdt+C(Λ) b 2 u2dxdt. ≤ 6 ZQ7/4|∇ | k kL∞(Γ2,V1,2(B2))ZQ7/4|∇ | Ontheotherhand,bytheboundedness ofain(1.5),andtheHo¨lder’sinequality, weconclude that Λ 1 (a a¯ ) u, w dxdt C(Λ) u2dxdt+ − w2dxdt, and Z |h − B7/4 ∇ ∇ i| ≤ Z |∇ | 6 Z |∇ | Q7/4 Q7/4 Q7/4 Λ 1 F wdxdt C(Λ) F2dxdt+ − w2dxdt. Z | ·∇ | ≤ Z | | 6 Z |∇ | Q7/4 Q7/4 Q7/4 Collectingalloftheestimates, weobtainfrom(3.1)that 1 sup w2(x,t)dx+Λ 1 w2dxdt − 2 Γ7/4 ZB7/4 ZQ7/4|∇ | Λ 1 − w2dxdt+C b 2 +1 u2dxdt+ F2dx . ≤ 2 ZQ7/4|∇ | hk kL∞(Γ2,V1,2(B2)) iZQ7/4|∇ | ZQ7/4| | ! Therefore, sup w2(x,t)dx+ w2dxdt t∈Γ7/4ZB7/4 ZQ7/4|∇ | C(Λ) b 2 +1 u2dxdt+ F2dxdt . ≤ hk kL∞(Γ2,V1,2(B2)) iZQ7/4|∇ | ZQ7/4| | ! LOCALGRADIENTESTIMATES,EQUATIONSWITHDIVERGENCE-FREEDRIFTS 7 Theproofiscomplete. (cid:3) Thefollowingversionoflocalenergyestimateforw = u visalsoneeded. − Lemma3.2. Thereexists aconstant C = C depending only onΛ,nsuch that forw = u v, and for every 0 − smooth,non-negative cut-offfunction ϕ C (Q )with0 < r 7/4,thereholds ∈ 0∞ r ≤ sup w2ϕ2dx+ w2ϕ2dxdt t∈Γr ZBr ZQr|∇ | C b 2 +1 w2 ϕ2+ ∂ϕ2+ ϕ2]dxdt+ F2ϕ2dxdt ≤ 0(hk kL∞(Γ2,V1,2(B2)) iZQr h | t | |∇ | ZQr| | 1/2 + vϕ b ϕ w2ϕ2dxdt + vϕ 2 a a¯ (t)2dxdt . k∇ kL∞(Q7/4)k kL∞(Γ2,V(B2))k∇ kL2(Q7/4)(ZQr| | ) k|∇ | kL∞(Qr)ZQr| − B7/4 |   Proof. Wewrite Q = Q ,B= B ,andΓ = Γ . Notethatwisaweaksolution of r r r w div[a w+(a a¯ ) v] b w b v = div(F), in Q . t− ∇ − B7/4 ∇ − ·∇ − ·∇ 7/4 Byusingwϕ2 asatestfunction oftheequation ofw,weobtain 1 d w2(x,t)ϕ2(x,t)dx+ a w, w ϕ2dx 2dt Z Z h ∇ ∇ i B B = a w, (ϕ2) wdx (a a¯ (t)) v,ϕ2 w+2wϕ ϕ dx −Z h ∇ ∇ i −Z h − B7/4 ∇ ∇ ∇ i (3.3) B B + [b w]wϕ2dx+ [b v]wϕ2dx Z ·∇ Z ·∇ B B F, (wϕ2) + w2ϕϕdx. t −Z h ∇ i Z B B Noteagainthatthesecondterminthelefthandsideof (3.3)canbeestimatedusing(1.5)as a w, w ϕ2dxdt Λ 1 w2ϕ2dxdt. − Z h ∇ ∇ i ≥ Z |∇ | Q Q Also,fromtheintegration bypartsin x,anddiv(b) = 0,wealsohave 1 [b w]wϕ2dx = [b (w2)]ϕ2dx = [b ϕ]ϕw2dx. Z ·∇ 2Z ·∇ −Z ·∇ B B B Hence,(3.3)implies 1 d w2(x,t)ϕ2(x,t)dx+Λ 1 w2ϕ2dx − 2dt Z Z |∇ | B B a w, (ϕ2) wdx+ (a a¯ (t)) v,ϕ2 w+2wϕ ϕ dx ≤ Z |h ∇ ∇ i | Z |h − B7/4 ∇ ∇ ∇ i| B B + [b ϕ]w2ϕ2dx+ [b v]wϕ2dx Z | ·∇ | Z | ·∇ | B B + F, (wϕ2) +2w2ϕϕ dx. t Z |h ∇ i| | | Bh i 8 TUOCPHAN Byintegrating thisinequality intime,andusingthe L -boundofafrom(1.5),weinferthat ∞ 1 sup w2(x,t)ϕ2(x,t)dx+Λ 1 w2ϕ2dxdt − 2 t Γr ZB ZQ|∇ | ∈ 2 w ϕ ϕwdxdt+ a a¯ v ϕ2 w +2wϕ ϕ dxdt ≤ Z |∇ ||∇ || | Z | − B7/4||∇ | |∇ | | | ||∇ | (3.4) Q Q h i + b ϕw2ϕ2dxdt+ b v wϕ2dxdt Z | ||∇ | Z | ||∇ || | Q Q + F, (wϕ2) +2w2ϕϕ dxdt. t Z |h ∇ i| | | Qh i Wenowpayparticularattentiontothetermsintherighthandsideof (3.4)involving b,asothertermscanbe estimatedexactlyasinLemma3.1. ByusingtheHo¨lder’sinequality andYoung’sinequality, weseethat 1/2 1 2 w2ϕb ϕdxdt b2w2ϕ2 w2 ϕ2dxdt Z | ||∇ | ≤ (Z | | ) (Z |∇ | ) Q Q Q 1/2 1 2 b (wϕ)2dxdt w2 ϕ2dxdt ≤ k kL∞(Γ7/4 V1,2(B7/4))(ZQ|∇ | ) (ZQ |∇ | ) ǫ w2ϕ2dxdt+C(ǫ) b 2 w2 ϕ2dxdt, ≤ ZQ|∇ | k kL∞(Γ7/4 V1,2(B7/4))ZQ |∇ | foranyarbitrary ǫ > 0. Similarly,wealsoobtain 1/2 1/2 b v wϕ2dxdt vϕ b2ϕ2dxdt w2ϕ2dxdt Z | ||∇ || | ≤ k∇ kL∞(Q7/4)(Z | | ) (Z | | ) Q Q Q 1/2 vϕ b ϕ w2ϕ2dxdt . ≤ k∇ kL∞(Q7/4)k kL∞(Γ7/4,V(B7/4))k∇ kL2(Q7/4)(ZQ| | ) Othertermscanbeestimatedsimilarly. Then,collectingalltheestimatesandchooseǫ sufficientlysmall,we obtainthedesired result. (cid:3) 4. Approximation estimates We apply the ”freezing coefficient” technique to establish the regularity estimates for weak solutions of (1.3). Todothis,weapproximate theweaksolution uoftheequation (4.1) u div[a u] b u = div(F) in Q , t 2 − ∇ − ·∇ bytheweaksolutionvoftheequation v div[a¯ (t) v] = 0, in Q , (4.2) t − B7/4 ∇ 7/4 ( v = u, on ∂pQ7/4 Again, the meanings for weaksolutions ofequations (4.1) -(4.2)are given inDefinition 2.1 and Definition 2.2, respectively. Weessentially follow the method in our recent work [11, 23], which in turn is influenced by [5, 6, 27, 32]. We first begin with the standard result on the regularity of weak solution of the constant coefficientequation (4.2). Lemma4.1. Thereexists aconstantC depending onlyontheellipticity constant Λandnsuch thatifvisa weaksolution of v div[a¯ (t) v] = 0 in Q , t − B7/4 ∇ 7/4 then 1/2 v C v(x,t)2dxdt . k∇ kL∞(Q3) ≤ ? |∇ | ! 2 Q7/4 Our next lemma confirms that we can approximate in L2(Q ) the solution u of (4.1) by the solution v of 7/4 (4.2)ifthecoefficients andthedataaresufficiently closetoeachothers. LOCALGRADIENTESTIMATES,EQUATIONSWITHDIVERGENCE-FREEDRIFTS 9 Lemma 4.2. Let M ,Λ > 0 and s > 1, be fixed. Then, for every ǫ > 0, there exists δ > 0 depending on 0 only ǫ,Λ,n,M ,s such that the following statement holds true: For every a,b,F such that if (1.5) holds, 0 b M ,,and k kL∞(Γ2,V1,2(B2)) ≤ 0 1/2 1/2 a a¯ (t)2dxdt + F2dxdt (? | − B7/4 | ) (? | | ) (4.3) Q7/4 Q2 1/s 1/s ′ + bsdxdt uˆ s′dxdt δ (? | | ) (? | | ) ≤ Q2 Q2 withuˆ = u u¯ ,theneveryweaksolution uof (4.1)with − Q2 u2dxdt 1, ? |∇ | ≤ Q2 theweaksolution vof (4.2)satisfies u v2dxdt ǫ, and v2dxdt C(Λ,M ,n). ? | − | ≤ ? |∇ | ≤ 0 Q7/4 Q7/4 Proof. Notethatoncetheexistence isproved,itfollowsfromLemma3.1andtheassumption (4.3)that w2dxdt C[M +1]. 0 Z |∇ | ≤ Q7/4 Fromthis,andusing(4.3),weinferthat v2dxdt w2dxdt+ u2dxdt C(Λ,M ,n). ? |∇ | ≤ ? |∇ | ? |∇ | ≤ 0 Q7/4 Q7/4 Q7/4 Therefore, we only need to prove the existence of δ. We use the contradiction argument as this method works well for nonlinear equations, and non-smooth domains. Assume that there exist M ,Λ > 0,s,s ,λ, 0 ′ andǫ > 0beasintheassumption suchthatforeveryk N,thereare F ,a ,b ,suchthat 0 k k k ∈ 1/2 1/2 a a¯ (t)2dxdt + F 2dxdt (? | k − k,B7/4 | ) (? | k| ) (4.4) Q7/4 Q2 1/s 1/s ′ 1 + b sdxdt uˆ s′dxdt , for uˆ = u u¯ (? | k| ) (? | k| ) ≤ k k k − k,Q2 Q2 Q2 andaweaksolution u of k (4.5) ∂u div[a u ] b u = div(F ), Q , t k k k k k k 2 − ∇ − ·∇ satisfying (4.6) u 2dxdt 1, ? |∇ k| ≤ Q2 butfortheweaksolutionv of k ∂v div[a¯ (t) v] = 0, in Q , (4.7) t k − k,B7/4 ∇ 7/4 ( vk = uk, on ∂pQ7/4, wehave (4.8) u v 2dxdt ǫ . ? | k − k| ≥ 0 Q7/4 Sincea¯ (t)isaboundedsequenceinL (Γ ,Rn n),wecanalsoassumethatthereisa¯(t)inL (Γ ,Rn n)) k,B7/4 ∞ 7/4 × ∞ 7/4 × suchthata¯ ⇀ a¯ weakly-*inL (Γ ;Rn n). Thismeansthatforeachvectorξ Rn,andforallfunction k,B7/4 ∞ 7/4 × ∈ φ L1(Γ ),wehave 7/4 ∈ (4.9) a¯(t)ξ,ξ φ(t)dt = lim a¯ (t)ξ,ξ φ(t)dt. ZΓ h i k ZΓ h k,B7/4 i 7/4 →∞ 7/4 10 TUOCPHAN Also,foreachk N,letw = u v ,weseethatw isaweaksolutionof k k k k ∈ − ∂w div[a¯ w +(a a¯ ) u ] b u = div[F ], Q , (4.10) t k− k,B7/4∇ k k − k,B7/4 ∇ k − k ·∇ k k 7/4 ( wk = 0, ∂pQ7/4. From(4.4),and(4.6),wecanapplyLemma3.1toyield (4.11) sup w 2dx+ w 2dxdt C, k N. k k Γ7/4 | | ZQ7/4|∇ | ≤ ∀ ∈ Thisestimate,togetherwith(4.4),(4.6),andthePDEin(4.10),weconcludethat w isaboundedsequence k k { } in (Q ),where 7/4 E (Q ) = g L2(Γ ,H1(B )) :g L2(Γ ,H 1(B ),g = 0on∂ Q . 7/4 7/4 7/4 t 7/4 − 7/4 p 7/4 E { ∈ ∈ } Therefore,bythecompactembedding (Q )֒ C(Γ ,L2(B )),andbypassingthroughasubsequence, 7/4 7/4 7/4 E → wecanassumethatthereisw (Q )suchthat 7/4 ∈ E w wstrongly inL2(Q ), w ⇀ wweaklyinL2(Q ), (4.12) k → 7/4 ∇ k ∇ 7/4 ( ∂twk ⇀ ∂twweakly-*inL2(Γ7/4;H−1(B7/4)), and wk wa.e. inQ7/4. → From(4.8)and(4.12),itfollowsthat (4.13) w2dxdt ǫ . ? ≥ 0 Q7/4 Moreover, due to the boundary condition w = 0 on ∂ Q , and (4.12), we also conclude that, in the trace k p 7/4 sense, (4.14) w = 0, ∂ Q . p 7/4 Weclaimthatwisaweaksolution of w div[a¯(t) w] = 0, Q , (4.15) t − ∇ 7/4 ( w = 0, ∂pQ7/4 Fromthis, andbythe uniqueness oftheweaksolution ofthisequation, weinfer thatw = 0andthis contra- dictsto(4.13). Thus,itremainstoprovethatwisaweaksolution of (4.15). Toprovethis,wepassthelimit ask of (4.10). By(4.14),weonly needtofindthelimitsask foreach termintheweakform of → ∞ → ∞ the equation (4.10). Let us fix a test function ϕ C (Q ) with ϕ = 0 on ∂ Q . Then, it is easy to see ∞ 7/4 p 7/4 ∈ from(4.4),and(4.6)that lim F ϕdxdt = 0, lim (a a¯ (t)) u , ϕ dxdt = 0. k→∞ZQ7/4 k ·∇ k→∞ZQ7/4h k − k,B7/4 ∇ k ∇ i Furthermore,from(4.12),wealsofindthat lim ∂w ,ϕ dt = ∂w,ϕ dt. k ZΓ h t k iH−1(B7/4),H01(B7/4) ZΓ h t iH−1(B7/4),H1(B7/4) →∞ 7/4 7/4 Fortheterminvolving b ,sincediv(b )= 0,wecanusetheintegration bypartsin xtowrite k k [b u ]ϕdxdt = b ϕ uˆ dxdt, uˆ = u u¯ . Z k ·∇ k −Z ·∇ k k k − k,Q2 Q7/4 Q7/4h i Then,byHo¨lder’sinequality and(4.6),seethat 1/s 1/s ′ [b u ]ϕdxdt ϕ b sdxdt uˆ s′dxdt (cid:12)(cid:12)(cid:12)ZQ7/4 k ·∇ k (cid:12)(cid:12)(cid:12) ≤ k∇ kL∞(Q7/4)(ZQ2| k| ) (ZQ2| k| ) (cid:12) (cid:12) (cid:12)(cid:12) (cid:12)(cid:12) |Q7/4| ϕ 0, as k . ≤ k1/2 k∇ kL∞(Q7/4) → → ∞

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.