A Note on Iterations-based Derivations of High-order Homogenization Correctors for Multiscale Semi-linear Elliptic Equations Vo Anh Khoaa,∗, Adrian Munteanb aMathematics and Computer Science Division, Gran Sasso Science Institute, L’Aquila, Italy bDepartment of Mathematics and Computer Science, Karlstad University, Sweden Abstract ThisNoteaimsatpresentingasimpleandefficientproceduretoderivethestructureofhigh-ordercorrectorestimatesfor 6 the homogenization limit applied to a semi-linear elliptic equation posed in perforated domains. Our working technique 1 relies on monotone iterations combined with formal two-scale homogenization asymptotics. It can be adapted to handle 0 2 morecomplexscenariosincludingforinstancenonlinearitiesposedattheboundaryofperforationsandthevectorialcase, n when the model equations are coupled only through the nonlinear production terms. a J Keywords: Corrector estimates, Homogenization, Elliptic systems, Perforated domains 8 2010 MSC: 35B27, 35C20, 76M30, 35B09 ] P A 1. Background . h t a Modern approaches to modeling focus on multiple scales. Given a multiscale physical problem, one of the leading m questions is to derive upscaled model equations and the corresponding structure of effective model coefficients (e.g. [ 1 [1,2]). ThisNoteaimsatexploringthequalityoftheupscaling/homogenizationprocedurebyderivingwheneverpossible v corrector (error) estimates for the involved unknown functions, fields, etc. and their gradients (i.e. of the transport 15 5 fluxes). Ultimately, these estimates contribute essentially to the control of the approximation error of numerical methods 8 1 to multiscale PDE problems. 0 . Our starting point is a microscopic PDE model describing the motion of populations of colloidal particles in soils 1 0 and porous tissues with direct applications in drug-delivery design and control of the spread of radioactive pollutants 6 1 ([3, 4, 5]). We have previously analyzed a reduced version of this system in [6]. Here, we point out a short alternative 10 : v proof based on monotone iterations ([7]) of the corrector estimates derived in [6] and extend them to higher asymptotic i X orders. r a 2. Problem setting We are concerned with the study of the semi-linear elliptic boundary value problem of the form Aεuε =R(uε), x∈Ωε, uε =0, x∈Γext, (2.1) ∇uε·n=0, x∈Γε, ∗Correspondingauthor Email addresses: [email protected], [email protected](VoAnhKhoa),[email protected](AdrianMuntean) January 11, 2016 where the operator Aεuε := ∇·(−dε∇uε) involves dε termed as the molecular diffusion while R represents the volume reaction rate. We take into account the following assumptions: 15 (A ) the diffusion coefficient dε ∈L∞(cid:0)Rd(cid:1) for d∈N is Y-periodic and symmetric, and it guarantees the ellipticity of 1 Aε as follows: dεξ ξ ≥α|ξ|2 for anyξ ∈Rd; i j (A ) the reaction coefficient R ∈ L∞(Ωε×R) is globally L−Lipschitzian, i.e. there exists L > 0 independent of ε 2 such that (cid:107)R(u)−R(v)(cid:107)≤L(cid:107)u−v(cid:107) foru,v ∈R. It is worth noting that the domain Ωε ∈Rd considered here approximates a porous medium. The precise description of Ωε is showed in [6, Section 2] and [8]. In Figure 2.1 (left), we sketch an admissible geometry of our medium, pointing out the sample microstructure in Figure 2.1 (right). We follow the notation from [6]. Γ = ∂Ω Y 0 Y Y 1 Ω Ωε Figure2.1: Anadmissibleperforateddomain(left)andbasicgeometryofthemicrostructure(right). Remark 1. In this paper, we denote the space Vε by Vε :=(cid:8)v ∈H1(Ωε)|v =0onΓext(cid:9) endowed with the norm (cid:18)(cid:90) (cid:19)1/2 (cid:107)v(cid:107) = |∇v|2dx . Vε Ωε This norm is equivalent (uniformly in the homogenization parameter ε) to the usual H1 norm by the Poincar´e inequality. 3. Derivation of corrector estimates 20 We introduce the following Mth-order expansion (M ≥2): M uε(x)= (cid:88) εmu (x,y)+O(cid:0)εM+1(cid:1), x∈Ωε, (3.1) m m=0 2 where u (x,·) is Y-periodic for 0≤m≤M. m Followingstandardhomogenizationprocedures,wededucethesocalledauxiliaryproblems(seee.g. [9]). Todoso,we considerthefunctionalΦ(x,y)dependingontwovariables: themacroscopicxandy =x/εthemicroscopicpresentation, and denote by Φε(x)=Φ(x,y). The simple chain rule allows us to derive the fact that (cid:16) x(cid:17) (cid:16) x(cid:17) ∇Φε(x)=∇ Φ x, +ε−1∇ Φ x, . (3.2) x ε y ε The quantities ∇uε and Aεuε must be expended correspondingly. In fact, it follows from (3.2) and (3.1) that (cid:32) M (cid:33) ∇uε = (cid:0)∇ +ε−1∇ (cid:1) (cid:88) εmu +O(cid:0)εM+1(cid:1) x y m m=0 M−1 = ε−1∇ u + (cid:88) εm(∇ u +∇ u )+O(cid:0)εM(cid:1). (3.3) y 0 x m y m+1 m=0 Using the structure of the operator Aε, we obtain the following: Aεuε = ε−2∇ ·(−d(y)∇ u ) y y 0 +ε−1[∇ ·(−d(y)∇ u )+∇ ·(−d(y)(∇ u +∇ u ))] x y 0 y x 0 y 1 M−2 (cid:88) + εm[∇ ·(−d(y)(∇ u +∇ u )) x x m y m+1 m=0 +∇ ·(−d(y)(∇ u +∇ u ))]+O(cid:0)εM−1(cid:1). (3.4) y x m+1 y m+2 Concerning the boundary condition at Γε, we note: (cid:32) M−1 (cid:33) (cid:88) dε∇uε·n=d (y) ε−1∇ u + εm(∇ u +∇ u ) ·n. (3.5) i y 0 x m y m+1 m=0 To investigate the convergence analysis, we consider the following structural property: (cid:32) M (cid:33) M R (cid:88) εmu = (cid:88) εm−rR(u )+O(cid:0)εM−r+1(cid:1) forr ∈Z,r ≤2. (3.6) m m m=0 m=0 Atthispointwesee,ifr ∈{1,2}itthengeneratespontaneouslynonlinearauxiliaryproblems. Toseetheimpediment, let us focus on r =2. By collecting the coefficients of the same powers of ε in (3.4) and (3.5), we are led to the following systems, which we refer to the auxiliary problems: A0u0 =R(u0), inY1, −d(y)∇ u ·n=0, on∂Y , (3.7) y 0 0 u isY −periodic iny, 0 A0u1 =R(u1)−A1u0, inY1, −d(y)(∇ u +∇ u )·n=0, on∂Y , (3.8) x 0 y 1 0 u isY −periodic iny, 1 A0um+2 =R(um+2)−A1um+1−A2um, inY1, −d(y)(∇ u +∇ u )·n=0, on∂Y , (3.9) x m+1 y m+2 0 u isY −periodic iny, m+2 3 for 0≤m≤M −2. Here, we have denoted by 25 A := ∇ ·(−d(y)∇ ), 0 y y A := ∇ ·(−d(y)∇ )+∇ ·(−d(y)∇ ), 1 x y y x A := ∇ ·(−d(y)∇ ). 2 x x Remark 2. In the case r ≤0, it is trivial to not only prove the well-posedness of these auxiliary problems (3.7)-(3.9), but also to compute the solutions by many approaches due to its linearity. For details, the reader is referred here to [10]. The idea is now to linearize the auxiliary problems. Inspired by the fact that a fixed-point homogenization argument seems to be applicable in this framework, and also by the way a priori error estimates are proven for difference schemes, we suggest an iteration technique to ”linearize” the involved PDE systems. We start the procedure by choosing the initial point u(0) =0 for m∈{0,...,M}. As next step, we consider the following systems corresponding to the nonlinear m auxiliary problems: (cid:16) (cid:17) A0u(0n0) =R u(0n0−1) , inY1, −d(y)∇ u(n0)·n=0, on∂Y , (3.10) y 0 0 u(n0) isY −periodic iny, 0 (cid:16) (cid:17) A0u(1n1(cid:16)) =R u1(n1−1) −A(cid:17)1u(0n0), inY1, −d(y) ∇ u(n0)+∇ u(n1) ·n=0, on∂Y , (3.11) x 0 y 1 0 u(n1) isY −periodic iny, 1 (cid:16) (cid:17) A0u(mn+m(cid:16)2+2) =R u(mn+m2+2−1) −A(cid:17)1um(n+m1+1)−A2u(mnm), inY1, −d(y) ∇ u(nm+1)+∇ u(nm+2) ·n=0, on∂Y , (3.12) x m+1 y m+2 0 u(nm+2) isY −periodic iny, m+2 for 0≤m≤M −2. Note that the quantity n is independent of ε. m Since the approximate auxiliary problems became linear, standard procedures are able to find the solutions u(nm) for m 0≤m≤M . Note that these problems admit a unique solution (see, e.g. [10, Lemma 2.2]) on V, i.e. the quotient space of V defined by Y1 V :=(cid:8)ϕ|ϕ∈H1(Y ),ϕisY −periodic(cid:9). Y1 1 On the other side, if κ := C Lα−1 < 1 holds (here C is the Poincar´e constant depending only on the dimension of p p p (cid:110) (cid:111) Y ),weeasilyobtainthatforeverym, u(nm) isaCauchysequenceinH1(Y ). Hereby,itnaturallyclaimstheexistence 1 m 1 and uniqueness of the nonlinear auxiliary problems (3.7)-(3.9). Moreover, the convergence rate of the iteration procedure is given by (cid:13) (cid:13) κnm (cid:13) (cid:13) (cid:13)u(nm)−u (cid:13) ≤ p (cid:13)u(1)(cid:13) . (cid:13) m m(cid:13)H1(Y1) 1−κnpm (cid:13) m (cid:13)H1(Y1) Remark 3. For more details in this sense, see [6, Theorem 9] and [11, Theorem 2.2]. To prove the corrector estimate, we suppose that the solutions of the auxiliary problems (3.7)-(3.9) belong to the space L∞(Ωε;V). Let us introduce the following function: M (cid:88) ϕε :=uε− εmu . m m=0 4 Relying on the auxiliary problems (3.7)-(3.9), note that the function ϕε satisfies the following system: Aεϕε =R(uε)−(cid:80)Mm=−02εm−2R(um) −εM−1(A u +A u )−εMA u , inΩε, (3.13) 1 M 2 M−1 2 M −dε∇ ϕε·n=εMdε∇ u ·n, onΓε. x x M Now, multiplying the PDE in (3.13) by ϕ∈Vε and integrating by parts, we arrive at 30 (cid:42) M−2 (cid:43) (cid:88) (cid:104)dεϕε,ϕ(cid:105) = R(uε)− εm−2R(u ),ϕ Vε m m=0 L2(Ωε) −εM−1(cid:104)A u +A u +εA u ,ϕ(cid:105) 1 M 2 M−1 2 M L2(Ωε) (cid:90) −εM dε∇ u ·nϕdS . (3.14) x M ε Ωε int From here on, we have to estimate the integrals on the right-hand side of (3.14)., which is a standard procedure; see [10, 6] for similar calculations. Thus, we claim that (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:42)R(uε)−Mm(cid:88)=−02εm−2R(um),ϕ(cid:43)L2(Ωε)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)≤CL(cid:13)(cid:13)(cid:13)(cid:13)(cid:13)uε−m(cid:88)M=0εmum+O(cid:0)εM−1(cid:1)(cid:13)(cid:13)(cid:13)(cid:13)(cid:13)Vε(cid:107)ϕ(cid:107)L2(Ωε), (3.15) wherewehaveessentiallyusedtheglobalLipschitzconditiononthereactionterm,theassumption(3.6),andthePoincar´e inequality. Next, we get (cid:12) (cid:12) εM−1(cid:12)(cid:104)A u +A u +εA u ,ϕ(cid:105) (cid:12)≤CεM−1(cid:107)ϕ(cid:107) , (3.16) (cid:12) 1 M 2 M−1 2 M L2(Ωε)(cid:12) L2(Ωε) while using the trace inequality (cf. [10, Lemma 2.31]) to deal with the the last integral, it gives (cid:12) (cid:12) (cid:12)(cid:90) (cid:12) εM(cid:12) dε∇ u ·nϕdS (cid:12)≤CεM−1(cid:107)ϕ(cid:107) . (3.17) (cid:12) x M ε(cid:12) L2(Ωε) (cid:12) Ωε (cid:12) int Combining (3.15)-(3.17), we provide that α|(cid:104)ϕε,ϕ(cid:105) |≤CεM−1(cid:107)ϕ(cid:107) , Vε L2(Ωε) which finally leads to (cid:107)ϕε(cid:107)Vε ≤CεM2−1 by choosing ϕ=ϕε, very much in the spirit of energy estimates. Summarizing, we state our results in the frame of the following theorems. Theorem 4. Suppose (3.6) holds for r ∈ {1,2} and assume κ := C Lα−1 < 1 for the given Poincar´e constant. Let p p (cid:110) (cid:111) u(nm) be the schemes that approximate the nonlinear auxiliary problems (3.10)-(3.12). Then (3.10)-(3.12) admit m nm∈N a unique solution u for all m∈{0,...,M} with the speed of convergence: m (cid:13) (cid:13) Cκn (cid:13)u(nm)−u (cid:13) ≤ p for alln ∈Nandm∈{0,...,M}, (cid:13) m m(cid:13)H1(Y1) 1−κnp m where C >0 is a generic ε-independent constant and n:=max{n ,...,n }. 0 M Theorem 5. Let uε be the solution of the elliptic system (2.1) with the assumptions (A )−(A ) stated above and suppose 1 2 that (3.6) holds for r ∈ {1,2}. For m ∈ {0,...,M} with M ≥ 2, we consider u the solutions of the auxiliary problems m (3.10)-(3.12). Then we obtain the following corrector estimate: (cid:13) (cid:13) (cid:13)(cid:13)(cid:13)uε− (cid:88)M εmum(cid:13)(cid:13)(cid:13) ≤CεM2−1, (cid:13) (cid:13) m=0 Vε where C >0 is a generic ε-independent constant. 5 Acknowledgment 35 AMthanksNWOMPE”Theoreticalestimatesofheatlossesingeothermalwells”(grantnr. 657.014.004)forfunding. VAK would like to thank Prof. Nguyen Thanh Long, his old supervisor, for the whole-hearted guidance when studying at Department of Mathematics and Computer Science, Ho Chi Minh City University of Science in Vietnam. References [1] E. Weinan, Principles of Multiscale Modeling, Cambridge University Press, 2011. 40 [2] M. Schmuck, G. Pavliotis, S. Kalliadasis, Effective macroscopic interfacial transport equations in strongly heteroge- neous environments for general homogeneous free energies, Applied Mathematics Letters 35 (2014) 12–17. [3] N. Ray, Colloidal transport in porous media modeling and analysis, Ph.D. thesis, University of Erlangen-Nuremberg (2013). [4] O.Krehel,A.Muntean,P.Knabner,Multiscalemodelingofcolloidaldynamicsinporousmediaincludingaggregation 45 and deposition, Advances in Water Resources 86 (2015) 209–216. [5] N. Ray, A. Muntean, P. Knabner, Rigorous homogenization of a Stokes-Nernst-Planck-Poisson system, Journal of Mathematical Analysis and Applications 390 (1) (2012) 374–393. [6] V. Khoa, A. Muntean, Asymptotic analysis of a semi-linear elliptic system in perforated domains: well-posedness and corrector for the homogenization limitarXiv:1512.03735. 50 [7] C. Pao, Nonlinear Parabolic and Elliptic Equations, Springer, 1993. [8] U. Hornung, W. J¨ager, Diffusion, convection, adsorption, and reaction of chemicals in porous media, Journal of Differential Equations 92 (1991) 199–225. [9] A.Bensoussan,J.-L.Lions,G.Papanicolaou,AsymptoticAnalysisforPeriodicStructures,AMSChelseaPublishing, 1978. 55 [10] D. Cioranescu, J. Saint Jean Paulin, Homogenization of Reticulated Structures, Springer, 1999. [11] V. Khoa, N. Tuan, L. Lan, N. Ngoc, A finite difference scheme for nonlinear ultra-parabolic equations, Applied Mathematics Letters 46 (2015) 70–76. 6