ebook img

A note of pointwise estimates on Shishkin meshes PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A note of pointwise estimates on Shishkin meshes

A note of pointwise estimates on Shishkin meshes 2 1 Jin Zhang∗† 0 2 January 30, 2012 n a J 7 Abstract 2 WeproposetheestimatesofthediscreteGreenfunctionforthestream- ] line diffusion finiteelement method (SDFEM) on Shishkinmeshes. A N 1 Problem . h t a We consider the singularly perturbed boundary value problem m [ (1.1a) Lu:=−ε∆u+b·∇u+u=f in Ω=(0,1)2, (1.1b) u=0 on ∂Ω, 1 v 4 whereε≪1isasmallpositiveparameterandb=(b ,b )T >(0,0)T isconstant. 1 2 8 It is also assumed that f is sufficiently smooth. 6 5 . 2 The SDFEM on Shishkin meshes 1 0 2 2.1 Shishkin meshes 1 : Let N > 4 be a positive even integer. We use a piecewise uniform mesh — a v i so-called Shishkin mesh —with N mesh intervals in both x− and y−direction X which condenses in the layer regions. For this purpose we define the two mesh r transition parameters a 1 ε 1 ε λ :=min ,2 lnN and λ :=min ,2 lnN . x y 2 β 2 β (cid:26) 1 (cid:27) (cid:26) 2 (cid:27) Assumption 1. We assume in our analysis that ε ≤ N−1, as is generally the case in practice. Furthermore we assume that λ = 2εβ−1lnN and λ = x 1 y 2εβ−1lnN as otherwise N−1 is exponentially small compared with ε. 2 ∗Email: [email protected] †Address:SchoolofScience, Xi’anJiaotongUniversity,Xi’an,710049, China 1 Ω Ω y xy Ω Ω s x Figure 1: Dissection of Ω and triangulation ΩN. The domain Ω is dissected into four parts as Ω = Ω ∪Ω ∪Ω ∪Ω (see s x y xy FIG. 1), where Ω :=[0,1−λ ]×[0,1−λ ], Ω :=[1−λ ,1]×[0,1−λ ], s x y x x y Ω :=[0,1−λ ]×[1−λ ,1], Ω :=[1−λ ,1]×[1−λ ,1]. y x y xy x y We introducethe setofmeshpoints{(x ,y )∈Ω:i, j =0, ··· , N}defined i j by 2i(1−λ )/N, for i=0, ··· , N/2, x x = i 1−2(N −i)λ /N, for i=N/2+1, ··· , N (cid:26) x and 2j(1−λ )/N, for j =0, ··· , N/2, y y = j 1−2(N −j)λ /N, for j =N/2+1, ··· , N. (cid:26) y Bydrawinglinesthroughthesemeshpointsparalleltothex-axisandy-axisthe domainΩispartitionedintorectangles. ThistriangulationisdenotedbyΩN(see FIG. 1). If D is a mesh subdomain of Ω, we write DN for the triangulation of D. The mesh sizes h =x −x and h =y −y satisfy x,τ i i−1 y,τ j j−1 1−λ x H := , for i=1, ··· , N/2, x N/2 h =  x,τ λ  hx := x , for i=N/2+1, ··· , N N/2  2 and 1−λ y H := , for j =1, ··· , N/2, y N/2 h =  y,τ λ  hy := y , for j =N/2+1, ··· , N. N/2 The mesh sizes h and h satisfy x,τ y,τ N−1 ≤H ,H ≤2N−1 and C εN−1lnN ≤h ,h ≤C εN−1lnN, x y 1 x y 2 where C and C are positive constants and independent of ε and of the mesh 1 2 parameter N. The above properties are essential when inverse inequalities are applied in our later analysis. Forthemeshelementsweshallusetwonotations: τ =[x ,x ]×[y ,y ] ij i−1 i j−1 j for a specific element, and τ for a generic mesh rectangle. 2.2 The streamline diffusion finite element method Let V :=H1(Ω). On the above Shishkin mesh we define a finite element space 0 VN :={vN ∈C(Ω¯):vN| =0 and vN| is bilinear, ∀τ ∈ΩN}. ∂Ω τ In this case, the SDFEM reads as Find U ∈VN such that for all vN ∈VN (2.1) ε(∇U,∇vN)+(b·∇U +U,vN +δb·∇vN)=(f,vN +δb·∇vN). (cid:26) where δ =δ(x) is a user-chosen parameter (see [3]). We set b −b b:= b2+b2, β := 1 /b, η := 2 /b and v :=ζT∇v 1 2 b b ζ q (cid:18) 2(cid:19) (cid:18) 1 (cid:19) for any vector ζ of unit length. By an easy calculation one shows that (∇w,∇v)=(w ,v )+(w ,v ). β β η η We rewrite (2.1) as ε(U ,vN)+ε(U ,vN)+(bU +U,vN +δbvN)=(f,vN +δbvN) β β η η β β β and, following usual practice, we set N−1, if x∈Ω , δ(x):= s 0, otherwise. (cid:26) Fortechnicalreasonsinthelateranalysis,weincreasethecrosswinddiffusion(see [4]) by replacing ε(U ,vN) by εˆ(U ,vN) where η η η η ε˜:=max(ε,N−3/2) 3 and ε˜, x∈Ω , s εˆ(x):= ε, x∈Ω\Ω . (cid:26) s We now state our streamline diffusion method with artificial crosswind: Find U ∈VN such that for all vN ∈VN (2.2) B(U,vN)=(f,vN +δbvN), (cid:26) β with (2.3) B(U,vN):=(ε+b2δ)(U ,vN)+εˆ(U ,vN)−b(1−δ)(U,vN)+(U,vN). β β η η β 3 The discrete Green function Let x∗ be a mesh node in Ω. The discrete Green’s function G∈VN associated with x∗ is defined by B(vN,G)=vN(x∗), ∀vN ∈VN. The weighted function ω: (x−x∗)·β (x−x∗)·η (x−x∗)·η ω(x):=g g g − σ σ σ (cid:18) β (cid:19) (cid:18) η (cid:19) (cid:18) η (cid:19) where 2 g(r)= for r∈(−∞,∞). 1+er and σ =kN−1lnN and σ =kε˜1/2lnN. β η b |||G|||2 :=(ε+b2δ)kω−1/2G k2+εˆkω−1/2G k2+ k(ω−1)1/2Gk2+kω−1/2Gk2 ω β η 2 β and (3.1) |||G|||2 =B(ω−1G,G)−(ε+b2δ)((ω−1) G,G ) ω β β −εˆ((ω−1) G,G )−bδ(ω−1G,G ). η η β Thus, we obtain B(ω−1G,G)=B(E,G)+B((ω−1G)I,G) =B(E,G)+(ω−1G)(x∗) where E :=ω−1G−(ω−1G)I. Lemma 1. If σ =kN−1lnN and σ =klnNε˜1/2, then for k >1 sufficiently β η large and independent of N and ε, we have 1 B(ω−1G,G)≥ k|G|k2. 4 ω 4 Proof. From (3.1),we estimate the following terms. (ε+δ) ((ω−1) G,G ) ≤C(ε+δ)1/2σ−1/2·k(ω−1)1/2Gk·(ε+δ)1/2kω−1/2G k β β β β β (cid:12) (cid:12)≤C(ε+δ)1/2σ−1/2k|G|k2 (cid:12) (cid:12) β ω and εˆ ((ω−1) G,G ) ≤Cεˆ1/2σ−1·kω−1/2Gk·εˆ1/2kω−1/2G k η η η η (cid:12) (cid:12)≤Cεˆ1/2σ−1k|G|k2 (cid:12) (cid:12) η ω For bδ(ω−1G,G ), we make use of integration by parts. β From the definition of σ and σ and ε ≤ N−1, we take k sufficiently large β η and we are done. Lemma 2. If σ = kN−1lnN, with k > 0 sufficiently large and independent β of N and ε. Then for each mesh point x∗ ∈Ω\Ω , we have xy 1 (ω−1G)(x∗) ≤ k|G|k2 +CNlnN. 16 ω (cid:12) (cid:12) where C is independe(cid:12)nt of N, ε a(cid:12)nd x∗. Proof. First let x∗ ∈ Ω . Let τ∗ be the unique triangle that has x∗ as its s north-east corner. Then (ω−1G)(x∗) ≤CNkGk τ∗ (cid:12) (cid:12)≤CNmax (ω−1)−1/2 ·k(ω−1)−1/2Gk (cid:12) (cid:12) τ∗ β β τ∗ (cid:12) (cid:12) Calculating (ω−1)−1(x) explicitly, we(cid:12)(cid:12)see that (cid:12)(cid:12) β (ω−1)−1(x)≤Cσ =CkN−1lnN ∀x∈τ∗ β β Thus 1 (ω−1G)(x∗) ≤CNlnN + k|G|k2 16 ω by means of the arith(cid:12)metic-geome(cid:12)tric mean inequality. (cid:12) (cid:12) Next, let x∗ ∈Ω .(The case x∗ ∈Ω is similar.)Write x∗ =(x ,y ). Then x y i j ω−1G(x∗) =|G(x∗)| 1 (cid:12) (cid:12) (cid:12) (cid:12)= Gx(t,yj)dt (cid:12)Zxi (cid:12) (cid:12)(cid:12) 1 yj+(cid:12)(cid:12)1 ≤(cid:12)CHy−1 (cid:12) |Gx(t,y)|dydt Zxi Zyj ≤CN(εlnN ·N−1)1/2kG k x Ωx ≤CN1/2ln1/2Nk|G|k 5 where G (t,y )= Gk,j−Gk−1,j for (t,y )∈τ . x j hx j kj Analysis: for the relationofboundary integraland domainintegral, we analyze 1 yj+1 N yj+1 y −y y−y j+1 j |G (t,y)|dydt= h f(y ) +f(y ) dy x x j j+1 H H Zxi Zyj k=i+1 Zyj (cid:12) y y (cid:12) X (cid:12) (cid:12) (cid:12) (cid:12) where f(y )= Gk,j−Gk−1,j and f(y )= G(cid:12)k,j+1−Gk−1,j+1. (cid:12) j hx j+1 hx For ∆ := yj+1 f(y )yj+1−y +f(y )y−yj dy, we have 1 yj j Hy j+1 Hy (cid:12) (cid:12) R (cid:12) (cid:12) |f(yj)|+(cid:12) |f(yj+1)| 1 (cid:12) H ≥ max{|f(y ),|f(y )|}H if f(y )f(y )≥0 y j j+1 y j j+1 2 2 ∆ =  1 1f2(y )+f2(y ) 1  j j+1 Hy ≥ max{|f(yj),|f(yj+1)|}Hy if f(yj)f(yj+1)<0 2 |f(y )−f(y )| 4 j+1 j  For ∀v ∈C2(τ), we have |v |≤C(|v |+|v |) x β η |v |≤C(|v |+|v |+|v |) xx ββ βη ηη Similarly, we have |v |≤C(|v |+|v |) β x y |v |≤C(|v |+|v |+|v |) ββ xx xy yy Lemma 3. Let τ ∈ΩN. Then kω1/2DαEk ≤Ck−1/2N1/2|||G||| Ωs ω kω1/2DαEk ≤Ck−1ε−1/2ln−1N|||G||| ΩN\Ωs ω where H =max{h ,h } and |α|=1, DαG are G and G . τ x,τ y,τ β η Proof. Assume p∈[1,∞] and g ∈C3(τ). Then (see [2, Theorem 4]) k(g−gI) k ≤C h2 kg k +h h kg k +h2 kg k x Lp(τ) x,τ xxx Lp(τ) x,τ y,τ xxy Lp(τ) y,τ xyy Lp(τ) +Ch(cid:0)x,τkgxxkLp(τ), (cid:1) k(g−gI) k ≤C h2 kg k +h h kg k +h2 kg k y Lp(τ) x,τ xxy Lp(τ) x,τ y,τ xyy Lp(τ) y,τ yyy Lp(τ) +Ch(cid:0)y,τkgyykLp(τ). (cid:1) or (see [1, Comment 2.15]) k(g−gI) k ≤Ch2 kg k +Ch kg k , x L2(τ) y,τ xyy L2(τ) x,τ xx L2(τ) k(g−gI) k ≤Ch2 kg k +Ch kg k . y L2(τ) x,τ xxy L2(τ) y,τ yy L2(τ) 6 Inthe followinganalysis, Dαv denotesthe directionalderivativeofv alongβ or η for different orders. The following analysis makes use of the former estimates (The latter will make the analysis more shorter). For τ ∈ΩN, we have kω1/2E k ≤Cmaxω1/2(kE k +kE k ) β τ x τ y τ τ ≤Cmaxω1/2{h2 k(ω−1G) k +h k(ω−1G) k +h H k(ω−1G) k x,τ xxx τ x,τ xx τ x,τ τ xxy τ τ +H h k(ω−1G) k +h2 k(ω−1G) k +h k(ω−1G) k } τ y,τ xyy τ y,τ yyy τ y,τ yy τ ≤Ch2 (k(ω−1) Gk +k(ω−1) G k )+Ch (k(ω−1) Gk +k(ω−1) G k ) x,τ xxx τ xx x τ x,τ xx τ x x τ +Ch2 (k(ω−1) Gk +k(ω−1) G k )+Ch (k(ω−1) Gk +k(ω−1) G k ) y,τ yyy τ yy y τ y,τ yy τ y y τ +Ch H (k(ω−1) Gk +k(ω−1) G k +k(ω−1) G k +k(ω−1) G k ) x,τ τ xxy τ xx y τ xy x τ x xy τ +H h (k(ω−1) Gk +k(ω−1) G k +k(ω−1) G k +k(ω−1) G k ) τ y,τ xyy τ xy y τ yy x τ y xy τ 3 2 ≤CH2 kDα(ω−1)DγGk +CH kDα(ω−1)DγGk τ τ τ τ k=2 k=1 X |α|X+|γ|=3 X |α|X+|γ|=2 |α|≥k |α|≥k where we have used the following analysis for Dα(ω−1)DγG : |α|=1,|γ|=2 P k(ω−1) G k ≤Ck |Dα(ω−1)|·G k x xy τ xy τ |α|=1 X ≤Cmax |Dα(ω−1)|·kG k xy τ τ |αX|=1 ≤Ch−1max |Dα(ω−1)|·kG k y,τ x τ τ |αX|=1 ≤Ch−1 |Dα(ω−1)|·G . y,τ x τ (cid:13)|αX|=1 (cid:13) (cid:13) (cid:13) The same analysis can be applied to kω1/2E k . η τ For τ ∈Ω , we have s kω1/2E k ≤Ck−5/2N−2 (σ−5/2+σ−3/2σ−1+σ−1/2σ−2)max(ω−1)1/2+σ−3maxω−1/2 kGk β τ β β η β η τ β η τ τ +Ck−3/2H2 (σ−3/2+σ−(cid:2)1/2σ−1)max(ω−1)1/2+σ−2maxω−1/2 ·NkGk (cid:3) τ β β η τ β η τ τ +Ck−3/2H (cid:2)(σ−3/2+σ−1/2σ−1)max(ω−1)1/2+σ−2maxω−1/2(cid:3)kGk τ β β η τ β η τ τ +Cmaxω1/2(cid:2)H kDα(ω−1)k · kDγGk (cid:3) τ L∞(τ) τ τ |αX|=1 |γX|=1 ≤Ck−1/2N1/2|||G||| ω wherewehaveusedtheestimatesofω−1,standardinverseestimatesandHo¨lder 7 inequalities. Similarly, we have kω1/2E k ≤Ck−1/2N1/2|||G||| . η Ωs ω For τ ∈ΩN \ΩN, we have s kω1/2E k ≤Ck−5/2H2 (σ−5/2+σ−3/2σ−1+σ−1/2σ−2)max(ω−1)1/2+σ−3maxω−1/2 kGk β τ τ β β η β η τ β η τ τ +Ck−2ε−1/2H2 σ−2+(cid:2)σ−1σ−1+σ−2 maxω−1/2·ε1/2 kDγGk (cid:3) τ β β η η τ τ (cid:2) (cid:3) |γX|=1 +Ck−3/2H (σ−3/2+σ−1/2σ−1)max(ω−1)1/2+σ−2maxω−1/2 kGk τ β β η τ β η τ τ +Ck−1ε−1/2(cid:2)H σ−1+σ−1 maxω−1/2·ε1/2 kDγGk (cid:3) τ β η τ τ (cid:2) (cid:3) |γX|=1 ≤Ck−1ε−1/2ln−1N|||G||| ω Similarly, we have kω1/2E k ≤Ck−1ε−1/2ln−1N|||G||| . η Ω\Ωs ω Lemma 4. Let τ ∈ΩN. Let E =ω−1G−(ω−1G)I where (ω−1G)I denote the s bilinear function that interpolates to ω−1G at the vertices of τ. Then kω1/2Ek ≤Ck−1N−1/2|||G||| Ωs ω kω1/2Ek ≤Ck−1ε1/2|||G||| Ω\Ωs ω where H =max{h ,h }. τ x,τ y,τ Proof. We make use of the following standard interpolation error bounds ku−uIk ≤h2 ku k +h2 ku k Lp(τ) x,τ xx Lp(τ) y,τ yy Lp(τ) where p∈[1,∞] and u∈C(τ)∩W2,p(τ). Then, we have kEk ≤h2 k(ω−1G) k +h2 k(ω−1G) k τ x,τ xx τ y,τ yy τ ≤CH2 kDα(ω−1)·Gk +CH2k(|(ω−1) |+|(ω−1) |)·(|G |+|G |)k τ τ τ β η β η τ |αX|=2 ≤CH2 k(ω−1) G k +k(ω−1) G k +k(ω−1) G k +k(ω−1) G k τ β β τ β η τ η β τ η η τ +CHτ2k(cid:8) |Dα(ω−1)|·Gkτ. (cid:9) |αX|=2 From the above inequality, we have kω1/2Ek ≤Ck−1N−1/2|||G||| Ωs ω 8 and kω1/2Ek ≤Ck−1ε−1/2N−1|||G||| . Ω\Ωs ω Following the techniques of (see[5, Lemma 4.4]), we have Γ(x) (ω1/2E)(x)= (ω1/2E) ds η x Z where x ∈ Ω \ Ω , Γ(x) ∈ Γ satisfies (x −Γ(x)) · β = 0 and the following s condition: For ∀y ∈Γ, (x−y)·β =0, |x−Γ(x)|=min|x−y|. y From the above representation of ω1/2E, we have 1−λy Γ(x) 2 kω1/2Ek2 = (ω1/2E) ds dΩ Ωx Zλ0 Zl(xlu,Γ(xlu))"Zx η # 1 Γ(x) 2 λ0 Γ(x) 2 + (ω1/2E) ds dΩ+ (ω1/2E) ds dΩ η η Z1−λxZl(xu,Γ(xu))"Zx # Z0 Zl(xld,Γ(xld))"Zx # ≤Cλ2 k(ω1/2) Ek2 +kω1/2E k2 x η Ωx η Ωx n o ≤Cε2ln2N σ−2kω1/2Ek2 +kω1/2E k2 η Ωx η Ωx ≤Ck−2ε2ln2nN{N3/2ln−2N ·ε−1N−2+ε−o1ln−2N}|||G|||2 ω ≤Ck−2ε|||G|||2 ω where λ = b1λ and 0 b2 x • x ∈{(1−λ ,y):λ ≤y ≤1−λ }; lu x 0 y • x ∈{(1−λ ,y):0≤y ≤λ }; ld x 0 • x ∈{(x,1−λ ):1−λ ≤x≤1}. u y x Lemma 5. If σ = kN−1lnN and σ = kε˜1/2lnN , where k > 1 sufficiently β η large and independent of N and ε. Then 1 B((ω−1G)I −ω−1G,G)≤ k|G|k2. 16 ω Proof. Cauchy-Schwarzsinequality gives |B(E,G)|≤(ε+b2δ)1/2kω1/2E k·(ε+b2δ)1/2kω−1/2G k+εˆ1/2kω1/2E k·εˆ1/2kω−1/2G k β β η η +Ckω1/2Ek·kω−1/2G k+kω1/2Ek·kω−1/2Gk β From Lemma 3 and Lemma 4, we are done. 9 Theorem 3.1. Assumethat σ =kN−1lnN and σ =kε˜1/2lnN, where k >0 β η issufficientlylargeandindependentofεandN. Letx∗ ∈Ω\Ω . Thenforeach xy nonnegative integer υ, there exists a positive constant C =C(υ) and K =K(υ) such that kGk ≤CN−υ, W1,∞(Ωs\Ω′0) ε|G| +kGk ≤CN−υ W1,∞((Ωx∪Ωy)\Ω′0) L∞((Ωx∪Ωy)\Ω′0) and ε|G| +kGk ≤Cε−1/2N−υ. W1,∞(Ωxy\Ω′0) L∞(Ωxy\Ω′0) Proof. On Ω , we apply an inverse estimate. s On Ω\Ω the application of an inverse estimate does not yield a satisfactory s result, so we use a different technique. Let x∈Ω \Ω′ be arbitrary. Starting from x we choose a polygonal curve x 0 Γ ⊂ (Ω\Ω )\Ω′ that joints x with some point on outflow boundaries. If xy 0 (x−x∗)·η <0, we can choose Γ as a line parallel to β. If (x−x∗)·η >0, the situation is a little complicated. We can choose Γ as follows: In Ω \Ω′, we choose the direction of Γ along η or the negative direction of x 0 x-axis so that Γ∩Ω = Φ. In (Ω ∪Ω )\Ω′, we choose the direction of Γ xy s y 0 along η or the positive direction of y−axis. Let TN be the set of mesh rectangle τ in (Ω\Ω )\Ω′ that Γ intersects. Note xy 0 that the length ofthe segmentof Γ that lies in eachτ is at mostCεN−1lnN if τ ∈Ω or τ ∈Ω . x y Then, by the fundamental theorem of calculus and inverse estimates in dif- ferent domain, we can obtain the results. References [1] T.Apel. Anisotropic Finite Elements: Local Estimates and Applications. B. G. Teubner Verlag, Stuttgart, 1999. [2] T.Apel andM.Dobrowolski. Anisotropicinterpolationwithapplicationsto the finite element method. Computing, 47:277–293,1992. [3] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge, 1987. [4] C. Johnson, A. H. Schatz, and L. B. Wahlbin. Crosswind smear and point- wise errors in streamline diffusion finite element methods. Mathematics of Computation, 49(179):25–38,1987. [5] T. Linß and M. Stynes. The SDFEM on shishkin meshes for linear convection–diffusion problems. Numer. Math., 87:457–484,2001. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.