A note of pointwise estimates on Shishkin meshes 2 1 Jin Zhang∗† 0 2 January 30, 2012 n a J 7 Abstract 2 WeproposetheestimatesofthediscreteGreenfunctionforthestream- ] line diffusion finiteelement method (SDFEM) on Shishkinmeshes. A N 1 Problem . h t a We consider the singularly perturbed boundary value problem m [ (1.1a) Lu:=−ε∆u+b·∇u+u=f in Ω=(0,1)2, (1.1b) u=0 on ∂Ω, 1 v 4 whereε≪1isasmallpositiveparameterandb=(b ,b )T >(0,0)T isconstant. 1 2 8 It is also assumed that f is sufficiently smooth. 6 5 . 2 The SDFEM on Shishkin meshes 1 0 2 2.1 Shishkin meshes 1 : Let N > 4 be a positive even integer. We use a piecewise uniform mesh — a v i so-called Shishkin mesh —with N mesh intervals in both x− and y−direction X which condenses in the layer regions. For this purpose we define the two mesh r transition parameters a 1 ε 1 ε λ :=min ,2 lnN and λ :=min ,2 lnN . x y 2 β 2 β (cid:26) 1 (cid:27) (cid:26) 2 (cid:27) Assumption 1. We assume in our analysis that ε ≤ N−1, as is generally the case in practice. Furthermore we assume that λ = 2εβ−1lnN and λ = x 1 y 2εβ−1lnN as otherwise N−1 is exponentially small compared with ε. 2 ∗Email: [email protected] †Address:SchoolofScience, Xi’anJiaotongUniversity,Xi’an,710049, China 1 Ω Ω y xy Ω Ω s x Figure 1: Dissection of Ω and triangulation ΩN. The domain Ω is dissected into four parts as Ω = Ω ∪Ω ∪Ω ∪Ω (see s x y xy FIG. 1), where Ω :=[0,1−λ ]×[0,1−λ ], Ω :=[1−λ ,1]×[0,1−λ ], s x y x x y Ω :=[0,1−λ ]×[1−λ ,1], Ω :=[1−λ ,1]×[1−λ ,1]. y x y xy x y We introducethe setofmeshpoints{(x ,y )∈Ω:i, j =0, ··· , N}defined i j by 2i(1−λ )/N, for i=0, ··· , N/2, x x = i 1−2(N −i)λ /N, for i=N/2+1, ··· , N (cid:26) x and 2j(1−λ )/N, for j =0, ··· , N/2, y y = j 1−2(N −j)λ /N, for j =N/2+1, ··· , N. (cid:26) y Bydrawinglinesthroughthesemeshpointsparalleltothex-axisandy-axisthe domainΩispartitionedintorectangles. ThistriangulationisdenotedbyΩN(see FIG. 1). If D is a mesh subdomain of Ω, we write DN for the triangulation of D. The mesh sizes h =x −x and h =y −y satisfy x,τ i i−1 y,τ j j−1 1−λ x H := , for i=1, ··· , N/2, x N/2 h = x,τ λ hx := x , for i=N/2+1, ··· , N N/2 2 and 1−λ y H := , for j =1, ··· , N/2, y N/2 h = y,τ λ hy := y , for j =N/2+1, ··· , N. N/2 The mesh sizes h and h satisfy x,τ y,τ N−1 ≤H ,H ≤2N−1 and C εN−1lnN ≤h ,h ≤C εN−1lnN, x y 1 x y 2 where C and C are positive constants and independent of ε and of the mesh 1 2 parameter N. The above properties are essential when inverse inequalities are applied in our later analysis. Forthemeshelementsweshallusetwonotations: τ =[x ,x ]×[y ,y ] ij i−1 i j−1 j for a specific element, and τ for a generic mesh rectangle. 2.2 The streamline diffusion finite element method Let V :=H1(Ω). On the above Shishkin mesh we define a finite element space 0 VN :={vN ∈C(Ω¯):vN| =0 and vN| is bilinear, ∀τ ∈ΩN}. ∂Ω τ In this case, the SDFEM reads as Find U ∈VN such that for all vN ∈VN (2.1) ε(∇U,∇vN)+(b·∇U +U,vN +δb·∇vN)=(f,vN +δb·∇vN). (cid:26) where δ =δ(x) is a user-chosen parameter (see [3]). We set b −b b:= b2+b2, β := 1 /b, η := 2 /b and v :=ζT∇v 1 2 b b ζ q (cid:18) 2(cid:19) (cid:18) 1 (cid:19) for any vector ζ of unit length. By an easy calculation one shows that (∇w,∇v)=(w ,v )+(w ,v ). β β η η We rewrite (2.1) as ε(U ,vN)+ε(U ,vN)+(bU +U,vN +δbvN)=(f,vN +δbvN) β β η η β β β and, following usual practice, we set N−1, if x∈Ω , δ(x):= s 0, otherwise. (cid:26) Fortechnicalreasonsinthelateranalysis,weincreasethecrosswinddiffusion(see [4]) by replacing ε(U ,vN) by εˆ(U ,vN) where η η η η ε˜:=max(ε,N−3/2) 3 and ε˜, x∈Ω , s εˆ(x):= ε, x∈Ω\Ω . (cid:26) s We now state our streamline diffusion method with artificial crosswind: Find U ∈VN such that for all vN ∈VN (2.2) B(U,vN)=(f,vN +δbvN), (cid:26) β with (2.3) B(U,vN):=(ε+b2δ)(U ,vN)+εˆ(U ,vN)−b(1−δ)(U,vN)+(U,vN). β β η η β 3 The discrete Green function Let x∗ be a mesh node in Ω. The discrete Green’s function G∈VN associated with x∗ is defined by B(vN,G)=vN(x∗), ∀vN ∈VN. The weighted function ω: (x−x∗)·β (x−x∗)·η (x−x∗)·η ω(x):=g g g − σ σ σ (cid:18) β (cid:19) (cid:18) η (cid:19) (cid:18) η (cid:19) where 2 g(r)= for r∈(−∞,∞). 1+er and σ =kN−1lnN and σ =kε˜1/2lnN. β η b |||G|||2 :=(ε+b2δ)kω−1/2G k2+εˆkω−1/2G k2+ k(ω−1)1/2Gk2+kω−1/2Gk2 ω β η 2 β and (3.1) |||G|||2 =B(ω−1G,G)−(ε+b2δ)((ω−1) G,G ) ω β β −εˆ((ω−1) G,G )−bδ(ω−1G,G ). η η β Thus, we obtain B(ω−1G,G)=B(E,G)+B((ω−1G)I,G) =B(E,G)+(ω−1G)(x∗) where E :=ω−1G−(ω−1G)I. Lemma 1. If σ =kN−1lnN and σ =klnNε˜1/2, then for k >1 sufficiently β η large and independent of N and ε, we have 1 B(ω−1G,G)≥ k|G|k2. 4 ω 4 Proof. From (3.1),we estimate the following terms. (ε+δ) ((ω−1) G,G ) ≤C(ε+δ)1/2σ−1/2·k(ω−1)1/2Gk·(ε+δ)1/2kω−1/2G k β β β β β (cid:12) (cid:12)≤C(ε+δ)1/2σ−1/2k|G|k2 (cid:12) (cid:12) β ω and εˆ ((ω−1) G,G ) ≤Cεˆ1/2σ−1·kω−1/2Gk·εˆ1/2kω−1/2G k η η η η (cid:12) (cid:12)≤Cεˆ1/2σ−1k|G|k2 (cid:12) (cid:12) η ω For bδ(ω−1G,G ), we make use of integration by parts. β From the definition of σ and σ and ε ≤ N−1, we take k sufficiently large β η and we are done. Lemma 2. If σ = kN−1lnN, with k > 0 sufficiently large and independent β of N and ε. Then for each mesh point x∗ ∈Ω\Ω , we have xy 1 (ω−1G)(x∗) ≤ k|G|k2 +CNlnN. 16 ω (cid:12) (cid:12) where C is independe(cid:12)nt of N, ε a(cid:12)nd x∗. Proof. First let x∗ ∈ Ω . Let τ∗ be the unique triangle that has x∗ as its s north-east corner. Then (ω−1G)(x∗) ≤CNkGk τ∗ (cid:12) (cid:12)≤CNmax (ω−1)−1/2 ·k(ω−1)−1/2Gk (cid:12) (cid:12) τ∗ β β τ∗ (cid:12) (cid:12) Calculating (ω−1)−1(x) explicitly, we(cid:12)(cid:12)see that (cid:12)(cid:12) β (ω−1)−1(x)≤Cσ =CkN−1lnN ∀x∈τ∗ β β Thus 1 (ω−1G)(x∗) ≤CNlnN + k|G|k2 16 ω by means of the arith(cid:12)metic-geome(cid:12)tric mean inequality. (cid:12) (cid:12) Next, let x∗ ∈Ω .(The case x∗ ∈Ω is similar.)Write x∗ =(x ,y ). Then x y i j ω−1G(x∗) =|G(x∗)| 1 (cid:12) (cid:12) (cid:12) (cid:12)= Gx(t,yj)dt (cid:12)Zxi (cid:12) (cid:12)(cid:12) 1 yj+(cid:12)(cid:12)1 ≤(cid:12)CHy−1 (cid:12) |Gx(t,y)|dydt Zxi Zyj ≤CN(εlnN ·N−1)1/2kG k x Ωx ≤CN1/2ln1/2Nk|G|k 5 where G (t,y )= Gk,j−Gk−1,j for (t,y )∈τ . x j hx j kj Analysis: for the relationofboundary integraland domainintegral, we analyze 1 yj+1 N yj+1 y −y y−y j+1 j |G (t,y)|dydt= h f(y ) +f(y ) dy x x j j+1 H H Zxi Zyj k=i+1 Zyj (cid:12) y y (cid:12) X (cid:12) (cid:12) (cid:12) (cid:12) where f(y )= Gk,j−Gk−1,j and f(y )= G(cid:12)k,j+1−Gk−1,j+1. (cid:12) j hx j+1 hx For ∆ := yj+1 f(y )yj+1−y +f(y )y−yj dy, we have 1 yj j Hy j+1 Hy (cid:12) (cid:12) R (cid:12) (cid:12) |f(yj)|+(cid:12) |f(yj+1)| 1 (cid:12) H ≥ max{|f(y ),|f(y )|}H if f(y )f(y )≥0 y j j+1 y j j+1 2 2 ∆ = 1 1f2(y )+f2(y ) 1 j j+1 Hy ≥ max{|f(yj),|f(yj+1)|}Hy if f(yj)f(yj+1)<0 2 |f(y )−f(y )| 4 j+1 j For ∀v ∈C2(τ), we have |v |≤C(|v |+|v |) x β η |v |≤C(|v |+|v |+|v |) xx ββ βη ηη Similarly, we have |v |≤C(|v |+|v |) β x y |v |≤C(|v |+|v |+|v |) ββ xx xy yy Lemma 3. Let τ ∈ΩN. Then kω1/2DαEk ≤Ck−1/2N1/2|||G||| Ωs ω kω1/2DαEk ≤Ck−1ε−1/2ln−1N|||G||| ΩN\Ωs ω where H =max{h ,h } and |α|=1, DαG are G and G . τ x,τ y,τ β η Proof. Assume p∈[1,∞] and g ∈C3(τ). Then (see [2, Theorem 4]) k(g−gI) k ≤C h2 kg k +h h kg k +h2 kg k x Lp(τ) x,τ xxx Lp(τ) x,τ y,τ xxy Lp(τ) y,τ xyy Lp(τ) +Ch(cid:0)x,τkgxxkLp(τ), (cid:1) k(g−gI) k ≤C h2 kg k +h h kg k +h2 kg k y Lp(τ) x,τ xxy Lp(τ) x,τ y,τ xyy Lp(τ) y,τ yyy Lp(τ) +Ch(cid:0)y,τkgyykLp(τ). (cid:1) or (see [1, Comment 2.15]) k(g−gI) k ≤Ch2 kg k +Ch kg k , x L2(τ) y,τ xyy L2(τ) x,τ xx L2(τ) k(g−gI) k ≤Ch2 kg k +Ch kg k . y L2(τ) x,τ xxy L2(τ) y,τ yy L2(τ) 6 Inthe followinganalysis, Dαv denotesthe directionalderivativeofv alongβ or η for different orders. The following analysis makes use of the former estimates (The latter will make the analysis more shorter). For τ ∈ΩN, we have kω1/2E k ≤Cmaxω1/2(kE k +kE k ) β τ x τ y τ τ ≤Cmaxω1/2{h2 k(ω−1G) k +h k(ω−1G) k +h H k(ω−1G) k x,τ xxx τ x,τ xx τ x,τ τ xxy τ τ +H h k(ω−1G) k +h2 k(ω−1G) k +h k(ω−1G) k } τ y,τ xyy τ y,τ yyy τ y,τ yy τ ≤Ch2 (k(ω−1) Gk +k(ω−1) G k )+Ch (k(ω−1) Gk +k(ω−1) G k ) x,τ xxx τ xx x τ x,τ xx τ x x τ +Ch2 (k(ω−1) Gk +k(ω−1) G k )+Ch (k(ω−1) Gk +k(ω−1) G k ) y,τ yyy τ yy y τ y,τ yy τ y y τ +Ch H (k(ω−1) Gk +k(ω−1) G k +k(ω−1) G k +k(ω−1) G k ) x,τ τ xxy τ xx y τ xy x τ x xy τ +H h (k(ω−1) Gk +k(ω−1) G k +k(ω−1) G k +k(ω−1) G k ) τ y,τ xyy τ xy y τ yy x τ y xy τ 3 2 ≤CH2 kDα(ω−1)DγGk +CH kDα(ω−1)DγGk τ τ τ τ k=2 k=1 X |α|X+|γ|=3 X |α|X+|γ|=2 |α|≥k |α|≥k where we have used the following analysis for Dα(ω−1)DγG : |α|=1,|γ|=2 P k(ω−1) G k ≤Ck |Dα(ω−1)|·G k x xy τ xy τ |α|=1 X ≤Cmax |Dα(ω−1)|·kG k xy τ τ |αX|=1 ≤Ch−1max |Dα(ω−1)|·kG k y,τ x τ τ |αX|=1 ≤Ch−1 |Dα(ω−1)|·G . y,τ x τ (cid:13)|αX|=1 (cid:13) (cid:13) (cid:13) The same analysis can be applied to kω1/2E k . η τ For τ ∈Ω , we have s kω1/2E k ≤Ck−5/2N−2 (σ−5/2+σ−3/2σ−1+σ−1/2σ−2)max(ω−1)1/2+σ−3maxω−1/2 kGk β τ β β η β η τ β η τ τ +Ck−3/2H2 (σ−3/2+σ−(cid:2)1/2σ−1)max(ω−1)1/2+σ−2maxω−1/2 ·NkGk (cid:3) τ β β η τ β η τ τ +Ck−3/2H (cid:2)(σ−3/2+σ−1/2σ−1)max(ω−1)1/2+σ−2maxω−1/2(cid:3)kGk τ β β η τ β η τ τ +Cmaxω1/2(cid:2)H kDα(ω−1)k · kDγGk (cid:3) τ L∞(τ) τ τ |αX|=1 |γX|=1 ≤Ck−1/2N1/2|||G||| ω wherewehaveusedtheestimatesofω−1,standardinverseestimatesandHo¨lder 7 inequalities. Similarly, we have kω1/2E k ≤Ck−1/2N1/2|||G||| . η Ωs ω For τ ∈ΩN \ΩN, we have s kω1/2E k ≤Ck−5/2H2 (σ−5/2+σ−3/2σ−1+σ−1/2σ−2)max(ω−1)1/2+σ−3maxω−1/2 kGk β τ τ β β η β η τ β η τ τ +Ck−2ε−1/2H2 σ−2+(cid:2)σ−1σ−1+σ−2 maxω−1/2·ε1/2 kDγGk (cid:3) τ β β η η τ τ (cid:2) (cid:3) |γX|=1 +Ck−3/2H (σ−3/2+σ−1/2σ−1)max(ω−1)1/2+σ−2maxω−1/2 kGk τ β β η τ β η τ τ +Ck−1ε−1/2(cid:2)H σ−1+σ−1 maxω−1/2·ε1/2 kDγGk (cid:3) τ β η τ τ (cid:2) (cid:3) |γX|=1 ≤Ck−1ε−1/2ln−1N|||G||| ω Similarly, we have kω1/2E k ≤Ck−1ε−1/2ln−1N|||G||| . η Ω\Ωs ω Lemma 4. Let τ ∈ΩN. Let E =ω−1G−(ω−1G)I where (ω−1G)I denote the s bilinear function that interpolates to ω−1G at the vertices of τ. Then kω1/2Ek ≤Ck−1N−1/2|||G||| Ωs ω kω1/2Ek ≤Ck−1ε1/2|||G||| Ω\Ωs ω where H =max{h ,h }. τ x,τ y,τ Proof. We make use of the following standard interpolation error bounds ku−uIk ≤h2 ku k +h2 ku k Lp(τ) x,τ xx Lp(τ) y,τ yy Lp(τ) where p∈[1,∞] and u∈C(τ)∩W2,p(τ). Then, we have kEk ≤h2 k(ω−1G) k +h2 k(ω−1G) k τ x,τ xx τ y,τ yy τ ≤CH2 kDα(ω−1)·Gk +CH2k(|(ω−1) |+|(ω−1) |)·(|G |+|G |)k τ τ τ β η β η τ |αX|=2 ≤CH2 k(ω−1) G k +k(ω−1) G k +k(ω−1) G k +k(ω−1) G k τ β β τ β η τ η β τ η η τ +CHτ2k(cid:8) |Dα(ω−1)|·Gkτ. (cid:9) |αX|=2 From the above inequality, we have kω1/2Ek ≤Ck−1N−1/2|||G||| Ωs ω 8 and kω1/2Ek ≤Ck−1ε−1/2N−1|||G||| . Ω\Ωs ω Following the techniques of (see[5, Lemma 4.4]), we have Γ(x) (ω1/2E)(x)= (ω1/2E) ds η x Z where x ∈ Ω \ Ω , Γ(x) ∈ Γ satisfies (x −Γ(x)) · β = 0 and the following s condition: For ∀y ∈Γ, (x−y)·β =0, |x−Γ(x)|=min|x−y|. y From the above representation of ω1/2E, we have 1−λy Γ(x) 2 kω1/2Ek2 = (ω1/2E) ds dΩ Ωx Zλ0 Zl(xlu,Γ(xlu))"Zx η # 1 Γ(x) 2 λ0 Γ(x) 2 + (ω1/2E) ds dΩ+ (ω1/2E) ds dΩ η η Z1−λxZl(xu,Γ(xu))"Zx # Z0 Zl(xld,Γ(xld))"Zx # ≤Cλ2 k(ω1/2) Ek2 +kω1/2E k2 x η Ωx η Ωx n o ≤Cε2ln2N σ−2kω1/2Ek2 +kω1/2E k2 η Ωx η Ωx ≤Ck−2ε2ln2nN{N3/2ln−2N ·ε−1N−2+ε−o1ln−2N}|||G|||2 ω ≤Ck−2ε|||G|||2 ω where λ = b1λ and 0 b2 x • x ∈{(1−λ ,y):λ ≤y ≤1−λ }; lu x 0 y • x ∈{(1−λ ,y):0≤y ≤λ }; ld x 0 • x ∈{(x,1−λ ):1−λ ≤x≤1}. u y x Lemma 5. If σ = kN−1lnN and σ = kε˜1/2lnN , where k > 1 sufficiently β η large and independent of N and ε. Then 1 B((ω−1G)I −ω−1G,G)≤ k|G|k2. 16 ω Proof. Cauchy-Schwarzsinequality gives |B(E,G)|≤(ε+b2δ)1/2kω1/2E k·(ε+b2δ)1/2kω−1/2G k+εˆ1/2kω1/2E k·εˆ1/2kω−1/2G k β β η η +Ckω1/2Ek·kω−1/2G k+kω1/2Ek·kω−1/2Gk β From Lemma 3 and Lemma 4, we are done. 9 Theorem 3.1. Assumethat σ =kN−1lnN and σ =kε˜1/2lnN, where k >0 β η issufficientlylargeandindependentofεandN. Letx∗ ∈Ω\Ω . Thenforeach xy nonnegative integer υ, there exists a positive constant C =C(υ) and K =K(υ) such that kGk ≤CN−υ, W1,∞(Ωs\Ω′0) ε|G| +kGk ≤CN−υ W1,∞((Ωx∪Ωy)\Ω′0) L∞((Ωx∪Ωy)\Ω′0) and ε|G| +kGk ≤Cε−1/2N−υ. W1,∞(Ωxy\Ω′0) L∞(Ωxy\Ω′0) Proof. On Ω , we apply an inverse estimate. s On Ω\Ω the application of an inverse estimate does not yield a satisfactory s result, so we use a different technique. Let x∈Ω \Ω′ be arbitrary. Starting from x we choose a polygonal curve x 0 Γ ⊂ (Ω\Ω )\Ω′ that joints x with some point on outflow boundaries. If xy 0 (x−x∗)·η <0, we can choose Γ as a line parallel to β. If (x−x∗)·η >0, the situation is a little complicated. We can choose Γ as follows: In Ω \Ω′, we choose the direction of Γ along η or the negative direction of x 0 x-axis so that Γ∩Ω = Φ. In (Ω ∪Ω )\Ω′, we choose the direction of Γ xy s y 0 along η or the positive direction of y−axis. Let TN be the set of mesh rectangle τ in (Ω\Ω )\Ω′ that Γ intersects. Note xy 0 that the length ofthe segmentof Γ that lies in eachτ is at mostCεN−1lnN if τ ∈Ω or τ ∈Ω . x y Then, by the fundamental theorem of calculus and inverse estimates in dif- ferent domain, we can obtain the results. References [1] T.Apel. Anisotropic Finite Elements: Local Estimates and Applications. B. G. Teubner Verlag, Stuttgart, 1999. [2] T.Apel andM.Dobrowolski. Anisotropicinterpolationwithapplicationsto the finite element method. Computing, 47:277–293,1992. [3] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge, 1987. [4] C. Johnson, A. H. Schatz, and L. B. Wahlbin. Crosswind smear and point- wise errors in streamline diffusion finite element methods. Mathematics of Computation, 49(179):25–38,1987. [5] T. Linß and M. Stynes. The SDFEM on shishkin meshes for linear convection–diffusion problems. Numer. Math., 87:457–484,2001. 10