ebook img

A nonparametric copula density estimator incorporating information on bivariate marginals PDF

0.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A nonparametric copula density estimator incorporating information on bivariate marginals

A nonparametric copula density estimator incorporating information on bivariate marginals 6 1 0 Yu-Hsiang Cheng 2 e-mail: [email protected] n and a J 0 Tzee-Ming Huang∗ 3 e-mail: [email protected] ] E M 1. Introduction . t Considertheproblemofestimatingcopuladensitywhenthebivariatemarginals a are known. Let c be a copula density. Let W be the space of tensor product t h s linear B-splines on [0,1]d with equally space knots, where h=(h ,...,h ) and [ 1 d h is the distance between two adjacent knots for the i-th dimension. Let B , i 1 1 ..., B denote the tensor product B-spline basis functions for W . Then, we k h v consider c is approximated by 9 0 α B +···+α B , 1 1 1 k k 0 where α ,...,α are coefficients. First, we state some notations and definitions 0 1 k . as follows. 2 0 • W =L2([0,1]d). 6 • S:{(f ,...,f ):f ,...,f ∈L2([0,1]) and 1f (x)dx=···= 1f (x)dx}. 1 1 d 1 d 0 1 0 d • A : W → S is a linear operator such that foRr f in W, Af = (fR,...,f ), : 1 d v where i X 1 1 ar fi(xi)=Z0 ···Z0 f(x1,...,xd)dx1···dxi−1dxi+1···dxd. • H : L2([0,1]d) → L2([0,1]2) to be the linear mapping such that for ij f ∈W and for 1≤i,j ≤d, (H f)(x ,x ) is given by ij i j 1 1 ··· f(x ,...,x )dx ···dx dx ···dx dx ···dx . Z Z 1 d 1 i−1 i+1 j−1 j+1 d 0 0 T • M = c(u)B (u)du,..., c(u)B (u)du (cid:16)R[0,1]d 1 R[0,1]d k (cid:17) ∗Correspondingauthor. 1 imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 2 2. Methodology and main results Suppose that we observe data X ,...,X with copula density c, where X = 1 n i (X ,...,X ). For i=1,...,k, let i,1 i,d n 1 Mˆ = B Fˆ (X ),...,Fˆ (X ) i i 1 j,1 d j,d n Xj=1 (cid:0) (cid:1) be a moment estimator for M , where Fˆ (x) = 1 n I(X ≤ x) is the em- i j n i=1 i,j pirical CDF of data X ,...,X . Let P 1,j n,j B (u)B (u)du ··· B (u)B (u)du [0,1]d 1 1 [0,1]d 1 k P = R ... ... R ...   B (u)B (u)du ··· B (u)B (u)du   [0,1]d k 1 [0,1]d k k  R R and 1 1 k 2 Pen(c,α)= (H c)(u ,u )−(H α B )(u ,u ) du du , 1≤Xi,j≤dZ0 Z0 (cid:12)(cid:12) ij i j ijXt=1 t t i j (cid:12)(cid:12) i j (cid:12) (cid:12) where α = (α ,...,α )T is the vector of B-spline coefficients. We estimate the 1 k copula density c using cˆ= αˆ B +···+αˆ B , where αˆ = (αˆ ,...,αˆ ) is the 1 1 k k 1 k minimizer of β(Pα−Mˆ)T(Pα−Mˆ)+λPen(c,α) under the constraints that αTB is nonnegative and the marginals of αTB are uniform density on [0,1], where B =(B ,...,B )T and β =1/( d h ). Now, 1 k i=1 i we show that cˆis consistent for c under some mild conditions. TQheorem1 gives the approximation error of B-splines under a linear constraint and a nonnega- tivity consraint. Theorem 1. Supposethat η ∈S and{f ∈W :Af =η}6=∅. LetV denote the h set {f ∈W :f ≥0} and V(0) be the interior of V. Suppose that g ∈{f ∈V(0) : def Af = η} and ε is a positive number such that B(g,ε) = {f ∈ W : kf −gk < ε}⊂V(0) and ε 2dkg¯ −gk< w 2 for some g¯ ∈ W . Then for f ∈ V ∩{f ∈ W : Af = η} and f¯ ∈ W , there w h w h exists f ∈V ∩{f ∈W :Af =η} such that w h 2 kf −fk≤2d 1+ (kfk+kgk+ε) kf¯ −fk. w w (cid:16) ε (cid:17) Using Theorem 1, we can establish the consistency of cˆ, and the result is given in Theorem 2. Theorem 2. Let k = d (1/h ) + 1 denote the number of tensor basis i=1 i functions.Supposethat lQim m(cid:0)ax(h ,...,h(cid:1) )=0and lim (1/h )2+dk/n=0, 1 d min n→∞ n→∞ where h =min(h ,...,h ) . Then, kcˆ−ck→0 in probability. min 1 d imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 3 3. Proofs We will provide the proofs of Theorems 1 and 2 in this section. 3.1. Proof of Theorem 1 TheproofofTheorem1isbasedonLemma1,whichisstatedandprovedbelow. Lemma 1. Suppose that η ∈ S and {f ∈ W : Af = η} =6 ∅. Then for h f ∈ {f ∈ W : Af = η} and f¯ ∈ W , there exists f ∈ {f ∈ W : Af = η} w h w h such that kf −fk≤2dkf¯ −fk, w w where k·k denotes the L2 norm. Proof. First, we will prove Lemma 1 when η =(0,...,0). For any f¯ ∈W , let w h (f ,...,f ) = Af¯ and µ = 1f (x)dx. Let g(x ,...,x ) = d f (x ) and 1 d w 0 1 1 d i=1 i i f∗ =f¯ −g, then we have R P w Af∗ =Af¯ −Ag =−µ(d−1)(1,...,1). w Let e denote the constant function 1 on [0,1]d, then e ∈ W . Take f = 1 1 h w f∗+µ(d−1)e , then Af =(0,...,0) and 1 w kf −fk ≤ kf −f¯ k+kf¯ −fk w w w w ≤ kµ(d−1)e −gk+kf¯ −fk 1 w ≤ |µ|(d−1)ke k+dkf¯ −fk+kf¯ −fk 1 w w ≤ 2dkf¯ −fk. w Here we have used the fact that µ2 ≤kf k2 ≤kf¯ −fk2 for i=1, ..., d. i w Next, we will prove Lemma 1 for a general η. From the assumption that {f ∈ W : Af = η} 6= ∅, there exists a function f˜in W such that Af˜= η. h h Suppose that f ∈{f ∈W :Af =η} and f¯ ∈W . ThenA(f−f˜)=(0,...,0). w h Apply Lemma 1 with η, f and f¯ replaced by (0,...,0), f −f˜ and f¯ −f˜ w w respectively, then there exists g ∈W such that Ag =(0,...,0) and w h w kg −(f −f˜)k≤2dk(f¯ −f˜)−(f −f˜)k. w w Take f =g +f˜, then f ∈W , Af =η and the above equation becomes w w w h w kf −fk≤2dkf¯ −fk. w w The proof of Lemma 1 is complete. Now, we will prove Theorem 1. imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 4 Proof. The proof for Theorem 1 is adapted from the proof for Lemma 2.4 in Wong [1]. Suppose that the assumptions in Theorem 1 hold, f ∈V ∩{f ∈W : Af = η} and f¯ ∈ W . Then by Lemma 1, there exist g˜ , f˜ ∈ {f ∈ W : w h w w h Af =η} such that ε kg˜ −gk≤2dkg¯ −gk< w w 2 and kf˜ −fk≤2dk f¯ −f|. w w Note that g˜ ∈ {f ∈ W : Af = η}∩V(0). Let f = τf˜ +(1−τ)g˜ and w h τ w w τ∗ = sup{τ ∈ [0,1] : f ∈ V}, then we will show that Theorem 1 holds with τ fw =fτ∗. Take ε =ε/2, then B(g˜ ,ε )⊂B(g,ε)⊂V(0). For 1 w 1 ε 1 0≤τ ≤ , ε +kf˜ −fk 1 w we have kτ(f˜ −f)/(1−τ)k≤ε , so w 1 τ (f˜ −f)+g˜ ∈B(g˜ ,ε )⊂V, w w w 1 1−τ which gives f = τf˜ +(1−τ)g˜ τ w w τ = τf +(1−τ) (f˜ −f)+g˜ ∈V. w w h1−τ i Therefore, we have ε kf˜ −fk kf˜ −fk 1−τ∗ ≤1− 1 = w ≤ w ε1+kf˜w−fk ε1+kf˜w−fk ε1 and kf −fk = kτ∗f˜ +(1−τ∗)g˜ −fk w w w ≤ τ∗kf˜ −fk+(1−τ∗)kg˜ −fk w w 2 ≤ kf˜ −fk 1+ (kfk+kgk+ε) w (cid:16) ε (cid:17) 2 ≤ 2d 1+ (kfk+kgk+ε) kf¯ −fk. w (cid:16) ε (cid:17) 3.2. Proof of Theorem 2 Beforeweprovidethe proofofTheorem2,the Lemma2anditsproofarestated as follows. imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 5 n 1 Lemma2. Fort=1,...,k,Mˆ = B Fˆ (X ),...,Fˆ (X ) .Leth = t t 1 i,1 d i,d min n Xi=1 (cid:0) (cid:1) 2 min(h ,...,h ). Then E(|Mˆ −M |2)=O 1 1+ d . 1 d t t (cid:0)n(cid:1)(cid:16) (cid:16)hmin(cid:17) (cid:17) Proof. Forsimplicity,We firstdefinesomenotations.For1≤ℓ≤dand1≤i≤ n, let ζ =Fˆ (X )−F (X ), where F is the CDF for X , and i,ℓ ℓ i,ℓ ℓ i,ℓ ℓ i,ℓ ϕ = B F (X )+ζ ,...,F (X )+ζ 1 t 1 i,1 i,1 d i,d i,d . (cid:0) (cid:1) . . ϕ = B F (X ),...,F (X ),F (X )+ζ ,...,F (X )+ζ ℓ t 1 i,1 ℓ−1 i,ℓ−1 ℓ i,ℓ i,ℓ d i,d i,d . (cid:0) (cid:1) . . ϕ = B F (X ),...,F (X ),F (X )+ζ d t 1 i,1 d−1 i,d−1 d i,d i,d (cid:0) (cid:1) ϕ = B F (X ),...,F (X ) . d+1 t 1 i,1 d i,d (cid:0) (cid:1) Since B (u ,...,u )=φ (u )···φ (u ), where for 1≤j ≤d, |φ |≤1 and t 1 d t,1 1 t,d d t,j |x −x | 1 2 |φ (x )−φ (x )|≤ for x ,x ∈[0,1], t,j 1 t,j 2 1 2 h min we have ℓ−1 d ϕ −ϕ = φ F (X )+ζ −φ F (X ) φ F (X ) φ F (X )+ζ , ℓ ℓ+1 t,ℓ ℓ i,ℓ i,ℓ t,ℓ ℓ i,ℓ t,s s i,s t,s s i,s i,s h (cid:0) (cid:1) (cid:0) (cid:1)isY=1 (cid:0) (cid:1)s=Yℓ+1 (cid:0) (cid:1) and 1 |ϕ −ϕ |≤|φ F (X )+ζ −φ F (X ) |≤ |ζ |. ℓ ℓ+1 t,ℓ ℓ i,ℓ i,ℓ t,ℓ ℓ i,ℓ i,ℓ h (cid:0) (cid:1) (cid:0) (cid:1) min Therefore, |B Fˆ (X ),...,Fˆ (X ) −B F (X ),...,F (X ) | t 1 i,1 d i,d t 1 i,1 d i,d (cid:0) (cid:1) (cid:0) (cid:1) = |(ϕ −ϕ )+(ϕ −ϕ )+···+(ϕ −ϕ )| 1 2 2 3 d d+1 d 1 ≤ |ζ |. i,ℓ h min X ℓ=1 In addition, n 1 |M −Mˆ | = c(u)B (u)du− B Fˆ (X ),...,Fˆ (X ) t t (cid:12)(cid:12)Z[0,1]d t nXi=1 t(cid:0) 1 i,1 d i,d (cid:1)(cid:12)(cid:12) (cid:12) n (cid:12) 1 ≤ B Fˆ (X ),...,Fˆ (X ) −B F (X ),...,F (X ) (cid:12)(cid:12)nXi=1h t(cid:0) 1 i,1 d i,d (cid:1) t(cid:0) 1 i,1 d i,d (cid:1)i(cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) I | n {z } 1 + B F (X ),...,F (X ) −E B (F (X ),...,F (X ) . t 1 i,1 d i,d t 1 i,1 d i,d (cid:12)(cid:12)nXi=1 (cid:0) (cid:1) (cid:0) (cid:1)(cid:12)(cid:12) (cid:12) (cid:12) II | {z } imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 6 Since |I|≤ 1 n d |ζ |, we have nhmin i=1 ℓ=1 i,ℓ P P n d n d 1 d 2 1 d 2 2n+2 d 2 1 EI2 ≤ Eζ2 = = O . (cid:16)nd(cid:17)(cid:16)hmin(cid:17) XX i,ℓ (cid:16)nd(cid:17)(cid:16)hmin(cid:17) XX 12n2 (cid:16)hmin(cid:17) (cid:16)n(cid:17) i=1ℓ=1 j=1ℓ=1 In addition, 1 1 EII2 ≤ =O , n (cid:16)n(cid:17) so 1 d 2 E(|M −Mˆ |2)=O 1+ . t t (cid:16)n(cid:17)(cid:16) (cid:16)hmin(cid:17) (cid:17) Now, we will prove Theorem 2. Proof. Suppose that there exists a α∗ such that k(α∗)TB −ck ≤ ∆ , where 1 (α∗)TB satisfies the constraints for a copula density. Then, kαˆTB−ck2 ≤ 2k(αˆ−α∗)TBk2+2k(α∗)TB−ck2 ≤ 2(αˆ−α∗)TP(αˆ−α∗)+2∆2 1 ≤ 2(αˆ−α∗)TPTP−1P(αˆ−α∗)+2∆2 1 2 ≤ (αˆ−α∗)TPTP(αˆ−α∗)+2∆2 min(eigen(P)) 1 2 ≤ β(αˆ−α∗)TPTP(αˆ−α∗) +2∆2.(1) (cid:16)βmin(eigen(P))(cid:17)(cid:16) (cid:17) 1 Here the eigen(A) denotes the eigenvalues of a matrix A. Let I = β(Pαˆ−Mˆ)T(Pαˆ−Mˆ)+λPen(c,αˆ) 0 −[β(Pα∗−Mˆ)T(Pα∗−Mˆ)+λPen(c,α∗)] −[β(Pαˆ−M)T(Pαˆ−M)+λPen(c,αˆ)] +β(Pα∗−M)T(Pα∗−M)+λPen(c,α∗). Since β(Pαˆ−Mˆ)T(Pαˆ−Mˆ)+λPen(c,αˆ) ≤ β(Pα∗−Mˆ)T(Pα∗−Mˆ)+λPen(c,α∗), we have I +β(Pαˆ−M)T(Pαˆ−M)+λPen(c,αˆ) 0 ≤ β(Pα∗−M)T(Pα∗−M)+λPen(c,α∗). Therefore, β(αˆ−α∗)TPTP(αˆ−α∗) ≤2β(Pαˆ−M)T(Pαˆ−M)+2β(Pα∗−M)T(Pα∗−M) ≤4β(Pα∗−M)T(Pα∗−M)+2λPen(c,α∗)−2I . (2) 0 imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 7 Note that I =2β(Mˆ −M)TPα∗−2β(Mˆ −M)TPαˆ, 0 so −2I ≤ 4|β(Mˆ −M)TP(αˆ−α∗)| 0 ≤ 4 β(Mˆ −M)T(Mˆ −M) β P(αˆ−α∗) T P(αˆ−α∗) (3) q q (cid:0) (cid:1) (cid:0) (cid:1) Let ε = 4β(Pα∗−M)T(Pα∗−M)+2λPen(c,α∗), 1 ε = β(Mˆ −M)T(Mˆ −M), 2 q and T U = β P(αˆ−α∗) P(αˆ−α∗) , q (cid:0) (cid:1) (cid:0) (cid:1) then it follows from (2) and (3) that U2 ≤ε +4ε U, 1 2 so |U|≤2ε + ε +4ε2. (4) 1 q 1 2 To control ε , let c = B (u)du for 1≤i≤k, then 1 i [0,1]d i R (Pα∗−M)T(Pα∗−M) ≤ max c B (u) (α∗)TB(u)−c(u) 2du 1≤i≤k iZ[0,1]d1≤Xi≤k i (cid:0) (cid:1) = ∆2O(1)/β, 1 which, together with the fact that Pen(c,α∗) = (d(d−1)/2)∆2, implies that 1 ε =∆2O(1)→0 as n→∞. 1 1 To control ε , note that from Lemma 2, we have 2 k d 2 1 d Eε2 ≤ O 1+ 2 (cid:16)n(cid:17)(cid:16) (cid:16)hmin(cid:17) (cid:17)(cid:16)hmin(cid:17) k 1 2+d = O , (cid:16)n(cid:17)(cid:16)hmin(cid:17) so ε converges to 0 in probability. 2 Fromthe abovediscussionforε andε ,itfollowsfrom(4)thatU converges 1 2 to 0 in probability. From (1), 2 kαˆTB−ck2 ≤ U2+2∆2 =O(1)U2+2∆2, (cid:16)βmin(eigen(P))(cid:17) 1 1 so kcˆ−ck=kαˆTB−ck converges to 0 in probability. References [1] W.H.Wong. Onconstrainedmultivariatesplinesandtheirapproximations. Numerische Mathematik, 43:141–152,1984. imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.