A nonparametric copula density estimator incorporating information on bivariate marginals 6 1 0 Yu-Hsiang Cheng 2 e-mail: [email protected] n and a J 0 Tzee-Ming Huang∗ 3 e-mail: [email protected] ] E M 1. Introduction . t Considertheproblemofestimatingcopuladensitywhenthebivariatemarginals a are known. Let c be a copula density. Let W be the space of tensor product t h s linear B-splines on [0,1]d with equally space knots, where h=(h ,...,h ) and [ 1 d h is the distance between two adjacent knots for the i-th dimension. Let B , i 1 1 ..., B denote the tensor product B-spline basis functions for W . Then, we k h v consider c is approximated by 9 0 α B +···+α B , 1 1 1 k k 0 where α ,...,α are coefficients. First, we state some notations and definitions 0 1 k . as follows. 2 0 • W =L2([0,1]d). 6 • S:{(f ,...,f ):f ,...,f ∈L2([0,1]) and 1f (x)dx=···= 1f (x)dx}. 1 1 d 1 d 0 1 0 d • A : W → S is a linear operator such that foRr f in W, Af = (fR,...,f ), : 1 d v where i X 1 1 ar fi(xi)=Z0 ···Z0 f(x1,...,xd)dx1···dxi−1dxi+1···dxd. • H : L2([0,1]d) → L2([0,1]2) to be the linear mapping such that for ij f ∈W and for 1≤i,j ≤d, (H f)(x ,x ) is given by ij i j 1 1 ··· f(x ,...,x )dx ···dx dx ···dx dx ···dx . Z Z 1 d 1 i−1 i+1 j−1 j+1 d 0 0 T • M = c(u)B (u)du,..., c(u)B (u)du (cid:16)R[0,1]d 1 R[0,1]d k (cid:17) ∗Correspondingauthor. 1 imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 2 2. Methodology and main results Suppose that we observe data X ,...,X with copula density c, where X = 1 n i (X ,...,X ). For i=1,...,k, let i,1 i,d n 1 Mˆ = B Fˆ (X ),...,Fˆ (X ) i i 1 j,1 d j,d n Xj=1 (cid:0) (cid:1) be a moment estimator for M , where Fˆ (x) = 1 n I(X ≤ x) is the em- i j n i=1 i,j pirical CDF of data X ,...,X . Let P 1,j n,j B (u)B (u)du ··· B (u)B (u)du [0,1]d 1 1 [0,1]d 1 k P = R ... ... R ... B (u)B (u)du ··· B (u)B (u)du [0,1]d k 1 [0,1]d k k R R and 1 1 k 2 Pen(c,α)= (H c)(u ,u )−(H α B )(u ,u ) du du , 1≤Xi,j≤dZ0 Z0 (cid:12)(cid:12) ij i j ijXt=1 t t i j (cid:12)(cid:12) i j (cid:12) (cid:12) where α = (α ,...,α )T is the vector of B-spline coefficients. We estimate the 1 k copula density c using cˆ= αˆ B +···+αˆ B , where αˆ = (αˆ ,...,αˆ ) is the 1 1 k k 1 k minimizer of β(Pα−Mˆ)T(Pα−Mˆ)+λPen(c,α) under the constraints that αTB is nonnegative and the marginals of αTB are uniform density on [0,1], where B =(B ,...,B )T and β =1/( d h ). Now, 1 k i=1 i we show that cˆis consistent for c under some mild conditions. TQheorem1 gives the approximation error of B-splines under a linear constraint and a nonnega- tivity consraint. Theorem 1. Supposethat η ∈S and{f ∈W :Af =η}6=∅. LetV denote the h set {f ∈W :f ≥0} and V(0) be the interior of V. Suppose that g ∈{f ∈V(0) : def Af = η} and ε is a positive number such that B(g,ε) = {f ∈ W : kf −gk < ε}⊂V(0) and ε 2dkg¯ −gk< w 2 for some g¯ ∈ W . Then for f ∈ V ∩{f ∈ W : Af = η} and f¯ ∈ W , there w h w h exists f ∈V ∩{f ∈W :Af =η} such that w h 2 kf −fk≤2d 1+ (kfk+kgk+ε) kf¯ −fk. w w (cid:16) ε (cid:17) Using Theorem 1, we can establish the consistency of cˆ, and the result is given in Theorem 2. Theorem 2. Let k = d (1/h ) + 1 denote the number of tensor basis i=1 i functions.Supposethat lQim m(cid:0)ax(h ,...,h(cid:1) )=0and lim (1/h )2+dk/n=0, 1 d min n→∞ n→∞ where h =min(h ,...,h ) . Then, kcˆ−ck→0 in probability. min 1 d imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 3 3. Proofs We will provide the proofs of Theorems 1 and 2 in this section. 3.1. Proof of Theorem 1 TheproofofTheorem1isbasedonLemma1,whichisstatedandprovedbelow. Lemma 1. Suppose that η ∈ S and {f ∈ W : Af = η} =6 ∅. Then for h f ∈ {f ∈ W : Af = η} and f¯ ∈ W , there exists f ∈ {f ∈ W : Af = η} w h w h such that kf −fk≤2dkf¯ −fk, w w where k·k denotes the L2 norm. Proof. First, we will prove Lemma 1 when η =(0,...,0). For any f¯ ∈W , let w h (f ,...,f ) = Af¯ and µ = 1f (x)dx. Let g(x ,...,x ) = d f (x ) and 1 d w 0 1 1 d i=1 i i f∗ =f¯ −g, then we have R P w Af∗ =Af¯ −Ag =−µ(d−1)(1,...,1). w Let e denote the constant function 1 on [0,1]d, then e ∈ W . Take f = 1 1 h w f∗+µ(d−1)e , then Af =(0,...,0) and 1 w kf −fk ≤ kf −f¯ k+kf¯ −fk w w w w ≤ kµ(d−1)e −gk+kf¯ −fk 1 w ≤ |µ|(d−1)ke k+dkf¯ −fk+kf¯ −fk 1 w w ≤ 2dkf¯ −fk. w Here we have used the fact that µ2 ≤kf k2 ≤kf¯ −fk2 for i=1, ..., d. i w Next, we will prove Lemma 1 for a general η. From the assumption that {f ∈ W : Af = η} 6= ∅, there exists a function f˜in W such that Af˜= η. h h Suppose that f ∈{f ∈W :Af =η} and f¯ ∈W . ThenA(f−f˜)=(0,...,0). w h Apply Lemma 1 with η, f and f¯ replaced by (0,...,0), f −f˜ and f¯ −f˜ w w respectively, then there exists g ∈W such that Ag =(0,...,0) and w h w kg −(f −f˜)k≤2dk(f¯ −f˜)−(f −f˜)k. w w Take f =g +f˜, then f ∈W , Af =η and the above equation becomes w w w h w kf −fk≤2dkf¯ −fk. w w The proof of Lemma 1 is complete. Now, we will prove Theorem 1. imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 4 Proof. The proof for Theorem 1 is adapted from the proof for Lemma 2.4 in Wong [1]. Suppose that the assumptions in Theorem 1 hold, f ∈V ∩{f ∈W : Af = η} and f¯ ∈ W . Then by Lemma 1, there exist g˜ , f˜ ∈ {f ∈ W : w h w w h Af =η} such that ε kg˜ −gk≤2dkg¯ −gk< w w 2 and kf˜ −fk≤2dk f¯ −f|. w w Note that g˜ ∈ {f ∈ W : Af = η}∩V(0). Let f = τf˜ +(1−τ)g˜ and w h τ w w τ∗ = sup{τ ∈ [0,1] : f ∈ V}, then we will show that Theorem 1 holds with τ fw =fτ∗. Take ε =ε/2, then B(g˜ ,ε )⊂B(g,ε)⊂V(0). For 1 w 1 ε 1 0≤τ ≤ , ε +kf˜ −fk 1 w we have kτ(f˜ −f)/(1−τ)k≤ε , so w 1 τ (f˜ −f)+g˜ ∈B(g˜ ,ε )⊂V, w w w 1 1−τ which gives f = τf˜ +(1−τ)g˜ τ w w τ = τf +(1−τ) (f˜ −f)+g˜ ∈V. w w h1−τ i Therefore, we have ε kf˜ −fk kf˜ −fk 1−τ∗ ≤1− 1 = w ≤ w ε1+kf˜w−fk ε1+kf˜w−fk ε1 and kf −fk = kτ∗f˜ +(1−τ∗)g˜ −fk w w w ≤ τ∗kf˜ −fk+(1−τ∗)kg˜ −fk w w 2 ≤ kf˜ −fk 1+ (kfk+kgk+ε) w (cid:16) ε (cid:17) 2 ≤ 2d 1+ (kfk+kgk+ε) kf¯ −fk. w (cid:16) ε (cid:17) 3.2. Proof of Theorem 2 Beforeweprovidethe proofofTheorem2,the Lemma2anditsproofarestated as follows. imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 5 n 1 Lemma2. Fort=1,...,k,Mˆ = B Fˆ (X ),...,Fˆ (X ) .Leth = t t 1 i,1 d i,d min n Xi=1 (cid:0) (cid:1) 2 min(h ,...,h ). Then E(|Mˆ −M |2)=O 1 1+ d . 1 d t t (cid:0)n(cid:1)(cid:16) (cid:16)hmin(cid:17) (cid:17) Proof. Forsimplicity,We firstdefinesomenotations.For1≤ℓ≤dand1≤i≤ n, let ζ =Fˆ (X )−F (X ), where F is the CDF for X , and i,ℓ ℓ i,ℓ ℓ i,ℓ ℓ i,ℓ ϕ = B F (X )+ζ ,...,F (X )+ζ 1 t 1 i,1 i,1 d i,d i,d . (cid:0) (cid:1) . . ϕ = B F (X ),...,F (X ),F (X )+ζ ,...,F (X )+ζ ℓ t 1 i,1 ℓ−1 i,ℓ−1 ℓ i,ℓ i,ℓ d i,d i,d . (cid:0) (cid:1) . . ϕ = B F (X ),...,F (X ),F (X )+ζ d t 1 i,1 d−1 i,d−1 d i,d i,d (cid:0) (cid:1) ϕ = B F (X ),...,F (X ) . d+1 t 1 i,1 d i,d (cid:0) (cid:1) Since B (u ,...,u )=φ (u )···φ (u ), where for 1≤j ≤d, |φ |≤1 and t 1 d t,1 1 t,d d t,j |x −x | 1 2 |φ (x )−φ (x )|≤ for x ,x ∈[0,1], t,j 1 t,j 2 1 2 h min we have ℓ−1 d ϕ −ϕ = φ F (X )+ζ −φ F (X ) φ F (X ) φ F (X )+ζ , ℓ ℓ+1 t,ℓ ℓ i,ℓ i,ℓ t,ℓ ℓ i,ℓ t,s s i,s t,s s i,s i,s h (cid:0) (cid:1) (cid:0) (cid:1)isY=1 (cid:0) (cid:1)s=Yℓ+1 (cid:0) (cid:1) and 1 |ϕ −ϕ |≤|φ F (X )+ζ −φ F (X ) |≤ |ζ |. ℓ ℓ+1 t,ℓ ℓ i,ℓ i,ℓ t,ℓ ℓ i,ℓ i,ℓ h (cid:0) (cid:1) (cid:0) (cid:1) min Therefore, |B Fˆ (X ),...,Fˆ (X ) −B F (X ),...,F (X ) | t 1 i,1 d i,d t 1 i,1 d i,d (cid:0) (cid:1) (cid:0) (cid:1) = |(ϕ −ϕ )+(ϕ −ϕ )+···+(ϕ −ϕ )| 1 2 2 3 d d+1 d 1 ≤ |ζ |. i,ℓ h min X ℓ=1 In addition, n 1 |M −Mˆ | = c(u)B (u)du− B Fˆ (X ),...,Fˆ (X ) t t (cid:12)(cid:12)Z[0,1]d t nXi=1 t(cid:0) 1 i,1 d i,d (cid:1)(cid:12)(cid:12) (cid:12) n (cid:12) 1 ≤ B Fˆ (X ),...,Fˆ (X ) −B F (X ),...,F (X ) (cid:12)(cid:12)nXi=1h t(cid:0) 1 i,1 d i,d (cid:1) t(cid:0) 1 i,1 d i,d (cid:1)i(cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) I | n {z } 1 + B F (X ),...,F (X ) −E B (F (X ),...,F (X ) . t 1 i,1 d i,d t 1 i,1 d i,d (cid:12)(cid:12)nXi=1 (cid:0) (cid:1) (cid:0) (cid:1)(cid:12)(cid:12) (cid:12) (cid:12) II | {z } imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 6 Since |I|≤ 1 n d |ζ |, we have nhmin i=1 ℓ=1 i,ℓ P P n d n d 1 d 2 1 d 2 2n+2 d 2 1 EI2 ≤ Eζ2 = = O . (cid:16)nd(cid:17)(cid:16)hmin(cid:17) XX i,ℓ (cid:16)nd(cid:17)(cid:16)hmin(cid:17) XX 12n2 (cid:16)hmin(cid:17) (cid:16)n(cid:17) i=1ℓ=1 j=1ℓ=1 In addition, 1 1 EII2 ≤ =O , n (cid:16)n(cid:17) so 1 d 2 E(|M −Mˆ |2)=O 1+ . t t (cid:16)n(cid:17)(cid:16) (cid:16)hmin(cid:17) (cid:17) Now, we will prove Theorem 2. Proof. Suppose that there exists a α∗ such that k(α∗)TB −ck ≤ ∆ , where 1 (α∗)TB satisfies the constraints for a copula density. Then, kαˆTB−ck2 ≤ 2k(αˆ−α∗)TBk2+2k(α∗)TB−ck2 ≤ 2(αˆ−α∗)TP(αˆ−α∗)+2∆2 1 ≤ 2(αˆ−α∗)TPTP−1P(αˆ−α∗)+2∆2 1 2 ≤ (αˆ−α∗)TPTP(αˆ−α∗)+2∆2 min(eigen(P)) 1 2 ≤ β(αˆ−α∗)TPTP(αˆ−α∗) +2∆2.(1) (cid:16)βmin(eigen(P))(cid:17)(cid:16) (cid:17) 1 Here the eigen(A) denotes the eigenvalues of a matrix A. Let I = β(Pαˆ−Mˆ)T(Pαˆ−Mˆ)+λPen(c,αˆ) 0 −[β(Pα∗−Mˆ)T(Pα∗−Mˆ)+λPen(c,α∗)] −[β(Pαˆ−M)T(Pαˆ−M)+λPen(c,αˆ)] +β(Pα∗−M)T(Pα∗−M)+λPen(c,α∗). Since β(Pαˆ−Mˆ)T(Pαˆ−Mˆ)+λPen(c,αˆ) ≤ β(Pα∗−Mˆ)T(Pα∗−Mˆ)+λPen(c,α∗), we have I +β(Pαˆ−M)T(Pαˆ−M)+λPen(c,αˆ) 0 ≤ β(Pα∗−M)T(Pα∗−M)+λPen(c,α∗). Therefore, β(αˆ−α∗)TPTP(αˆ−α∗) ≤2β(Pαˆ−M)T(Pαˆ−M)+2β(Pα∗−M)T(Pα∗−M) ≤4β(Pα∗−M)T(Pα∗−M)+2λPen(c,α∗)−2I . (2) 0 imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016 Cheng and Huang/Nonparametric copula density estimator 7 Note that I =2β(Mˆ −M)TPα∗−2β(Mˆ −M)TPαˆ, 0 so −2I ≤ 4|β(Mˆ −M)TP(αˆ−α∗)| 0 ≤ 4 β(Mˆ −M)T(Mˆ −M) β P(αˆ−α∗) T P(αˆ−α∗) (3) q q (cid:0) (cid:1) (cid:0) (cid:1) Let ε = 4β(Pα∗−M)T(Pα∗−M)+2λPen(c,α∗), 1 ε = β(Mˆ −M)T(Mˆ −M), 2 q and T U = β P(αˆ−α∗) P(αˆ−α∗) , q (cid:0) (cid:1) (cid:0) (cid:1) then it follows from (2) and (3) that U2 ≤ε +4ε U, 1 2 so |U|≤2ε + ε +4ε2. (4) 1 q 1 2 To control ε , let c = B (u)du for 1≤i≤k, then 1 i [0,1]d i R (Pα∗−M)T(Pα∗−M) ≤ max c B (u) (α∗)TB(u)−c(u) 2du 1≤i≤k iZ[0,1]d1≤Xi≤k i (cid:0) (cid:1) = ∆2O(1)/β, 1 which, together with the fact that Pen(c,α∗) = (d(d−1)/2)∆2, implies that 1 ε =∆2O(1)→0 as n→∞. 1 1 To control ε , note that from Lemma 2, we have 2 k d 2 1 d Eε2 ≤ O 1+ 2 (cid:16)n(cid:17)(cid:16) (cid:16)hmin(cid:17) (cid:17)(cid:16)hmin(cid:17) k 1 2+d = O , (cid:16)n(cid:17)(cid:16)hmin(cid:17) so ε converges to 0 in probability. 2 Fromthe abovediscussionforε andε ,itfollowsfrom(4)thatU converges 1 2 to 0 in probability. From (1), 2 kαˆTB−ck2 ≤ U2+2∆2 =O(1)U2+2∆2, (cid:16)βmin(eigen(P))(cid:17) 1 1 so kcˆ−ck=kαˆTB−ck converges to 0 in probability. References [1] W.H.Wong. Onconstrainedmultivariatesplinesandtheirapproximations. Numerische Mathematik, 43:141–152,1984. imsart-generic ver. 2009/08/13 file: tr01302016.tex date: February 2, 2016