ebook img

A non-equilibrium ionization model of the Local Bubble (I) PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A non-equilibrium ionization model of the Local Bubble (I)

Astronomy&Astrophysicsmanuscriptno.ms (cid:13)c ESO2012 January30,2012 LettertotheEditor A non-equilibrium ionization model of the Local Bubble (I) iv v vi Tracing C , N , and O ions MiguelA.deAvillez1 andDieterBreitschwerdt2 1 DepartmentofMathematics,UniversityofE´vora,R.RomaoRamalho59,7000E´vora,Portugal e-mail:[email protected] 2 Zentrumfu¨rAstronomieundAstrophysik,TechnischeUniversita¨tBerlin,Hardenbergstrasse36,D-10623Berlin,Germany e-mail:[email protected] 2 ReceivedMay2,2011;acceptedMonthDay,2011 1 0 ABSTRACT 2 Aims.Wepresentthefirsthigh-resolutionnon-equilibriumionizationsimulationofthejointevolutionoftheLocalBubble(LB)and n LoopIsuperbubblesintheturbulentsupernova-driveninterstellarmedium(ISM).Thetimevariationandspatialdistributionofthe a Li-likeionsCiv,Nv,andOviinsidetheLBarestudiedindetail. J Methods.ThisworkusestheparalleladaptivemeshrefinementcodeEAF-PAMRcoupledtothenewlydevelopedatomicandmolec- 7 ular plasma emission module E(A+M)PEC, featuring the time-dependent calculation of the ionization structure of H through Fe, 2 usingthelatestrevisionofsolarabundances.ThefinestAMRresolutionis1pcwithinagridthatcoversarepresentativepatchofthe Galacticdisk(withanareaof1kpc2inthemidplane)andhalo(extendingupto10kpcaboveandbelowthemidplane). ] Results.TheevolutionageoftheLBisderivedbythematchbetweenthesimulatedandobservedabsorptionfeaturesoftheLi-like A ionsCiv,Nv,andOvi.ThemodeledLBcurrentevolutiontimeisbracketedbetween0.5and0.8Myrsincethelastsupernovareheated G thecavityinordertohaveN(Ovi) <8×1012cm−2,log[N(Civ)/N(Ovi)]<−0.9andlog[N(Nv)/N(Ovi)]<−1insidethesimulated LBcavity,asfoundinCopernicus,IUE,GHRS-ISTandFUSEobservations. . h Keywords.hydrodynamics–shockwaves–ISM:general–ISM:bubbles–ISM:structure–ISM:kinematicsanddynamics p - o tr 1. Introduction TheseobservationspointtocolumndensitiesN(Civ) <7×1011, s N(Nv) < 3 × 1012 cm−2, log[N(Civ)/N(Ovi)] (cid:46) −0.9 and a [ The ionization structure of the Local Bubble (LB), like that log[N(Nv)/N(Ovi)] (cid:46) −1.0. In that CIE model, the match be- of any superbubble, should in principle reflect its evolutionary tween the simulated and observed column densities indicated 1 state for given boundary (and initial) conditions, if we assume thatthelastSNeventoccurred0.5Myrago. v a multi-supernova/stellar wind origin (e.g, Innes & Hartquist However,significantdeviationsfromglobalCIEconditions 3 1984; Cox & Anderson 1982; Smith & Cox 2001). While are likely to occur (e.g., Kafatos 1973) as suggested by obser- 6 7 the ambient medium at the time of the first supernova (SN) vations of the LB in the EUV (Jelinsky et al. 1995; Hurwitz 5 explosion is unknown, the subsequent time-dependent energy et al. 2005) and X-ray (Sanders et al. 2001; McCammon et al. . input rate is – quite surprisingly – much more tightly con- 2002;Freyberg&Breitschwerdt2003;Henleyetal.2007)bands 1 strained, although no early-type stars (or relics thereof) have and by non-equilibrium ionization (NEI) one-dimensional sim- 0 been found within the current LB volume. The kinematic anal- ulations of the LB (e.g., Cox & Anderson, 1982; Smith & Cox 2 1 ysis of nearby stars (Ma´ız-Apella´niz 2001), moving groups 2001). : (Bergho¨fer & Breitschwerdt 2002; BB02), and the whole vol- The present work explores the degree to which non- v umeof400pcindiametercenteredontheSunfromHipparcos equilibrium ionization (NEI) affects the conclusions of other- i X data(Fuchsetal.2006)consistentlypointto14−19starshaving wise similar CIE modeling. We extend our previous CIE work explodedduringthepast15Myrontheirwaythroughtheregion r (BA06andAB09)to(i)modeltheLBevolutionhydrodynami- a nowoccupiedbytheLB. callyandtraceitsionizationstructure(andthatofthesurround- Collisional ionization equilibrium (CIE) simulations of the ingISM)inatime-dependentfashion,(ii)studythespatialdis- LBpoweredbythemissingstarsofthesubgroupB1ofPleiades tributionoftheLi-likeionsCiv,Nv,andOviandcomparethem (BB02) within a turbulent interstellar medium (Breitschwerdt with observations, and (iii) constrain the LB age by matching & de Avillez 2006 (BA06); de Avillez & Breitschwerdt 2009 simulatedandobservedline-of-sightdistributionsoftheseions. (AB09)) reproduced the clumpy distribution of Ovi, as well as This letter is organized as follows: Section 2 summarizes the itscolumndensityanddispersioninsidetheLBcavityobserved new model setup and simulation. In Section 3, the distribution byCopernicus(Jenkins1978;Shelton&Cox1994)andFUSE ofLi-likeionsandtheircolumndensityratioswithintheLBare (Oegerle et al. 2005; Savage & Lehner 2006), and the lack of discussed and compared to observations. The discussion of the CivandNvionsinthebubble,whichisconsistentwiththeob- results(Section4)closesthepaper. servationswithCopernicus(York1977),IUE(Bruhweileretal. We simulate the effects of the explosions of the stars of a 1980),andGHRS-HST(Bertinetal.1995;Huangetal.1995). moving subgroup, the living members of which now belong to 2 M.A.deAvillezandD.Breitschwerdt:ANEIModeloftheLocalBubble(I)-TracingCiv,NvandOviIons theUCLandLCCassociations,astheirtrajectorieshavecrossed theLBvolumetowardstheirpresentposition. 2. Modelandnumericalsetup WesimulatethesimultaneousevolutionoftheLocalandLoopI superbubbles. These are the result of the successive explosions ofmassivestarsfrom,respectively,amovingsubgroupconsist- ingof17starswithmasses∈[8.2,21.5] M ,whoselivingmem- (cid:12) bersnowbelongtotheUCLandLCCassociations,astheirtra- jectorieshavecrossedtheLBvolumetowardstheirpresentposi- tion(Fuchsetal.2006),andScoCenconsistingof39starswith masses∈ [14,31] M (Egger1998).Theirtimeofexplosionis (cid:12) calculated by the Fuchs et al. (2006) formula. The simulation setup is similar to that discussed in BA06 and AB09, but with threemajordifferencesfromthesepreviousCIEmodels:Firstly, the Time-dependent evolution of the ionization structure of H, He, C, N, O, Ne, Mg, Si, S, and Fe ions with Asplund et al. (2009)abundancesderivedusingtheEboraeAtomic+Molecular PlasmaEmissionCode(E(A+M)PEC1;Avillezetal.2011).The physical processes included in E(A+M)PEC are electron im- pact ionization, inner-shell excitation auto-ionization, radiative and dielectronic recombination, charge-exchange reactions (re- combination with Hiand Heiand ionization with Hiiand Heii), continuum (bremsstrahlung, free-bound, two-photon) and line (permitted,semi-forbiddenandforbidden)emissionintherange 1Å-610µ,andmolecularlines.TheE(A+M)PECcodealsoin- cludes inner shell photoionization, ionization of Hiby Lyman continuum photons produced by the recombination of helium, and molecular chemistry involving H, C, and O. The cooling function (calculated at each cell of the grid at all time steps) includesthese processes,whilethe spectracalculations include lineandcontinuumemissions.Theseconddifferenceisthatlocal self-gravityandheat-conduction(Balbus&Mckee1982;Dalton Fig.1.Ovidensitydistributions(cutsthroughtheGalacticmid- & Balbus 1993) are calculated at every time step; Finally, the plane) in the LB centered at (x = 200,y = 450) pc and Loop I coarse grid resolution is 8 pc, while the finest AMR resolution (the adjacent bubble on the right) at 0.5 (top) and 0.8 (bottom) is 1 pc - the highest so far used for LB evolution calculations. MyrafterthelastSNintheLB,whichoccurredatevolutiontime Periodicandoutflowboundaryconditionsaresetalongthever- 13.1 Myr. Both bubbles are surrounded with a thin fragmented ticalfacesandboththetopandbottom(z=±10kpc)ofthegrid, Ovibearingshell. respectively. ity.Here,wediscusstheevolutionoftheLBinthefirstMyrafter 3. Results thelastSNexplosion. TomodeltheLocalBubble,whichisassumedtobeembeddedin arealisticbackgroundISM,thesimulationswererunforacon- 3.1. OvidistributionintheLB siderabletimeinordertoestablishthefullGalacticfountainand Figure1displaystimesnapshotsofthe Ovidensitydistribution a global dynamical equilibrium with the density, pressure, and withintheLBatanevolutiontime(sincethefirstSNintheLB) temperaturedistributionsconditionssimilartothosedescribedin oft =13.6,and13.9Myr,thatis∆τ∈{0.5,0.8}Myr,respec- deAvillez&Breitschwerdt2004).AtanISMevolutiontimeof evol 250Myr,atrackersearchesforamolecularregionofsufficient tively,afterthelastSNeventwithintheLBcavity.TheOvihas aclumpydistributionresultingfromlocalcoolingandturbulent masstoformtheScoCenstars(adoptinga5%starformationef- motions,drivenbyshearflowsinsidetheLBcavity,whosehigh- ficiency).TheUCLandLCCclusterspathstowardsScoCenare estvaluesoccurtowardstheboundary. thensetusingthekinematicparametersderivedbyFuchsetal. The spatial and temporal variations in Oviare explored by (2006) with the last SN event in the LB cavity occurring 13.1 calculatingtheOvicolumndensity(N(Ovi))throughLOStaken Myrafterthefirstexplosion(thatis,afteranISMevolutiontime from the Sun at (x = 200,y = 450) pc, 100 pc from the inter- of 263.1 Myr). The Local and Loop I bubbles evolve in time action region between the Local and Loop I bubbles. The col- interacting for most of the LB lifetime, and eventually the two umn densities were calculated with a 5 pc step length out to a bubblesmergewithLoopImaterialexpandingintotheLBcav- maximum of 200 pc, spaced at 1 degree intervals to examine 1 The code is written in OpenCL and runs in AMD and NVIDIA thefull200pcradiussphereabouttheassumedSolarposition. Graphics Processor Units (GPUs). A description of the software and Figure2displaysthemaximumN(Ovi)valuesoverallthelines ionizationfractions,coolingandemissionspectratablescanbefound of sight at times 0.5 Myr through to 1, 1.5 and 2.0 Myr after athttp://www.lca.uevora.pt/research.htmlSeealsoreferencestherein. the last SN explosion in the cavity. In addition, the figure also M.A.deAvillezandD.Breitschwerdt:ANEIModeloftheLocalBubble(I)-TracingCiv,NvandOviIons 3 14 maximumoflogN(Ovi) =13.3(inunitsofcm−2)inthenext0.2 Myr.Fordistances>140pc,thelinesofsightaresamplinggas notonlyfromLoopIbutalsofromthesurroundinginterstellar medium, hence the increase in the column density. It is clear that the modelled column densities fall within and follow the 13 observed(withFUSE)dataforpathlengthsgreaterthan50pc. -2m] With increasing time, there is a slight increase in the amount ) [cVImax BWSBLL222000010608 olifneOsvaitattimsmesal1le.5rMdisytraanncdes2(.0dM<y5r0afptecr;tohreanlagsetSanNdedvaernktignrethene O 12 ∆t = 0.5 Myr cavity). g N( ∆tSSNN = 0.6 Myr For the first million years of evolution of the simulated lo ∆tSN = 0.7 Myr bubbles, the majority of the LOS (> 75%) samples gas with ∆tSN = 0.8 Myr log(N(Ovi))<13,withthisnumberreaching99%and95%lev- ∆t = 0.9 Myr SN els at 0.5 Myr and 0.7 Myr after the last explosion (top panel 11 ∆t = 1.0 Myr SN of Figure 3) and decreasing to some 80% in the next 0.3 Myr ∆t = 1.5 Myr SN (bottompanelofFigure3). ∆t = 2.0 Myr SN 0 20 40 60 80 100 120 140 160 180 200 d [pc] 3.2. DistributionofLi-likeionratios Fig.2.Maximum(top)modelOvicolumndensitiesina200pc Figure 4 displays the histograms of the LOS ratios of radius sphere centered at the Sun at times 0.5 through 1.0 Myr log[N(Civ)/N(Ovi)] and log[N(Nv)/N(Ovi)] in the LB be- after the last SN event in the LB, overlaid by FUSE data from tween 0.5 Myr and 1.0 Myr after the last SN event. The Savage & Lehner (2006; SL2006), Welsh & Lallement (2008; fraction of LOS sampling gas with column density ratio WL2008) and Barstow et al. (2010; BB2010) for observations log[N(Civ)/N(Ovi)]<−0.9increaseswithtimetowards87%at againswhitedwarfsintheupto200pcfromtheSun.Thehor- 0.6Myrand93%at0.7Myr(toppanel,leftcolumnofFigure4) izontalaxisindicatestheintegrationdistanceforthemodeland then decreases to less than 80% in the next 0.1 Myr of the LB thestardistancefromtheobservationaldata. evolution (bottom panel, left column of the figure). The small fractionofLOSwithlog[N(Civ)/N(Ovi)] > −0.9isconsistent 40 ∆tSN = 0.5 Myr with the detection by Welsh et al. (2010) of interstellar Civ in ∆tSN = 0.6 Myr theLBwithN(Civ) (cid:39)1012cm−2towardsastarlocatedat74pc 30 ∆tSN = 0.7 Myr from the Sun. For log[N(Nv)/N(Ovi)] < −1.0, the fraction of %] LOSsamplinggasuptothisthresholdalsoincreasesto89%and [S 92%levelsat0.6and0.7Myr,respectively,afterthelastexplo- O NL20 sionintheLB,followedbyasteepdecreasetolessthan70%in /S O thenextfewhundredthousandyears(rightcolumnofFigure4). NL d ThisbehaviourofthecolumndensityratiosinthesimulatedLB 10 confirmsthepresenceofaverysmallamountofCivandNvions andtheiruncorrelateddistributionwithOvi. 0 40 ∆t = 0.8 Myr SN 4. Discussionandconclusions ∆t = 0.9 Myr SN 30 ∆tSN = 1.0 Myr Theworkdescribedherefocusesonthedetailednumericalevo- %] lution of a multi-supernova origin of the LB, following the [OS studies by BA06 and AB09. A major difference from previ- /NSL20 ous studies by other authors is that we (i) follow in a Eulerian NLO fashion the joint evolution of the Local and Loop I bubbles d in the turbulent ISM, (ii) use a three-dimensional high resolu- 10 tion supernova-driven ISM model to simulate a realistic ambi- ent medium, (iii) calculate the time-dependent evolution of the completeionizationstructure,andthereforealsothecorrespond- 0 11.6 11.8 12 12.2 12.4 12.6 12.8 13 13.2 13.4 ing time-dependent cooling function at each cell of the compu- log N(OVI) [cm-2] tational grid, and (iv) include the latest revision of solar abun- Fig.3. Histograms of the N(Ovi)model predictions for LOS dances. samplingonlygasinsidethecavity,i.e.,LOSlengths< 100pc, Threeconditionsdeterminethepresentevolutiontime(tevol) between0.5and1.0MyrafterthelastexplosionintheLBcavity. oftheLB:theN(Ovi) thresholdof8×1012 cm−2 andtheratios log[n(Civ)/n(Ovi) < −0.9 and log[N(Nv)/N(Ovi)] < −1.0. A comparisonbetweentheLOSmeasurementsatdifferenttimesin showsFUSEdataagainstwhitedwarfs(Savage&Lehner2006 thesimulatedLBindicatesthatt canbeconstrainedbetween evol (SL2006); Welsh & Lallement 2008 (WL2008); Barstow et al. 0.5Myrand0.8MyrsincethelastSNexplosion.Theothertimes 2010(BB2010)). areexcludedbecausetheydonotsatisfysimultaneouslythethree The maximum N(Ovi)increases with both path length and threshold conditions, therefore, contradicting Copernicus, IUE, time,beinglowerthan1013cm−2insidetheLBuptoaradiusof and GHRS-HST observations. It should be kept in mind, how- 100pcinthefirst0.5-0.6MyrsincethelastSNandgrowingtoa ever,thattheageoftheLB,solelybasedonthesimulatedOvi, 4 M.A.deAvillezandD.Breitschwerdt:ANEIModeloftheLocalBubble(I)-TracingCiv,NvandOviIons 50 50 ∆t = 0.5 Myr ∆t = 0.5 Myr SN SN ∆t = 0.6 Myr ∆t = 0.6 Myr 40 ∆tSN = 0.7 Myr 40 ∆tSN = 0.7 Myr SN SN %] %] [S30 [S30 O O NL NL /S /S O20 O20 NL NL d d 10 10 0 0 50 50 ∆t = 0.8 Myr ∆t = 0.8 Myr SN SN ∆t = 0.9 Myr ∆t = 0.9 Myr 40 ∆tSN = 1.0 Myr 40 ∆tSN = 1.0 Myr SN SN %] %] [S30 [S30 O O NL NL /S /S O20 O20 NL NL d d 10 10 0 0 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 log [N(CIV)/N(OVI)] log [N(NV)/N(OVI)] Fig.4.HistogramoftheLOSmeasurementsofthecolumndensityratiosN(Civ)/N(Ovi)(leftpanel)andN(Nv)/N(Ovi)(rightpanel) insidethesimulatedLB(l <100pc)for0.5-1.0MyrafterthelastSNexplosion.Theverticaldottedlinemarksthecriticalcolumn LOS densityratiosof−0.9(left)and−1.0(right),respectively(fordetailsseetext). isbetween0.5Myrand1.1MyrsincethelastSNevent.Thede- References rivedLBpresentagecorrespondstoadelayofatmost0.3Myr (0.6 Myr if we only consider the Ovidistribution) compared to Asplund,M.,Grevesse,N.,&Sauval,A.J.,&Scott,P.,2009,ARA&A47,481 Barstow,M.A.,Boyce,D.D.,Welsh,B.Y.,Lallement,R.,Barstow,J.K.,Forbes, the0.5MyrobtainedintheCIEsimulationsofBA06andAB09. A.E.,&Preval,S.,2010,ApJ,723,1762 Breitschwerdt,D.,Feige,J.,Dettbarn,C.,Schulreich,M.,deAvillez,M.A.,& The comparison of Li-like ions between observations and “Fuchs,B.,2012,Astronomy&Astrophysics,inpreparation NEIsimulationspinsdownforthefirsttimetheageoftheLBre- Breitschwerdt,D.,&deAvillez,M.A.,2006,A&A452,L1(BA06) liablywell,whichwasimpossibleinpreviousCIEsimulations. Bergho¨fer,T.,&Breitschwerdt,D.,2002,A&A390,299 Inparticular,modellingthedensitiesofdifferentionswithdiffer- Bertin,P.,Vidal-Madjar,A.,Lallement,R.,Ferlet,R.,&Lemoine,M.,1995, A&A302,889 ent ionization and recombination timescales gives abundance- Bruhweiler,F.C.,Kondo,Y.,&McCluskey,G.E.,1980,ApJ237,19 independent results. Moreover, since spectral resolution in our Cox,D.P.,&Anderson,P.R.,1982,ApJ253,268 modelsisnotanissue,wewillbeableinthenearfuturetoalso deAvillez,M.A.,&Breitschwerdt,D.,2004,A&A425,899 comparetheoreticallinewidthstoobservations. deAvillez,M.A.,&Breitschwerdt,D.,2009,ApJ697,L158(AB09) de Avillez, M.A., Spitoni, E., & Breitschwerdt, D., 2011, in ”Advances in The small column densities observed over a wide range of ComputationalAstrophysics:Methods,ToolsandOutcomes”,R.Dolcetta, temperaturesinthesimulationsaretheresultofdelayedrecom- M.Limongi,A.Tornambe(Editors),ASPConf.Series.,inPress. bination, which also manifests itself in X-ray emission at low Egger,R.1998,InIAUColloq.166,LectureNotesinPhysics506,287 Freyberg,M.,&Breitschwerdt,D.,2003,AN324,162 temperatures,aswewilldiscussinthenextfewpapersofthese- Fuchs,B.,Breitschwerdt,D.,deAvillez,M.A.,Dettbarn,C.,&Flynn,C.,2006, ries.Finally,wenotethatwehaveperformedcalculationsofthe MNRAS373,993 distributionof60Feinthesolarneighbourhoodandcomparedthe Henley,D.B.,Shelton,R.L.,&Kuntz,K.D.,2007,ApJ661,304 sequenceofexplosionswiththemeasuredironpeakinthedeep Huang,J.-S.,Songaila,A.,Cowie,L.L.,&Jenkins,E.B.,1995,ApJ450,163 Hurwitz,M.,Sasseen,T.P.,&Sirk,M.M.,2005,ApJ623,911 sea ferromanganese crust (Knie et al. 2004), including the new Innes,D.E.,&Hartquist,T.W.,1984,MNRAS209,7 half lifetime of Rugel et al. (2009), and found excellent agree- Jelinsky,P.,Vallerga,J.V.,&Edelstein,J.,1995,ApJ441,653 mentinthetimesequences(Breitschwerdtetal.2012).Further Jenkins,E.B.,1978,ApJ219,845 developmentsofthemodelcomprisingtheinclusionofmagnetic Kafatos,M.,1973,ApJ182,433 fieldandcosmicrayswillalsobeexploredinpaperstofollow. Knie,K.,Korschinek,G.,Faestermann,T.,Dorfi,E.A.,Rugel,G.,Wallner,A., 2004,Phys.Rev.Lett.,93,171103 Ma´ız-Apella´niz,J.,2001,ApJ560,L83 McCammon,D.,Almy,R.,Apodaca,E.,Bergmann-Tiest,W.,etal.,2002,ApJ 576,188 Acknowledgements. We would like to thank the referee, Don Cox, for his Rugel,G.Faestermann,T.,Knie,K.,Korschinek,G.,Poutivtsev,M.,Schumann, detailed reports, constructive criticism, and valuable suggestions that allowed D.,Kivel, N.,Gnther-Leopold, I.,Weinreich,R., Wohlmuther,M., 2009, us to improve this letter significantly. The simulations were carried out at Phys.Rev.Lett.,103,072502 theMilipeiaSupercomputer(CenterforComputationalPhysics,Universityof Sanders,W.T.,Edgar,R.J.,Kraushaar,W.L.,McCammon,D.,&Morgenthaler, Coimbra) and at the ISM-Cluster of the Computational Astrophysics Group J.P.,2001,ApJ554,694 (Dept.ofMathematics,UniversityofE´vora).Thisresearchissupportedbythe Savage,B.D.,&Lehner,N.,2006,ApJS162,134 FCT(Portugal)projectPTDC/CTE-AST/70877/2006. Schmutzler,T.,&Tscharnuter,W.M.,1993,A&A273,318 M.A.deAvillezandD.Breitschwerdt:ANEIModeloftheLocalBubble(I)-TracingCiv,NvandOviIons 5 Shelton,R.,&Cox,D.P.,1994,ApJ434,599 Smith,R.K.,&Cox,D.P.,2001,ApJS134,283 Welsh,B.Y.,&Lallement,R.,2008,A&A490,707 Welsh,B.Y.,Wheatley,J.,Siegmund,O.H.W.,&Lallement,R.,2010,ApJ712, L199 York,D.G.,1977,ApJ213,43

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.