A new subtraction-free formula for lower bounds of the minimal singular value of an upper bidiag- onal matrix TakumiYamashita1, KinjiKimura2 and YusakuYamamoto3 4 1 Abstract 0 2 Tracesofinversepowersofapositivedefinitesymmetrictridiagonalma- n trixgivelowerboundsoftheminimalsingularvalueofanupperbidiag- a J onal matrix. In a preceding work, a formula for the traces which gives 0 thediagonalentries oftheinversepowersispresented. Inthispaper, we 1 presentanotherformulawhichgivesthetracesbasedonaquitedifferent ] ideafromtheoneintheprecedingwork. Anefficientimplementationof A theformulaforpracticeis alsopresented. N . h t 1 Introduction a m Alowerboundoftheminimalsingularvalueofamatrixhashistorically [ beeninvestigatedforestimationofanupperboundoftheconditionnum- 1 berofamatrix. Asanotherapplication,suchalowerboundforanupper v 0 bidiagonal matrix may be used to accelerate convergence of iteration in 5 some singular value computing algorithms [1, 3, 8, 9]. In the standard 3 2 procedure for computing the singular values, one first reduces the in- 1. put matrix to an upper bidiagonal matrix by orthogonal transformations 0 and then computes the singular values of the obtained upper bidiagonal 4 matrix by some iterative algorithms. The iterative algorithms referred 1 : aboveuse a techniquecalled the shift of origin. This techniquerequires v i aquantitycalledashift. Alowerboundoftheminimalsingularvalueof X theupperbidiagonalmatrixcan beused todeterminethisquantity. r a Several lowerbounds of the minimalsingular valueof a matrix have been proposed. For example, see [2, 4, 5, 7, 10, 14]. For an upper bidiagonal matrix B, where all the diagonal and the upper subdiagonal entries are positive, the traces Tr((BB ) M) (M = 1,2,...) give lower ⊤ − bounds of the minimal singular value of B. For example, the following 128-20Kojogaoka,Otsu,Shiga520-0821Japan,Tel.:+81-77-522-7447,Fax:+81-77-522-7447,e-mail: [email protected] 2GraduateSchoolofInformatics,KyotoUniversity,Yoshida-Honmachi, Sakyo-ku,Kyoto,Kyoto606- 8501Japan,e-mail:[email protected] 3GraduateSchoolofInformatics andEngineering, TheUniversity ofElectro-Communications, 1-5-1, Chofugaoka,Chofu,Tokyo182-8585,Japan,e-mail:[email protected] 1 twoquantities ̺ = (Tr((BB⊤)−1))−12 and 1 N υ = , sTr((BB⊤)−1) · vuuuuuut1+ s(N −1) N · (TTrr((((BBBB⊤⊤))−−12)))2 −1! where N is the matrix size of B, are such lower bounds. For details, see [8] by von Matt. Forcomputationof thetraces of (BB ) 1 and (BB ) 2, ⊤ − ⊤ − vonMatt[8]alsopresentedamethodtocomputethediagonalentriesof theseinverses. Ontheotherhand,Kimuraetal. [6]presentedasequence oflowerboundsoftheminimalsingularvalueofB. Theselowerbounds θ (B) (M = 1,2,...) are given with the traces J (B) = Tr((B B) M) = M M ⊤ − Tr((BB ) M)as ⊤ − θM(B) = (JM(B))−21M, M = 1,2,.... It holds ̺ = θ (B). They increase monotonically and converge to the 1 minimal singular value σ (B) of B as M goes to infinity [6, Theorem min 3.1], thatis, θ (B) < θ (B) < < σ (B), 1 2 min ··· lim θ (B) = σ (B). M min M →∞ Kimuraet al. [6] also presented a formulafor computationofthe traces ofJ (B)foranarbitrarypositiveintegerM. Thisformulagivesthediag- M onalentries oftheinversepowers(B B) M and(BB ) M (M = 1,2,...) ⊤ − ⊤ − in a form of recurrence relation. In [12], Yamashita et al. derived an- otherformulaforthesediagonalentriesstartingfromtheformulain[6]. While theformula in [6] includes subtraction in it in the case of M 2, ≥ theformulain[12]consistsofonlyaddition,multiplicationanddivision among positive quantities. Namely, the formula in [12] is “subtraction- free”. This property clearly excludes any possibility of cancellation er- ror. In this paper, we present another formula for computation of the traces J (B) (M = 1,2,...). This formula is also subtraction-free. We M derivetheformulawithanideawhichisquitedifferentfromthatin[12]. We do not aim to obtain the diagonal entries of (B B) M or (BB ) M ⊤ − ⊤ − (M = 1,2,...) in the derivation. Instead, equations on the determinant and the entries of A λI, where A is B B or BB , λ is a parameter and ⊤ ⊤ − I is the unit matrix, are considered. The new formula is obtained by 2 differentiating these equations with respect to the parameter λ repeat- edly. Computational cost for the traces are also discussed. Moreover, an implementationfor the trace J (B) which is useful in practice is pre- 2 sented. This implementation has the following merits compared with thatin [12]. Thenumberofoperationsissmallercomparedwiththeimplemen- • tationin [12]. Only one “loop” is required while the implementation in [12] re- • quirestwoloops. No“array” is necessary,in contrasttotheimplementationin [12]. • This paper is organized as follows. In Section 2, the new formula is derived. In Section 3, computational cost for the new formula is dis- cussed. In Section 4, an efficient implementation for the trace J (B) is 2 presented. Section5 isdevotedforconcludingremarks. 2 Derivation of the formula for the traces Let us consider an N N real upper bidiagonal matrix B, where all the × diagonal and the upper subdiagonal entries are positive. In this sec- tion, we derive the new formula for the traces J (B) = Tr((B B) p) = p ⊤ − Tr((BB ) p) for an arbitrary positive integer p in a form of recurrence ⊤ − relation. From these traces, lower bounds of the minimal singularvalue of B are obtained. In the context of singular value computation, we can assume the positivity of the diagonal and the upper subdiagonal entries of B without loss of generality [1]. We present two recurrence relations inSections2.1and2.2. Theideastoderivatetherecurrencerelationsare quitedifferent fromthosein [12]. Hereafter, we fix somenotations. Let Bbe √q √e 1 1 √q √e 2 2 whereBq=> 0 for i = 1,.....,.N a√nd.q.N.e−1> 0√√efoqNrN−1i =,1,...,N 1. Let I(b1e) i i theN N unitmatrix. Weusetheconvention k = 0if j−> k. Letλbe × i=j aparameter. P 3 2.1 Derivation-typeI Inthissubsection,weactuallyderivetheformula. Lettheeigenvaluesof B Bbeλ ,...,λ . Foranarbitrarypositiveinteger p,theeigenvaluesof ⊤ 1 N (B B) p are λ p,...,λ p. Then, the summation N λ p is the trace of ⊤ − −1 −N i=1 −i (B B) p. We derive a formula to compute this summation. The matrix ⊤ − P B Bisgivenas ⊤ q √q e 1 1 1 √q e q +e ... B B = 1 1 2 1 . It can b⊤ereadily verifiedt.h.a.t we√obqtNa.−i.1n.etNh−e1fol√qloNqwN+i−n1egeNN−m−11atrix q q e 1 1 1 1 q +e ... A = 2 1 by similarity trans.f.o.rmat.i1.o.n. qqTNNh−+e1neeN,N−−t1h1ematrices A and B⊤B have the same eigenvalues. A key point of this derivation is to express the de- terminant of A λI in two ways. As the first way, the determinant is − expressedas N det(A λI) = (λ λ). (2) i − − i=1 Y Forthesecond way,let usconsiderdecompositionofthematrix q λ q e 1 1 1 − 1 q +e λ ... A λI = 2 1 − intothe−matrixproductexpres.s.e.das .1.. qNq+N−e1Ne−N1−−1 λ qˆ(0) 1 eˆ(0) 1 1 1 qˆ(0) 1 ... whereAqˆ−(0)λfIo=r i= 1,....2.,.N a.1n..d eˆqˆ(0(N)0)fori = 1,...,.N.. eˆ1(N10−a)1ref,unctions of λ. Thesei functionsare repeatedlyi differentiated in th−e discussionshown 4 below. The superscript (0) indicates that the function has not been dif- ferentiated yet. Comparison of the diagonal and the upper subdiagonal entries of A λI gives − q +e λ = qˆ(0) +eˆ(0), i = 1,...,N, (3) i i−1 − i i−1 qe = qˆ(0)eˆ(0), i = 1,...,N 1, (4) i i i i − where e(0) = 0 and eˆ(0) = 0. Then, thefunctions qˆ(0) for i = 1,...,N and 0 0 i eˆ(0) fori = 1,...,N 1areobtainedbythefollowingrecurrencerelation i − qˆ(0) = q λ, 1 1 − qe eˆ(0) = i i, i = 1,...,N 1, i qˆ(0) − i qˆ(0) = q +e λ eˆ(0), i = 2,...,N. i i i−1 − − i−1 Thus,thesecondexpressionofthedeterminantof A λI isgivenas − N det(A λI) = qˆ(0). (5) − i i=1 Y By (2)and (5), wehave N N (λ λ) = qˆ(0). (6) i − i i=1 i=1 Y Y We differentiate this equation (6). The result of differentiation of the left-hand sideof(6)is N N N 1 1 (λ λ) = det(A λI). (7) j −λ λ − − λ λ − i=1 i − j=1 i=1 i − BeforXe differentiatYion of the right-haXnd-side of(6), we introduce func- tionsqˆ(p) ofλ defined by i dpqˆ(0) qˆ(p) = i (8) i dλp fori = 1,...,N and p = 1,2,.... Theresult ofdifferentiationis N Nj=1qˆ(j0) qˆ(1) = N qˆ(i1) det(A λI). (9) qˆ(0) · i qˆ(0) − i=1 Q i i=1 i FromX(7)and (9), wederiveX N 1 N qˆ(1) = i . (10) i=1 λi −λ i=1 −qˆ(i0) X X 5 Then, by substituting λ = 0 into the left-hand-side of (10), we have the summation N λ 1 which is equal to the trace of (B B) 1. For i = i=1 −i ⊤ − 1,...,N and p = 2,3,..., itholdsthat P N N d 1 1 = (p 1) . (11) dλ (λ λ)p 1 − (λ λ)p i=1 i − − i=1 i − X X Thisrelationshipimpliesthatwehavethesummation N (λ λ) p for p = 2,3,... by differentiating (10) repeatedly. From tih=i1s siu−mm−ation, weobtainthesummation N λ p whichisequaltothePtraceof(B B) p i=1 −i ⊤ − by substitution of λ = 0. To make handling of the right-hand-side of (10) easier, let us introduPce functions Hˆ(p) of λ for i = 1,...,N and i p = 1,2,... defined by qˆ(1) i , p = 1, Hˆ(p) = −qˆ(i0) (12) i dHˆdi(λp−1), p = 2,3,.... Wecan readily verifythat itholdsthat N N 1 (p 1)! = Hˆ(p) (13) − (λ λ)p i i=1 i − i=1 X X for p = 1,2,... by differentiating (10) repeatedly and taking care of (10),(11)and(12). Thus,thetraceof(B B) pisobtainedbysubstituting ⊤ − λ = 0into(13). Letusintroduceconstants H(p) fori = 1,...,N and p = i 1,2,... definedby H(p) = Hˆ(p) . Thetraceof(B B) p isexpressedas i i λ=0 ⊤ − N(cid:12) 1 (cid:12) Tr((B B) p) = (cid:12) H(p), p = 1,2,.... (14) ⊤ − (p 1)! i − i=1 X Thus,wecanobtainthesetracesiftheconstantsH(p)fori = 1,...,N and i p = 1,2,... are obtained by somemeans. The relationship(14) implies that a formula for H(p) is required. We derive a recurrence relation for i Hˆ(p). A recurrence relation for H(p) is obtained by substitution of λ = 0 i i intotherecurrencerelationforHˆ(p). OnthefunctionsHˆ(p),thefollowing i i lemmaholds. Lemma 2.1 Let functionshˆ(p) ofλfori = 1,...,N and p = 1,2,... bedefined by i qˆ(p) hˆ(p) = i . (15) i −qˆ(0) i 6 Fori = 1,...,N, it holds Hˆ(1) = hˆ(1), (16) i i p 1 − Hˆ(p) = hˆ(p) + C hˆ(k)Hˆ(p k), p = 2,3,.... (17) i i p 1 k i i − − k=1 X Proof. Inthisproof, leti = 1,...,N. Substituting p = 1 into(15)andcomparingwith(12), wehave(16). Wegivethederivativeofhˆ(r) forr = 1,2,.... It holds i dhˆ(r) qˆ(r+1) qˆ(r)qˆ(1) i = i + i i , r = 1,2,... dλ − qˆ(0) (qˆ(0))2 i i from (8)and(15). Then, itholdsthat dhˆ(r) i = hˆ(r+1) +hˆ(1)hˆ(r), r = 1,2,... (18) dλ i i i from (15). Using Hˆ(1) = hˆ(1) in(16), wehaveanotherform i i dhˆ(r) i = hˆ(r+1) +Hˆ(1)hˆ(r), r = 1,2,.... (19) dλ i i i Weusemathematicalinductionfor proof. We write the definition of Hˆ(p) for p = 2,3,... again. The definition i is dHˆ(p 1) − Hˆ(p) = i . (20) i dλ We derive (17) for p = 2. Differentiating (16) and using (19) and (20), weobtain Hˆ(2) = hˆ(2) +hˆ(1)Hˆ(1). (21) i i i i Thus,(17)holdsfor p = 2. Hereafter,letrbeanintegersuchthatr 2inthisproof. Assumethat (17) holds for p = 2,...,r. We consider d≥ifferentiation of the function Hˆ(r). Differentiating(17)for p = r and using(18)and (20), wederive i r 1 Hˆ(r+1) = hˆ(r+1)+hˆ(1)hˆ(r)+ − C hˆ(k+1) +hˆ(1)hˆ(k) Hˆ(r k) +hˆ(k)Hˆ(r+1 k) . i i i i r 1 k i i i i − i i − − k=1 X (cid:16)(cid:16) (cid:17) (cid:17) (22) 7 Sinceit holds r 1 hˆ(1)hˆ(r) + − C hˆ(1)hˆ(k)Hˆ(r k) = hˆ(1)Hˆ(r) i i r 1 k i i i − i i − k=1 X from theassumption,(22)isrewrittenas r 1 r 1 Hˆ(r+1) = hˆ(r+1)+hˆ(1)Hˆ(r)+ − C hˆ(k+1)Hˆ(r k)+ − C hˆ(k)Hˆ(r+1 k). (23) i i i i r 1 k i i − r 1 k i i − − − k=1 k=1 X X Werearrangethethirdtermintheright-hand-sideof(23). Sinceitholds that r 1 r − r−1Ckhˆi(k+1)Hˆi(r−k) = r−1Ck′−1hˆi(k′)Hˆi(r+1−k′), k=1 k=2 X X′ wehave r 1 r 1 − C hˆ(k+1)Hˆ(r k) = hˆ(r)Hˆ(1) + − C hˆ(k)Hˆ(r+1 k). (24) r 1 k i i − i i r 1 k 1 i i − − − − k=1 k=2 X X Thefourthterm intheright-hand-sideof(23)is rewrittenas r 1 r 1 − C hˆ(k)Hˆ(r+1 k) = (r 1)hˆ(1)Hˆ(r) + − C hˆ(k)Hˆ(r+1 k). (25) r−1 k i i − − i i r−1 k i i − k=1 k=2 X X From (23), (24)and (25), wederive r 1 Hˆ(r+1) = hˆ(r+1)+hˆ(r)Hˆ(1)+ − ( C + C )hˆ(k)Hˆ(r+1 k)+rhˆ(1)Hˆ(r). (26) i i i i r 1 k 1 r 1 k i i − i i − − − k=2 X Itcan readilybeverified thatthesummationofthecombinationsin(26) is C + C = C (27) r 1 k 1 r 1 k r k − − − inthecaseofr 3. Inthecaseofr = 2,thesummationofthethirdterm ≥ intheright-hand-sideof(26)is zero. Then, wefinallyobtain r Hˆ(r+1) = hˆ(r+1) + C hˆ(k)Hˆ(r+1 k). i i r k i i − k=1 X Thus,(17)holdsfor p = r+1. (cid:3) ByLemma2.1,weobtainarecurrencerelationforHˆ(p). However,we i have not obtained a recurrence relation for the functions hˆ(p). We show i the followinglemmawhich gives a method to computehˆ(p) in a form of i arecurrence relation. 8 Lemma 2.2 Thefunctionshˆ(p) fori = 1,...,N and p = 1,2,... satisfythefollowing i recurrence relation. For p = 1, therecurrence relationis 1 hˆ(1) = , (28) 1 qˆ(0) 1 eˆ(0)hˆ(1) +1 hˆ(1) = i 1 i 1 , i = 2,...,N. (29) − − i qˆ(0) i Fori = 1 and p = 2,3,..., therecurrence relationis hˆ(p) = 0. (30) 1 Fori = 2,...,N and p = 2,3,..., therecurrence relationis eˆ(0) p−2 hˆ(p) = i 1 hˆ(p) + phˆ(1)hˆ(p 1) + C hˆ(k)hˆ(p k). (31) i qˆ(i−0) i−1 i−1 i−−1 k=1 p k i−1 i − (cid:16) (cid:17) X Proof. In this proof, another key point of the derivation of the recurrence relation is applied. The key point is as follows. We differentiate the relationships q + e λ = qˆ(0) + eˆ(0) for i = 1,...,N shown in (3) and qe = qˆ(0)eˆi(0) foi−r1i−= 1,...,iN 1i−s1hown in (4). Then, we derive a i i i i − recurrence relation whichthefunctionshˆ(p) satisfy. i We introduce functions eˆ(p) of λ for i = 0,1,...,N 1 and p = i − 1,2,... defined by dpeˆ(0) eˆ(p) = i . i dλp Differentiating(4)repeatedly, wehave p C qˆ(k)eˆ(p k) = 0, i = 1,...N 1, p = 1,2,.... p k i i − − k=0 X Solvingthisequationforeˆ(p), weobtain i p eˆ(p) = C hˆ(k)eˆ(p k), i = 1,...N 1, p = 1,2,... (32) i p k i i − − k=1 X sincehˆ(k) = qˆ(k)/qˆ(0) fromthedefinition. Wesihow−thai t (2i8)and(29)hold. Differentiating(3), wehave qˆ(1) +eˆ(1) = 1, i = 1,...,N. (33) i i 1 − − 9 Then, hˆ(1) = qˆ(1)/qˆ(0) isexpressedas i − i i eˆ(1) +1 hˆ(1) = i 1 , i = 1,...,N. (34) − i qˆ(0) i Substituting p = 1into(32), wehave eˆ(1) = hˆ(1)eˆ(0), i = 1,...,N 1. (35) i i i − From (34), (35)and eˆ(0) = 0,weimmediatelyobtain(28)and (29). 0 Hereafter, let p = 2,3,... in this proof. We show that the relation- ships(30)and(31)hold. Differentiating(33) repeatedly,weobtain qˆ(p) +eˆ(p) = 0, i = 1,...,N. (36) i i 1 − From this relationship and the definition hˆ(p) = qˆ(p)/qˆ(0), the functions i − i i hˆ(p) for p = 2,3,... are i eˆ(p) hˆ(p) = i 1, i = 1,...,N. (37) − i qˆ(0) i We show that (30) holds. It holds that eˆ(p) = 0 since eˆ(0) = 0. Then, 0 0 substitutingi = 1 into(37), wehave(30). We show that (31) holds. Hereafter, let i = 2,...N in this proof. Substituting(32) into(37), weobtain p 1 hˆ(p) = C hˆ(k)eˆ(p k). (38) i qˆ(i0) k=1 p k i−1 i−−1 X It followsfrom (35) that C hˆ(p 1)eˆ(1) = peˆ(0)hˆ(p 1)hˆ(1). (39) p p 1 i −1 i 1 i 1 i −1 i 1 − − − − − − From (38)and(39), it holds p 2 1 − hˆ(p) = hˆ(p)eˆ(0) + peˆ(0)hˆ(p 1)hˆ(1) + C hˆ(k)eˆ(p k) . (40) i qˆ(i0) i−1 i−1 i−1 i−−1 i−1 k=1 p k i−1 i−−1 Then, weobtain(31)from (37)and (40). (cid:3)X Remark 2.3 From Lemmas 2.1 and 2.2, the functions Hˆ(1) satisfy the following re- i currence relation 1 Hˆ(1) = , 1 qˆ(0) 1 eˆ(0)Hˆ(1) +1 Hˆ(1) = i 1 i 1 , i = 2,...,N. − − i qˆ(0) i 10