ebook img

A new subtraction-free formula for lower bounds of the minimal singular value of an upper bidiagonal matrix PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A new subtraction-free formula for lower bounds of the minimal singular value of an upper bidiagonal matrix

A new subtraction-free formula for lower bounds of the minimal singular value of an upper bidiag- onal matrix TakumiYamashita1, KinjiKimura2 and YusakuYamamoto3 4 1 Abstract 0 2 Tracesofinversepowersofapositivedefinitesymmetrictridiagonalma- n trixgivelowerboundsoftheminimalsingularvalueofanupperbidiag- a J onal matrix. In a preceding work, a formula for the traces which gives 0 thediagonalentries oftheinversepowersispresented. Inthispaper, we 1 presentanotherformulawhichgivesthetracesbasedonaquitedifferent ] ideafromtheoneintheprecedingwork. Anefficientimplementationof A theformulaforpracticeis alsopresented. N . h t 1 Introduction a m Alowerboundoftheminimalsingularvalueofamatrixhashistorically [ beeninvestigatedforestimationofanupperboundoftheconditionnum- 1 berofamatrix. Asanotherapplication,suchalowerboundforanupper v 0 bidiagonal matrix may be used to accelerate convergence of iteration in 5 some singular value computing algorithms [1, 3, 8, 9]. In the standard 3 2 procedure for computing the singular values, one first reduces the in- 1. put matrix to an upper bidiagonal matrix by orthogonal transformations 0 and then computes the singular values of the obtained upper bidiagonal 4 matrix by some iterative algorithms. The iterative algorithms referred 1 : aboveuse a techniquecalled the shift of origin. This techniquerequires v i aquantitycalledashift. Alowerboundoftheminimalsingularvalueof X theupperbidiagonalmatrixcan beused todeterminethisquantity. r a Several lowerbounds of the minimalsingular valueof a matrix have been proposed. For example, see [2, 4, 5, 7, 10, 14]. For an upper bidiagonal matrix B, where all the diagonal and the upper subdiagonal entries are positive, the traces Tr((BB ) M) (M = 1,2,...) give lower ⊤ − bounds of the minimal singular value of B. For example, the following 128-20Kojogaoka,Otsu,Shiga520-0821Japan,Tel.:+81-77-522-7447,Fax:+81-77-522-7447,e-mail: [email protected] 2GraduateSchoolofInformatics,KyotoUniversity,Yoshida-Honmachi, Sakyo-ku,Kyoto,Kyoto606- 8501Japan,e-mail:[email protected] 3GraduateSchoolofInformatics andEngineering, TheUniversity ofElectro-Communications, 1-5-1, Chofugaoka,Chofu,Tokyo182-8585,Japan,e-mail:[email protected] 1 twoquantities ̺ = (Tr((BB⊤)−1))−12 and 1 N υ = , sTr((BB⊤)−1) · vuuuuuut1+ s(N −1) N · (TTrr((((BBBB⊤⊤))−−12)))2 −1! where N is the matrix size of B, are such lower bounds. For details, see [8] by von Matt. Forcomputationof thetraces of (BB ) 1 and (BB ) 2, ⊤ − ⊤ − vonMatt[8]alsopresentedamethodtocomputethediagonalentriesof theseinverses. Ontheotherhand,Kimuraetal. [6]presentedasequence oflowerboundsoftheminimalsingularvalueofB. Theselowerbounds θ (B) (M = 1,2,...) are given with the traces J (B) = Tr((B B) M) = M M ⊤ − Tr((BB ) M)as ⊤ − θM(B) = (JM(B))−21M, M = 1,2,.... It holds ̺ = θ (B). They increase monotonically and converge to the 1 minimal singular value σ (B) of B as M goes to infinity [6, Theorem min 3.1], thatis, θ (B) < θ (B) < < σ (B), 1 2 min ··· lim θ (B) = σ (B). M min M →∞ Kimuraet al. [6] also presented a formulafor computationofthe traces ofJ (B)foranarbitrarypositiveintegerM. Thisformulagivesthediag- M onalentries oftheinversepowers(B B) M and(BB ) M (M = 1,2,...) ⊤ − ⊤ − in a form of recurrence relation. In [12], Yamashita et al. derived an- otherformulaforthesediagonalentriesstartingfromtheformulain[6]. While theformula in [6] includes subtraction in it in the case of M 2, ≥ theformulain[12]consistsofonlyaddition,multiplicationanddivision among positive quantities. Namely, the formula in [12] is “subtraction- free”. This property clearly excludes any possibility of cancellation er- ror. In this paper, we present another formula for computation of the traces J (B) (M = 1,2,...). This formula is also subtraction-free. We M derivetheformulawithanideawhichisquitedifferentfromthatin[12]. We do not aim to obtain the diagonal entries of (B B) M or (BB ) M ⊤ − ⊤ − (M = 1,2,...) in the derivation. Instead, equations on the determinant and the entries of A λI, where A is B B or BB , λ is a parameter and ⊤ ⊤ − I is the unit matrix, are considered. The new formula is obtained by 2 differentiating these equations with respect to the parameter λ repeat- edly. Computational cost for the traces are also discussed. Moreover, an implementationfor the trace J (B) which is useful in practice is pre- 2 sented. This implementation has the following merits compared with thatin [12]. Thenumberofoperationsissmallercomparedwiththeimplemen- • tationin [12]. Only one “loop” is required while the implementation in [12] re- • quirestwoloops. No“array” is necessary,in contrasttotheimplementationin [12]. • This paper is organized as follows. In Section 2, the new formula is derived. In Section 3, computational cost for the new formula is dis- cussed. In Section 4, an efficient implementation for the trace J (B) is 2 presented. Section5 isdevotedforconcludingremarks. 2 Derivation of the formula for the traces Let us consider an N N real upper bidiagonal matrix B, where all the × diagonal and the upper subdiagonal entries are positive. In this sec- tion, we derive the new formula for the traces J (B) = Tr((B B) p) = p ⊤ − Tr((BB ) p) for an arbitrary positive integer p in a form of recurrence ⊤ − relation. From these traces, lower bounds of the minimal singularvalue of B are obtained. In the context of singular value computation, we can assume the positivity of the diagonal and the upper subdiagonal entries of B without loss of generality [1]. We present two recurrence relations inSections2.1and2.2. Theideastoderivatetherecurrencerelationsare quitedifferent fromthosein [12]. Hereafter, we fix somenotations. Let Bbe √q √e 1 1 √q √e 2 2 whereBq=> 0 for i = 1,.....,.N a√nd.q.N.e−1> 0√√efoqNrN−1i =,1,...,N 1. Let I(b1e) i i theN N unitmatrix. Weusetheconvention k = 0if j−> k. Letλbe × i=j aparameter. P 3 2.1 Derivation-typeI Inthissubsection,weactuallyderivetheformula. Lettheeigenvaluesof B Bbeλ ,...,λ . Foranarbitrarypositiveinteger p,theeigenvaluesof ⊤ 1 N (B B) p are λ p,...,λ p. Then, the summation N λ p is the trace of ⊤ − −1 −N i=1 −i (B B) p. We derive a formula to compute this summation. The matrix ⊤ − P B Bisgivenas ⊤ q √q e 1 1 1 √q e q +e ... B B =  1 1 2 1 . It can b⊤ereadily verifiedt.h.a.t we√obqtNa.−i.1n.etNh−e1fol√qloNqwN+i−n1egeNN−m−11atrix q q e 1 1 1 1 q +e ... A =  2 1  by similarity trans.f.o.rmat.i1.o.n. qqTNNh−+e1neeN,N−−t1h1ematrices A and B⊤B have the same eigenvalues. A key point of this derivation is to express the de- terminant of A λI in two ways. As the first way, the determinant is − expressedas N det(A λI) = (λ λ). (2) i − − i=1 Y Forthesecond way,let usconsiderdecompositionofthematrix q λ q e 1 1 1 − 1 q +e λ ... A λI =  2 1 −  intothe−matrixproductexpres.s.e.das .1.. qNq+N−e1Ne−N1−−1 λ  qˆ(0) 1 eˆ(0) 1 1 1 qˆ(0) 1 ... whereAqˆ−(0)λfIo=r i= 1,....2.,.N a.1n..d eˆqˆ(0(N)0)fori = 1,...,.N.. eˆ1(N10−a)1ref,unctions of λ. Thesei functionsare repeatedlyi differentiated in th−e discussionshown 4 below. The superscript (0) indicates that the function has not been dif- ferentiated yet. Comparison of the diagonal and the upper subdiagonal entries of A λI gives − q +e λ = qˆ(0) +eˆ(0), i = 1,...,N, (3) i i−1 − i i−1 qe = qˆ(0)eˆ(0), i = 1,...,N 1, (4) i i i i − where e(0) = 0 and eˆ(0) = 0. Then, thefunctions qˆ(0) for i = 1,...,N and 0 0 i eˆ(0) fori = 1,...,N 1areobtainedbythefollowingrecurrencerelation i − qˆ(0) = q λ, 1 1 − qe eˆ(0) = i i, i = 1,...,N 1, i qˆ(0) − i qˆ(0) = q +e λ eˆ(0), i = 2,...,N. i i i−1 − − i−1 Thus,thesecondexpressionofthedeterminantof A λI isgivenas − N det(A λI) = qˆ(0). (5) − i i=1 Y By (2)and (5), wehave N N (λ λ) = qˆ(0). (6) i − i i=1 i=1 Y Y We differentiate this equation (6). The result of differentiation of the left-hand sideof(6)is N N N 1 1 (λ λ) = det(A λI). (7) j −λ λ − − λ λ − i=1  i − j=1   i=1 i −  BeforXe differentiatYion of the right-haXnd-side of(6), we introduce func- tionsqˆ(p) ofλ defined by i dpqˆ(0) qˆ(p) = i (8) i dλp fori = 1,...,N and p = 1,2,.... Theresult ofdifferentiationis N Nj=1qˆ(j0) qˆ(1) = N qˆ(i1) det(A λI). (9) qˆ(0) · i qˆ(0) − i=1 Q i i=1 i  FromX(7)and (9), wederiveX  N 1 N qˆ(1) = i . (10) i=1 λi −λ i=1 −qˆ(i0) X X  5 Then, by substituting λ = 0 into the left-hand-side of (10), we have the summation N λ 1 which is equal to the trace of (B B) 1. For i = i=1 −i ⊤ − 1,...,N and p = 2,3,..., itholdsthat P N N d 1 1 = (p 1) . (11) dλ (λ λ)p 1 − (λ λ)p i=1 i − − i=1 i − X X Thisrelationshipimpliesthatwehavethesummation N (λ λ) p for p = 2,3,... by differentiating (10) repeatedly. From tih=i1s siu−mm−ation, weobtainthesummation N λ p whichisequaltothePtraceof(B B) p i=1 −i ⊤ − by substitution of λ = 0. To make handling of the right-hand-side of (10) easier, let us introduPce functions Hˆ(p) of λ for i = 1,...,N and i p = 1,2,... defined by qˆ(1) i , p = 1, Hˆ(p) =  −qˆ(i0) (12) i  dHˆdi(λp−1), p = 2,3,.... Wecan readily verifythat itholdsthat N N 1 (p 1)! = Hˆ(p) (13) − (λ λ)p i i=1 i − i=1 X X for p = 1,2,... by differentiating (10) repeatedly and taking care of (10),(11)and(12). Thus,thetraceof(B B) pisobtainedbysubstituting ⊤ − λ = 0into(13). Letusintroduceconstants H(p) fori = 1,...,N and p = i 1,2,... definedby H(p) = Hˆ(p) . Thetraceof(B B) p isexpressedas i i λ=0 ⊤ − N(cid:12) 1 (cid:12) Tr((B B) p) = (cid:12) H(p), p = 1,2,.... (14) ⊤ − (p 1)! i − i=1 X Thus,wecanobtainthesetracesiftheconstantsH(p)fori = 1,...,N and i p = 1,2,... are obtained by somemeans. The relationship(14) implies that a formula for H(p) is required. We derive a recurrence relation for i Hˆ(p). A recurrence relation for H(p) is obtained by substitution of λ = 0 i i intotherecurrencerelationforHˆ(p). OnthefunctionsHˆ(p),thefollowing i i lemmaholds. Lemma 2.1 Let functionshˆ(p) ofλfori = 1,...,N and p = 1,2,... bedefined by i qˆ(p) hˆ(p) = i . (15) i −qˆ(0) i 6 Fori = 1,...,N, it holds Hˆ(1) = hˆ(1), (16) i i p 1 − Hˆ(p) = hˆ(p) + C hˆ(k)Hˆ(p k), p = 2,3,.... (17) i i p 1 k i i − − k=1 X Proof. Inthisproof, leti = 1,...,N. Substituting p = 1 into(15)andcomparingwith(12), wehave(16). Wegivethederivativeofhˆ(r) forr = 1,2,.... It holds i dhˆ(r) qˆ(r+1) qˆ(r)qˆ(1) i = i + i i , r = 1,2,... dλ − qˆ(0) (qˆ(0))2 i i from (8)and(15). Then, itholdsthat dhˆ(r) i = hˆ(r+1) +hˆ(1)hˆ(r), r = 1,2,... (18) dλ i i i from (15). Using Hˆ(1) = hˆ(1) in(16), wehaveanotherform i i dhˆ(r) i = hˆ(r+1) +Hˆ(1)hˆ(r), r = 1,2,.... (19) dλ i i i Weusemathematicalinductionfor proof. We write the definition of Hˆ(p) for p = 2,3,... again. The definition i is dHˆ(p 1) − Hˆ(p) = i . (20) i dλ We derive (17) for p = 2. Differentiating (16) and using (19) and (20), weobtain Hˆ(2) = hˆ(2) +hˆ(1)Hˆ(1). (21) i i i i Thus,(17)holdsfor p = 2. Hereafter,letrbeanintegersuchthatr 2inthisproof. Assumethat (17) holds for p = 2,...,r. We consider d≥ifferentiation of the function Hˆ(r). Differentiating(17)for p = r and using(18)and (20), wederive i r 1 Hˆ(r+1) = hˆ(r+1)+hˆ(1)hˆ(r)+ − C hˆ(k+1) +hˆ(1)hˆ(k) Hˆ(r k) +hˆ(k)Hˆ(r+1 k) . i i i i r 1 k i i i i − i i − − k=1 X (cid:16)(cid:16) (cid:17) (cid:17) (22) 7 Sinceit holds r 1 hˆ(1)hˆ(r) + − C hˆ(1)hˆ(k)Hˆ(r k) = hˆ(1)Hˆ(r) i i r 1 k i i i − i i − k=1 X from theassumption,(22)isrewrittenas r 1 r 1 Hˆ(r+1) = hˆ(r+1)+hˆ(1)Hˆ(r)+ − C hˆ(k+1)Hˆ(r k)+ − C hˆ(k)Hˆ(r+1 k). (23) i i i i r 1 k i i − r 1 k i i − − − k=1 k=1 X X Werearrangethethirdtermintheright-hand-sideof(23). Sinceitholds that r 1 r − r−1Ckhˆi(k+1)Hˆi(r−k) = r−1Ck′−1hˆi(k′)Hˆi(r+1−k′), k=1 k=2 X X′ wehave r 1 r 1 − C hˆ(k+1)Hˆ(r k) = hˆ(r)Hˆ(1) + − C hˆ(k)Hˆ(r+1 k). (24) r 1 k i i − i i r 1 k 1 i i − − − − k=1 k=2 X X Thefourthterm intheright-hand-sideof(23)is rewrittenas r 1 r 1 − C hˆ(k)Hˆ(r+1 k) = (r 1)hˆ(1)Hˆ(r) + − C hˆ(k)Hˆ(r+1 k). (25) r−1 k i i − − i i r−1 k i i − k=1 k=2 X X From (23), (24)and (25), wederive r 1 Hˆ(r+1) = hˆ(r+1)+hˆ(r)Hˆ(1)+ − ( C + C )hˆ(k)Hˆ(r+1 k)+rhˆ(1)Hˆ(r). (26) i i i i r 1 k 1 r 1 k i i − i i − − − k=2 X Itcan readilybeverified thatthesummationofthecombinationsin(26) is C + C = C (27) r 1 k 1 r 1 k r k − − − inthecaseofr 3. Inthecaseofr = 2,thesummationofthethirdterm ≥ intheright-hand-sideof(26)is zero. Then, wefinallyobtain r Hˆ(r+1) = hˆ(r+1) + C hˆ(k)Hˆ(r+1 k). i i r k i i − k=1 X Thus,(17)holdsfor p = r+1. (cid:3) ByLemma2.1,weobtainarecurrencerelationforHˆ(p). However,we i have not obtained a recurrence relation for the functions hˆ(p). We show i the followinglemmawhich gives a method to computehˆ(p) in a form of i arecurrence relation. 8 Lemma 2.2 Thefunctionshˆ(p) fori = 1,...,N and p = 1,2,... satisfythefollowing i recurrence relation. For p = 1, therecurrence relationis 1 hˆ(1) = , (28) 1 qˆ(0) 1 eˆ(0)hˆ(1) +1 hˆ(1) = i 1 i 1 , i = 2,...,N. (29) − − i qˆ(0) i Fori = 1 and p = 2,3,..., therecurrence relationis hˆ(p) = 0. (30) 1 Fori = 2,...,N and p = 2,3,..., therecurrence relationis eˆ(0) p−2 hˆ(p) = i 1 hˆ(p) + phˆ(1)hˆ(p 1) + C hˆ(k)hˆ(p k). (31) i qˆ(i−0) i−1 i−1 i−−1 k=1 p k i−1 i − (cid:16) (cid:17) X Proof. In this proof, another key point of the derivation of the recurrence relation is applied. The key point is as follows. We differentiate the relationships q + e λ = qˆ(0) + eˆ(0) for i = 1,...,N shown in (3) and qe = qˆ(0)eˆi(0) foi−r1i−= 1,...,iN 1i−s1hown in (4). Then, we derive a i i i i − recurrence relation whichthefunctionshˆ(p) satisfy. i We introduce functions eˆ(p) of λ for i = 0,1,...,N 1 and p = i − 1,2,... defined by dpeˆ(0) eˆ(p) = i . i dλp Differentiating(4)repeatedly, wehave p C qˆ(k)eˆ(p k) = 0, i = 1,...N 1, p = 1,2,.... p k i i − − k=0 X Solvingthisequationforeˆ(p), weobtain i p eˆ(p) = C hˆ(k)eˆ(p k), i = 1,...N 1, p = 1,2,... (32) i p k i i − − k=1 X sincehˆ(k) = qˆ(k)/qˆ(0) fromthedefinition. Wesihow−thai t (2i8)and(29)hold. Differentiating(3), wehave qˆ(1) +eˆ(1) = 1, i = 1,...,N. (33) i i 1 − − 9 Then, hˆ(1) = qˆ(1)/qˆ(0) isexpressedas i − i i eˆ(1) +1 hˆ(1) = i 1 , i = 1,...,N. (34) − i qˆ(0) i Substituting p = 1into(32), wehave eˆ(1) = hˆ(1)eˆ(0), i = 1,...,N 1. (35) i i i − From (34), (35)and eˆ(0) = 0,weimmediatelyobtain(28)and (29). 0 Hereafter, let p = 2,3,... in this proof. We show that the relation- ships(30)and(31)hold. Differentiating(33) repeatedly,weobtain qˆ(p) +eˆ(p) = 0, i = 1,...,N. (36) i i 1 − From this relationship and the definition hˆ(p) = qˆ(p)/qˆ(0), the functions i − i i hˆ(p) for p = 2,3,... are i eˆ(p) hˆ(p) = i 1, i = 1,...,N. (37) − i qˆ(0) i We show that (30) holds. It holds that eˆ(p) = 0 since eˆ(0) = 0. Then, 0 0 substitutingi = 1 into(37), wehave(30). We show that (31) holds. Hereafter, let i = 2,...N in this proof. Substituting(32) into(37), weobtain p 1 hˆ(p) = C hˆ(k)eˆ(p k). (38) i qˆ(i0) k=1 p k i−1 i−−1 X It followsfrom (35) that C hˆ(p 1)eˆ(1) = peˆ(0)hˆ(p 1)hˆ(1). (39) p p 1 i −1 i 1 i 1 i −1 i 1 − − − − − − From (38)and(39), it holds p 2 1 − hˆ(p) = hˆ(p)eˆ(0) + peˆ(0)hˆ(p 1)hˆ(1) + C hˆ(k)eˆ(p k) . (40) i qˆ(i0)  i−1 i−1 i−1 i−−1 i−1 k=1 p k i−1 i−−1  Then, weobtain(31)from (37)and (40). (cid:3)X  Remark 2.3 From Lemmas 2.1 and 2.2, the functions Hˆ(1) satisfy the following re- i currence relation 1 Hˆ(1) = , 1 qˆ(0) 1 eˆ(0)Hˆ(1) +1 Hˆ(1) = i 1 i 1 , i = 2,...,N. − − i qˆ(0) i 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.