A NEW PROOF OF THE GEOMETRIC-ARITHMETIC MEAN INEQUALITY BY CAUCHY’S INTEGRAL FORMULA 3 1 FENGQI,XIAO-JINGZHANG,ANDWEN-HUILI 0 2 Abstract. Let a = (a1,a2,...,an) for n ∈ N be a given sequence of posi- n tivenumbers. Inthepaper, theauthors establish, byusingCauchy’s integral a formula in the theory of complex functions, an integral representation of the J principalbranchofthegeometricmean 8 n 1/n 2 Gn(a+z)= (ak+z) "kY=1 # A] forz∈C\(−∞,−min{ak,1≤k≤n}],andthen provideanew proofof the wellknownGAmeaninequality. C . h t a 1. Introduction m [ Let a = (a1,a2,...,an) for n ∈ N, the set of all positive integers, be a given sequence of positive numbers. Then the arithmetic and geometric means An(a) 1 and G (a) of the numbers a ,a ,...,a are defined respectively as v n 1 2 n 2 n 1 3 A (a)= a (1.1) n n k 4 k=1 6 X and . 1 n 1/n 0 G (a)= a . (1.2) n k 3 ! k=1 1 Y It is common knowledge that : v i Gn(a)≤An(a), (1.3) X with equality if and only if a =a =···=a . r 1 2 n a There has been a large number, presumably over one hundred, of proofs of the GA mean inequality (1.3) in the mathematical literature. The most complete information, so far, can be found in the monographs [1, 2, 3, 4, 5, 6] and a lot of references therein. In this paper, we establish, by using Cauchy’s integral formula in the theory of complex functions, an integral representation of the principal branch of the geo- metric mean n 1/n G (a+z)= (a +z) (1.4) n k " # k=1 Y 2010 Mathematics Subject Classification. Primary26E60, 30E20;Secondary26A48,44A20. Key words and phrases. Integral representation; Cauchy’s integral formula; Arithmetic mean; Geometricmean;GAmeaninequality;Newproof. Thispaperwastypeset usingAMS-LATEX. 1 2 F.QI,X.-J.ZHANG,ANDW.-H.LI for z ∈C\(−∞,−min{a ,1≤k ≤n}], and provide a new proof of the GA mean k inequality (1.3). 2. Lemmas In order to prove our main results, we need the following lemmas. Lemma 2.1. For z ∈C\(−∞,−min{a ,1≤k ≤n}], the principal branch of the k complex function f (z)=G (a+z)−z, (2.1) n n where a+z =(a +z,a +z,...,a +z), meets 1 2 n lim f (z)=A (a). (2.2) n n z→∞ Proof. By L’Hoˆspital’s rule in the theory of complex functions, we have a lim f (z)= lim z G 1+ −1 z→∞ n z→∞ n z (cid:26) (cid:20) (cid:18) (cid:19) (cid:21)(cid:27) G (1+az)−1 d n 1/n = lim n = lim (1+a z) =A (a), z→0 z z→0dz" k # n k=1 Y where1+a = 1+a1,1+a2,...,1+an and1+az=(1+a z,1+a z,...,1+a z). z z z z 1 2 n Lemma 2.1 is thus proved. (cid:3) (cid:0) (cid:1) Lemma 2.2. For z ∈C\(−∞,0] and a=(a ,a ,...,a ) satisfying a ≤a for 1 2 n ℓ ℓ+1 1≤ℓ≤n−1, let h (z)=G (a−a +z)−z, (2.3) n n 1 where a−a +z =(z,a −a +z,...,a −a +z). Then the imaginary part of the 1 2 1 n 1 principal branch of h (z) meets n n 1/n ℓπ |a −a −t| sin , t∈(a −a ,a −a ] lim ℑh (−t+iε)= k 1 n ℓ 1 ℓ+1 1 n " # ε→0+ 0,kY=1 t>a −a n 1 (2.4) for 1≤ℓ≤n−1. Proof. For t=a −a for 1≤ℓ≤n−1, we have ℓ+1 1 n 1 1 h (−t+iε)=exp ln(a −a −t+iε)+ ln(iε) +t−iε n n k 1 n " # k6=ℓ+1 X 1 n 1 π =exp ln(a −a −t+iε) exp ln|ε|+ i +t−iε n k 1 n 2 " k6=ℓ+1 # (cid:20) (cid:18) (cid:19)(cid:21) X 1 n 1 π →exp ln(a −a −t) lim exp ln|ε|+ i +t "nk6=ℓ+1 k 1 #ε→0+ (cid:20)n(cid:18) 2 (cid:19)(cid:21) X =t as ε→0+. Hence, when t=a −a for 1≤ℓ≤n−1, we have ℓ+1 1 lim ℑh (−t+iε)=0. n ε→0+ A NEW PROOF OF THE GEOMETRIC-ARITHMETIC MEAN INEQUALITY 3 For t∈(0,∞)\{a −a ,1≤ℓ≤n−1} and ε>0, we have ℓ+1 1 h (−t+iε)=G (a−a −t+iε)+t−iε n n 1 n 1 =exp ln(a −a −t+iε) +t−iε n k 1 " # k=1 X n 1 =exp [ln|a −a −t+iε|+iarg(a −a −t+iε)] +t−iε n k 1 k 1 ( ) k=1 X n 1 ℓπ exp ln|a −a −t|+ i +t, t∈(a −a ,a −a ) n k 1 n ℓ 1 ℓ+1 1 ! →exp 1 Xk=n1ln|a −a −t|+πi +t, t>a −a n k 1 n 1 ! k=1 n X1/n ℓπ ℓπ |a −a −t| cos +isin +t, t∈(a −a ,a −a ) = kY=n1|ak−a1−t|!1/n(cid:18)(cosπn+isinπ)+nt(cid:19), t>aℓ−a1 ℓ+1 1 k 1 n 1 ! as ε→0+kY=. 1As a result, we have n 1/n ℓπ |a −a −t| sin , t∈(a −a ,a −a ); lim ℑh (−t+iε)= k 1 n ℓ 1 ℓ+1 1 n ! ε→0+ 0,kY=1 t>a −a . n 1 The proof of Lemma 2.2 is completed. (cid:3) 3. An integral representation of the geometric mean Now weareinapositionto establishanintegralrepresentationofthe geometric mean G (a+z). n Theorem 3.1. Let 0 < a ≤ a for 1 ≤ k ≤ n−1 and a+z = (a +z,a + k k+1 1 2 z,...,a +z) for z ∈ C\(−∞,−a ]. Then the principal branch of the geometric n 1 mean G (a+z) has the integral representation n 1 n−1 ℓπ aℓ+1 n 1/n dt G (a+z)=A (a)+z− sin (a −t) . (3.1) n n π Xℓ=1 n Zaℓ (cid:12)(cid:12)kY=1 k (cid:12)(cid:12) t+z (cid:12) (cid:12) Proof. By standard arguments, it is not difficult to(cid:12) see that (cid:12) (cid:12) (cid:12) lim [zh (z)]=0 and h (z)=h (z). (3.2) n n n z→0+ For any but fixed point z ∈ C\(−∞,0], choose 0 < ε < 1 and r > 0 such that 0<ε<|z|<r, and consider the positively oriented contour C(ε,r) in C\(−∞,0] consisting of the half circle z = εeiθ for θ ∈ −π,π and the half lines z = x±iε 2 2 for x ≤ 0 until they cut the circle |z| = r, which close the contour at the points (cid:2) (cid:3) −r(ε)±iε,where 0<r(ε)→r as ε→0. By the famous Cauchy’sintegralformula 4 F.QI,X.-J.ZHANG,ANDW.-H.LI in the theory of complex functions, we have 1 h (w) h (z)= n dw n 2πi w−z IC(ε,r) 1 −π/2 iεeiθh εeiθ arg[−r(ε)+iε] ireiθh reiθ = dθ+ dθ (3.3) 2πi εeiθ−z reiθ −z (cid:20)Zπ/2 (cid:0) (cid:1) Zarg[−r(ε)−iε] (cid:0) (cid:1) 0 h (x+iε) −r(ε) h (x−iε) + n dx+ n dx . x+iε−z x−iε−z Z−r(ε) Z0 (cid:21) By the limit in (3.2), it follows that −π/2 iεeiθh εeiθ n lim dθ =0. (3.4) ε→0+Zπ/2 εeiθ−(cid:0) z (cid:1) By virtue of the limit (2.2) in Lemma 2.1, we deduce that arg[−r(ε)+iε] ireiθh reiθ π ireiθh reiθ n n lim dθ = lim dθ εr→→0∞+Zarg[−r(ε)−iε] reiθ −(cid:0) z (cid:1) r→∞Z−π reiθ −(cid:0) z (cid:1) (3.5) =2A (a−a )πi, n 1 where a−a =(0,a −a ,...,a −a ). Utilizing the second formula in (3.2) and 1 2 1 n 1 the limit (2.4) in Lemma 2.2 results in 0 h (x+iε) −r(ε) h (x−iε) n dx+ n dx x+iε−z x−iε−z Z−r(ε) Z0 0 h (x+iε) h (x−iε) = n − n dx x+iε−z x−iε−z Z−r(ε)(cid:20) (cid:21) 0 (x−iε−z)h (x+iε)−(x+iε−z)h (x−iε) = n n dx (x+iε−z)(x−iε−z) Z−r(ε) 0 (x−z)[h (x+iε)−h (x−iε)]−iε[h (x−iε)+h (x+iε)] = n n n n dx (x+iε−z)(x−iε−z) Z−r(ε) 0 (x−z)ℑh (x+iε)−εℜh (x+iε) =2i n n dx (x+iε−z)(x−iε−z) Z−r(ε) 0 lim ℑh (x+iε) →2i ε→0+ n dx x−z Z−r r lim ℑh (−t+iε) =−2i ε→0+ n dt t+z Z0 ∞ lim ℑh (−t+iε) →−2i ε→0+ n dt t+z Z0 n−1 ℓπ aℓ+1−a1 n 1/n dt =−2i sin |a −a −t| (3.6) n k 1 t+z ℓ=1 Zaℓ−a1 "k=1 # X Y A NEW PROOF OF THE GEOMETRIC-ARITHMETIC MEAN INEQUALITY 5 asε→0+ andr →∞. Substituting equations(3.4),(3.5), and(3.6)into (3.3)and simplifying generate 1 n−1 ℓπ aℓ+1−a1 n 1/n dt h (z)=A (a−a )− sin |a −a −t| . (3.7) n n 1 π n k 1 t+z ℓ=1 Zaℓ−a1 "k=1 # X Y From f (z)=h (z+a )+a and (3.7), it is immediate to deduce that n n 1 1 1 n−1 ℓπ aℓ+1−a1 n 1/n dt f (z)=A (a−a )+a − sin |a −a −t| n n 1 1 π n k 1 t+z+a ℓ=1 Zaℓ−a1 "k=1 # 1 X Y 1 n−1 ℓπ aℓ+1 n 1/n dt =A (a)− sin |a −t| , n π n k t+z ℓ=1 Zaℓ "k=1 # X Y from which the integral representation (3.1) follows. Theorem 3.1 is proved. (cid:3) 4. A new proof of the GA mean inequality With the aid of the integral representation (3.1) in Theorem 3.1, we can easily deduce the GA mean inequality (1.3) as follows. Taking z =0 in the integral representation (3.1) yields 1 n−1 ℓπ aℓ+1 n 1/ndt G (a)=A (a)− sin |a −t| ≤A (a). n n π n k t n ℓ=1 Zaℓ "k=1 # X Y From this, it is also obvious that the equality in (1.3) is valid if and only if a = 1 a =···=a . The proof of the GA mean inequality (1.3) is complete. 2 n References [1] E.F.Beckenbach andR.Bellman,Inequalities,Springer,Berlin,1983. [2] P. S. Bullen, Handbook of Means and Their Inequalities, Mathematics and its Applications (Dordrecht) 560,KluwerAcademicPublishers,Dordrecht,2003. [3] G. H. Hardy, J. E. Littlewood, and G. P´olya, Inequalities, 2nd ed., Cambridge University Press,Cambridge,1952. [4] J.-C. Kuang, Cha´ngy`ong Bu`dˇengsh`ı (Applied Inequalities), 3rd ed., Sh¯and¯ong K¯exu´e J`ıshu` Chu¯bˇan Sh`e (Shandong Science and Technology Press), Ji’nan City, Shandong Province, China,2004.(Chinese) [5] D.S.Mitrinovi´c,Analytic Inequalities,Springer,NewYork-Heidelberg-Berlin,1970. [6] D.S.Mitrinovi´candP.M.Vasi´c,Sredine,MatematiˇckaBiblioteka40,Beograd,1969. (Qi)DepartmentofMathematics,SchoolofScience,TianjinPolytechnicUniversity, TianjinCity, 300387,China E-mail address: [email protected], [email protected], [email protected] URL:http://qifeng618.wordpress.com (Zhang)DepartmentofMathematics,SchoolofScience,TianjinPolytechnicUniver- sity,Tianjin City, 300387,China E-mail address: [email protected] (Li)DepartmentofMathematics,SchoolofScience,TianjinPolytechnicUniversity, TianjinCity, 300387,China E-mail address: [email protected]