ebook img

A new proof of the geometric-arithmetic mean inequality by Cauchy's integral formula PDF

0.1 MB·English
by  Feng Qi
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A new proof of the geometric-arithmetic mean inequality by Cauchy's integral formula

A NEW PROOF OF THE GEOMETRIC-ARITHMETIC MEAN INEQUALITY BY CAUCHY’S INTEGRAL FORMULA 3 1 FENGQI,XIAO-JINGZHANG,ANDWEN-HUILI 0 2 Abstract. Let a = (a1,a2,...,an) for n ∈ N be a given sequence of posi- n tivenumbers. Inthepaper, theauthors establish, byusingCauchy’s integral a formula in the theory of complex functions, an integral representation of the J principalbranchofthegeometricmean 8 n 1/n 2 Gn(a+z)= (ak+z) "kY=1 # A] forz∈C\(−∞,−min{ak,1≤k≤n}],andthen provideanew proofof the wellknownGAmeaninequality. C . h t a 1. Introduction m [ Let a = (a1,a2,...,an) for n ∈ N, the set of all positive integers, be a given sequence of positive numbers. Then the arithmetic and geometric means An(a) 1 and G (a) of the numbers a ,a ,...,a are defined respectively as v n 1 2 n 2 n 1 3 A (a)= a (1.1) n n k 4 k=1 6 X and . 1 n 1/n 0 G (a)= a . (1.2) n k 3 ! k=1 1 Y It is common knowledge that : v i Gn(a)≤An(a), (1.3) X with equality if and only if a =a =···=a . r 1 2 n a There has been a large number, presumably over one hundred, of proofs of the GA mean inequality (1.3) in the mathematical literature. The most complete information, so far, can be found in the monographs [1, 2, 3, 4, 5, 6] and a lot of references therein. In this paper, we establish, by using Cauchy’s integral formula in the theory of complex functions, an integral representation of the principal branch of the geo- metric mean n 1/n G (a+z)= (a +z) (1.4) n k " # k=1 Y 2010 Mathematics Subject Classification. Primary26E60, 30E20;Secondary26A48,44A20. Key words and phrases. Integral representation; Cauchy’s integral formula; Arithmetic mean; Geometricmean;GAmeaninequality;Newproof. Thispaperwastypeset usingAMS-LATEX. 1 2 F.QI,X.-J.ZHANG,ANDW.-H.LI for z ∈C\(−∞,−min{a ,1≤k ≤n}], and provide a new proof of the GA mean k inequality (1.3). 2. Lemmas In order to prove our main results, we need the following lemmas. Lemma 2.1. For z ∈C\(−∞,−min{a ,1≤k ≤n}], the principal branch of the k complex function f (z)=G (a+z)−z, (2.1) n n where a+z =(a +z,a +z,...,a +z), meets 1 2 n lim f (z)=A (a). (2.2) n n z→∞ Proof. By L’Hoˆspital’s rule in the theory of complex functions, we have a lim f (z)= lim z G 1+ −1 z→∞ n z→∞ n z (cid:26) (cid:20) (cid:18) (cid:19) (cid:21)(cid:27) G (1+az)−1 d n 1/n = lim n = lim (1+a z) =A (a), z→0 z z→0dz" k # n k=1 Y where1+a = 1+a1,1+a2,...,1+an and1+az=(1+a z,1+a z,...,1+a z). z z z z 1 2 n Lemma 2.1 is thus proved. (cid:3) (cid:0) (cid:1) Lemma 2.2. For z ∈C\(−∞,0] and a=(a ,a ,...,a ) satisfying a ≤a for 1 2 n ℓ ℓ+1 1≤ℓ≤n−1, let h (z)=G (a−a +z)−z, (2.3) n n 1 where a−a +z =(z,a −a +z,...,a −a +z). Then the imaginary part of the 1 2 1 n 1 principal branch of h (z) meets n n 1/n ℓπ |a −a −t| sin , t∈(a −a ,a −a ] lim ℑh (−t+iε)= k 1 n ℓ 1 ℓ+1 1 n " # ε→0+ 0,kY=1 t>a −a n 1 (2.4) for 1≤ℓ≤n−1.  Proof. For t=a −a for 1≤ℓ≤n−1, we have ℓ+1 1 n 1 1 h (−t+iε)=exp ln(a −a −t+iε)+ ln(iε) +t−iε n n k 1 n " # k6=ℓ+1 X 1 n 1 π =exp ln(a −a −t+iε) exp ln|ε|+ i +t−iε n k 1 n 2 " k6=ℓ+1 # (cid:20) (cid:18) (cid:19)(cid:21) X 1 n 1 π →exp ln(a −a −t) lim exp ln|ε|+ i +t "nk6=ℓ+1 k 1 #ε→0+ (cid:20)n(cid:18) 2 (cid:19)(cid:21) X =t as ε→0+. Hence, when t=a −a for 1≤ℓ≤n−1, we have ℓ+1 1 lim ℑh (−t+iε)=0. n ε→0+ A NEW PROOF OF THE GEOMETRIC-ARITHMETIC MEAN INEQUALITY 3 For t∈(0,∞)\{a −a ,1≤ℓ≤n−1} and ε>0, we have ℓ+1 1 h (−t+iε)=G (a−a −t+iε)+t−iε n n 1 n 1 =exp ln(a −a −t+iε) +t−iε n k 1 " # k=1 X n 1 =exp [ln|a −a −t+iε|+iarg(a −a −t+iε)] +t−iε n k 1 k 1 ( ) k=1 X n 1 ℓπ exp ln|a −a −t|+ i +t, t∈(a −a ,a −a ) n k 1 n ℓ 1 ℓ+1 1  ! →exp 1 Xk=n1ln|a −a −t|+πi +t, t>a −a n k 1 n 1 ! k=1 n  X1/n ℓπ ℓπ |a −a −t| cos +isin +t, t∈(a −a ,a −a ) = kY=n1|ak−a1−t|!1/n(cid:18)(cosπn+isinπ)+nt(cid:19), t>aℓ−a1 ℓ+1 1 k 1 n 1 ! as ε→0+kY=. 1As a result, we have n 1/n ℓπ |a −a −t| sin , t∈(a −a ,a −a ); lim ℑh (−t+iε)= k 1 n ℓ 1 ℓ+1 1 n ! ε→0+ 0,kY=1 t>a −a . n 1 The proof of Lemma 2.2 is completed. (cid:3) 3. An integral representation of the geometric mean Now weareinapositionto establishanintegralrepresentationofthe geometric mean G (a+z). n Theorem 3.1. Let 0 < a ≤ a for 1 ≤ k ≤ n−1 and a+z = (a +z,a + k k+1 1 2 z,...,a +z) for z ∈ C\(−∞,−a ]. Then the principal branch of the geometric n 1 mean G (a+z) has the integral representation n 1 n−1 ℓπ aℓ+1 n 1/n dt G (a+z)=A (a)+z− sin (a −t) . (3.1) n n π Xℓ=1 n Zaℓ (cid:12)(cid:12)kY=1 k (cid:12)(cid:12) t+z (cid:12) (cid:12) Proof. By standard arguments, it is not difficult to(cid:12) see that (cid:12) (cid:12) (cid:12) lim [zh (z)]=0 and h (z)=h (z). (3.2) n n n z→0+ For any but fixed point z ∈ C\(−∞,0], choose 0 < ε < 1 and r > 0 such that 0<ε<|z|<r, and consider the positively oriented contour C(ε,r) in C\(−∞,0] consisting of the half circle z = εeiθ for θ ∈ −π,π and the half lines z = x±iε 2 2 for x ≤ 0 until they cut the circle |z| = r, which close the contour at the points (cid:2) (cid:3) −r(ε)±iε,where 0<r(ε)→r as ε→0. By the famous Cauchy’sintegralformula 4 F.QI,X.-J.ZHANG,ANDW.-H.LI in the theory of complex functions, we have 1 h (w) h (z)= n dw n 2πi w−z IC(ε,r) 1 −π/2 iεeiθh εeiθ arg[−r(ε)+iε] ireiθh reiθ = dθ+ dθ (3.3) 2πi εeiθ−z reiθ −z (cid:20)Zπ/2 (cid:0) (cid:1) Zarg[−r(ε)−iε] (cid:0) (cid:1) 0 h (x+iε) −r(ε) h (x−iε) + n dx+ n dx . x+iε−z x−iε−z Z−r(ε) Z0 (cid:21) By the limit in (3.2), it follows that −π/2 iεeiθh εeiθ n lim dθ =0. (3.4) ε→0+Zπ/2 εeiθ−(cid:0) z (cid:1) By virtue of the limit (2.2) in Lemma 2.1, we deduce that arg[−r(ε)+iε] ireiθh reiθ π ireiθh reiθ n n lim dθ = lim dθ εr→→0∞+Zarg[−r(ε)−iε] reiθ −(cid:0) z (cid:1) r→∞Z−π reiθ −(cid:0) z (cid:1) (3.5) =2A (a−a )πi, n 1 where a−a =(0,a −a ,...,a −a ). Utilizing the second formula in (3.2) and 1 2 1 n 1 the limit (2.4) in Lemma 2.2 results in 0 h (x+iε) −r(ε) h (x−iε) n dx+ n dx x+iε−z x−iε−z Z−r(ε) Z0 0 h (x+iε) h (x−iε) = n − n dx x+iε−z x−iε−z Z−r(ε)(cid:20) (cid:21) 0 (x−iε−z)h (x+iε)−(x+iε−z)h (x−iε) = n n dx (x+iε−z)(x−iε−z) Z−r(ε) 0 (x−z)[h (x+iε)−h (x−iε)]−iε[h (x−iε)+h (x+iε)] = n n n n dx (x+iε−z)(x−iε−z) Z−r(ε) 0 (x−z)ℑh (x+iε)−εℜh (x+iε) =2i n n dx (x+iε−z)(x−iε−z) Z−r(ε) 0 lim ℑh (x+iε) →2i ε→0+ n dx x−z Z−r r lim ℑh (−t+iε) =−2i ε→0+ n dt t+z Z0 ∞ lim ℑh (−t+iε) →−2i ε→0+ n dt t+z Z0 n−1 ℓπ aℓ+1−a1 n 1/n dt =−2i sin |a −a −t| (3.6) n k 1 t+z ℓ=1 Zaℓ−a1 "k=1 # X Y A NEW PROOF OF THE GEOMETRIC-ARITHMETIC MEAN INEQUALITY 5 asε→0+ andr →∞. Substituting equations(3.4),(3.5), and(3.6)into (3.3)and simplifying generate 1 n−1 ℓπ aℓ+1−a1 n 1/n dt h (z)=A (a−a )− sin |a −a −t| . (3.7) n n 1 π n k 1 t+z ℓ=1 Zaℓ−a1 "k=1 # X Y From f (z)=h (z+a )+a and (3.7), it is immediate to deduce that n n 1 1 1 n−1 ℓπ aℓ+1−a1 n 1/n dt f (z)=A (a−a )+a − sin |a −a −t| n n 1 1 π n k 1 t+z+a ℓ=1 Zaℓ−a1 "k=1 # 1 X Y 1 n−1 ℓπ aℓ+1 n 1/n dt =A (a)− sin |a −t| , n π n k t+z ℓ=1 Zaℓ "k=1 # X Y from which the integral representation (3.1) follows. Theorem 3.1 is proved. (cid:3) 4. A new proof of the GA mean inequality With the aid of the integral representation (3.1) in Theorem 3.1, we can easily deduce the GA mean inequality (1.3) as follows. Taking z =0 in the integral representation (3.1) yields 1 n−1 ℓπ aℓ+1 n 1/ndt G (a)=A (a)− sin |a −t| ≤A (a). n n π n k t n ℓ=1 Zaℓ "k=1 # X Y From this, it is also obvious that the equality in (1.3) is valid if and only if a = 1 a =···=a . The proof of the GA mean inequality (1.3) is complete. 2 n References [1] E.F.Beckenbach andR.Bellman,Inequalities,Springer,Berlin,1983. [2] P. S. Bullen, Handbook of Means and Their Inequalities, Mathematics and its Applications (Dordrecht) 560,KluwerAcademicPublishers,Dordrecht,2003. [3] G. H. Hardy, J. E. Littlewood, and G. P´olya, Inequalities, 2nd ed., Cambridge University Press,Cambridge,1952. [4] J.-C. Kuang, Cha´ngy`ong Bu`dˇengsh`ı (Applied Inequalities), 3rd ed., Sh¯and¯ong K¯exu´e J`ıshu` Chu¯bˇan Sh`e (Shandong Science and Technology Press), Ji’nan City, Shandong Province, China,2004.(Chinese) [5] D.S.Mitrinovi´c,Analytic Inequalities,Springer,NewYork-Heidelberg-Berlin,1970. [6] D.S.Mitrinovi´candP.M.Vasi´c,Sredine,MatematiˇckaBiblioteka40,Beograd,1969. (Qi)DepartmentofMathematics,SchoolofScience,TianjinPolytechnicUniversity, TianjinCity, 300387,China E-mail address: [email protected], [email protected], [email protected] URL:http://qifeng618.wordpress.com (Zhang)DepartmentofMathematics,SchoolofScience,TianjinPolytechnicUniver- sity,Tianjin City, 300387,China E-mail address: [email protected] (Li)DepartmentofMathematics,SchoolofScience,TianjinPolytechnicUniversity, TianjinCity, 300387,China E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.