A NEW PROOF OF LUCAS’ THEOREM ALEXANDRELAUGIERANDMANJILP.SAIKIA 3 1 0 Abstract. Wegiveanew proofofLucas’Theoreminelementarynumbertheory. 2 n KeyWords:Lucas’theorem. a J 2010Mathematical ReviewsClassificationNumbers: 11A07,11A41,11A51,11B50,11B65,11B75. 6 1 1. Introduction ] T One of the most useful results in elementary number theory is the following result of E. Lucas N Theorem 1.1 ([1],E. Lucas (1878)). Let p be a prime and m and n be two integers considered in the . h following way, at m=akpk+ak−1pk−1+...+a1p+a0, m n=blpl+bl−1pl−1+...+b1p+b0, [ where all a and b are non-negative integers less than p. Then, i j 1 0v m = akpk+ak−1pk−1+...+a1p+a0 ≡max(k,l) ai (mod p). 5 (cid:18)n(cid:19) (cid:18) blpl+bl−1pl−1+...+b1p+b0 (cid:19) iY=0 (cid:18)bi(cid:19) 2 4 Notice that the theorem is true if ai ≥bi for i=0,1,2,...,max(k,l) . 1 There has been many different proofs of this result in the years that followed its first publication. 0 We present here an alternate approachusing elementary number theoretic techniques. 3 1 : 2. Proof of Theorem 1.1 v i X First of all, we state and prove a few lemmas r Lemma 2.1. If a a +a X +a X2+...+a Xn ≡b +b X +b X2+...+b Xn (mod p) 0 1 2 n 0 1 2 n then a ≡b (mod p) ∀i∈[[0,n]]. i i Proof. Indeed, if a +a X +a X2 +···+a Xn ≡ b +b X +b X2 +···+b Xn (mod p), then 0 1 2 n 0 1 2 n there exits a polynomial k(X) = k + k X + k X2 + ··· + k Xn at most of degree n such that 0 1 2 n a +a X+a X2+···+a Xn =b +b X+b X2+···+b Xn+p(k +k X+k X2+···+k Xn). 0 1 2 n 0 1 2 n 0 1 2 n Thisgivesa +a X+a X2+···+a Xn =b +pk +(b +pk )X+(b +pk )X2+···+(b +pk )Xn. 0 1 2 n 0 0 1 1 2 2 n n Hence we get a = b +pk , a = b +pk , a = b +pk ,..., a = b +pk . Or equivalently 0 0 0 1 1 1 2 2 2 n n n a ≡b (mod p), a =b (mod p), a =b (mod p) ,···, a =b (mod p). 0 0 1 1 2 2 n n The reciprocal implication is trivial. (cid:3) ThesecondauthorissupportedbyDSTINSPIREScholarship422/2009fromDepartmentofScienceandTechnology, GovernmentofIndia. 1 2 ALEXANDRELAUGIERANDMANJILP.SAIKIA Lemma 2.2. If the base p expansion of a positive integer n is, n=a +a p+a p2+···+a pl 0 1 2 l then we have n!=qa !(a p)!(a p2)!···(a pl)! 0 1 2 l with q a natural number. Proof. Since the factorial of a natural number is a natural number, there exists a rational number q such that n! q = . a !(a p)!(a p2)!...(a pl)! 0 1 2 l Let S be the set, S ={x ,x ,...,x }. 1 2 l We consider lists of elements of S where x is repeated a times, x is repeated a p times,..., x is 0 0 1 1 l repeateda pl timessuchthat,0≤a ≤p−1withi∈[[0,l]]. Insuchalist,therearel+1unlikegroups l i of identical elements. For instance the selection x ,x ,...,x ,x ,x ,...,x ,......,x ,x ,...,x 0 0 0 1 1 1 l l l a0 a1p alpl is such a list of n elements which contains l+1 unl|ike gr{ozups o}f i|dentic{azl elem}ents. | {z } The number of these lists is given by n! . It proves that the rational number q is a0!(a1p)!(a2p2)!...(alpl)! a natural number. And, since the factorial of a natural number is non-zero (even if this number is 0 because 0!=1), we deduce that q is a non-zero natural number. (cid:3) Theorem 2.3. Let n=ap+b=a +a p+a p2+...+apl such that 0≤b≤p−1and 0≤a ≤p−1 0 1 2 l i with i∈[[0,l]]. Then q ≡1 (mod p). Before we prove Theorem 2.3 we shall state and prove the following non-trivial lemmas. Lemma 2.4. The integers q and p are relatively prime. Proof. If 0<q <p, since p is prime, q and p are relatively prime. If q ≥ p, let us assume that p and q are not relatively prime. It would imply that there exist an integer x > 0 and a non-zero natural number q′ such that q = q′px with gcd(q′,p) = 1. Since n! = qa0!(a1p)!...(al−1pl−1)!(alpl)! we get n! = q′pxa0!(a1p)!...(alpl)!. It follows that n! would contain a factor a pl+x such that q′ =a q′′ with a ∈[[1,p−1]]. But, a pl+x >n. l+x l+x l+x l+x Indeed we know that 1+p+...+pl = pl+1−1. So pl+1 = 1+(p−1)(1+p+...+pl). Then p−1 pl+1 >(p−1)+(p−1)p+...+(p−1)pl. Since0≤a ≤p−1withi∈[[0,l]],wehave0≤a pi ≤(p−1)pi i i with i∈[[0,l]]. Therefore, pl+1 >a +a p+...+a pl so pl+1 >n ⇒ a pl+x >n. 0 1 l l+x Since n! doesn’t include terms like a pl+x >n with a ∈[[1,p−1]], we obtain a contradiction. l+x l+x It means that the assumption q = q′px with x ∈ N⋆ and gcd(q′,p) = 1 is not correct. So, q is not divisible by a power of p. It results that q and p are relatively prime. (cid:3) We know that n! = (ap + b)! = qa !(a p)!...(a pl)! with a = ⌊n⌋, 0 ≤ a ≤ p − 1 with i = 0 1 l p i 0,1,2,...,p−1 and b=a . Let q with 0≤i≤a ≤a be the natural number 0 a,l,1,i 1 (ap+b−ip)! q = . a,l,1,i a !((a −i)p)!(a p2)!...(a pl)! 0 1 2 l In particular, we have q =q . a,l,1,0 Lemma 2.5. q ≡q (mod p). a,l,1,i+1 a,l,1,i Proof. We have (0≤i<a ) 1 ap+b−ip q (a −i)p a,l,1,i 1 = (cid:18) p (cid:19) q (cid:18) p (cid:19) a,l,1,i+1 LUCAS’ THEOREM 3 Or equivalently ap+b−ip (a −i)p q =q 1 . a,l,1,i+1(cid:18) p (cid:19) a,l,1,i(cid:18) p (cid:19) Now ap+b−ip (a−i)p+b = ≡a−i≡a −i (mod p), (cid:18) p (cid:19) (cid:18) p (cid:19) 1 and (a −i)p 1 ≡a −i (mod p). (cid:18) p (cid:19) 1 Therefore q (a −i)≡q (a −i) (mod p). a,l,1,i+1 1 a,l,1,i 1 Since a −i with i=0,1,2,...,a −1 and p are relatively prime, so q ≡q (mod p). (cid:3) 1 1 a,l,1,i+1 a,l,1,i Noticethatq correspondstothecasewherea =0,(a +a p2+...+a pl)!=q a !(a p2)!...(a pl)!. a,l,1,a1 1 0 2 l a,l,1,a1 0 2 l Lemma 2.6. For n = ap+b = a pk +b with 0 ≤ b ≤ pk −1 and defining (1 ≤ k ≤ l and (k) (k) (k) 0≤i≤a ) k (a pk+b −ipk)! q = (k) (k) a,l,k,i a !(a p)!...((a −i)pk)!...(a pl)! 0 1 k l with a ≥ 1, (where it is understood that when a and l appears together as the two first labels of k one q····, it implies that a is given by a = a(1) = (a1a2...al)p = a1 +a2p+...+alpl−1) we have (0≤i<a ) k a pk+b −ipk q (a −i)pk (k) (k) a,l,k,i k = (cid:18) pk (cid:19) q (cid:18) pk (cid:19) a,l,k,i+1 Additionally, q ≡q (mod p). a,l,k,i a,l,k,i+1 In particular for k =0, we have (0≤i<a ), 0 q ap+b= a,l,0,i (a −i) q 0 a,l,0,i+1 with a ≥1. 0 We can provethis lemma by the following a similar reasoningas earlier andhence we omit it here. Notice that q =q . And q corresponds to the case where a =0. Also a,l,k,0 a,l,k,ak k qa−i,l,k,0 =qa,l,1,i ≡qa,l,1,i+1 (mod p), with 0 ≤ i < a and a ≥ 1. So, since q ≡ q (mod p) with 0 ≤ j < a , we have 1 1 a,l,k,j a,l,k,j+1 k qa−i,l,k,j ≡ qa−i,l,k,0 ≡ qa,l,1,i ≡ qa,l,1,0 (mod p) and qa−i,l,k,0 = qa−i,l,l,0 ≡ qa−i,l,l,j ≡ qa−i,l,l,al ≡ qa−i,l−1,k,0 (mod p). So qa−i,l,k,0 ≡qa−i,l−1,k,0 ≡···≡qa−i,l,k,0 ≡qa−i,1,1,0 ≡qa,1,1,i ≡qa,1,1,0 (mod p). Or qa−i,l,k,0 = q ≡q ≡q (mod p). a,l,1,i a,l,1,0 a,l,k,0 Finally we have q =q ≡q (mod p). a,l,k,0 a,1,1,0 Lemma 2.7. We have also the congruence (a pi)!≡a !pai(1+p+...+pi−1) (mod p). i i Proof. We proceed by induction on i. Indeed, we have (a1p)!≡1p·2p···(a1−1)p·a1p (mod p). So (a1p)!≡a1!pa1 (mod p). Itfollowsthat(a2p2)!=((a2p)p)!≡(a2p)!pa2p ≡a2!pa2pa2p(modp). So(a2p2)!≡a2!pa2(1+p)(modp). Let us assume that (a pi)!≡a !pai(1+p+...+pi−1) (mod p). i i We have (ai+1pi+1)! = ((ai+1pi)p)! ≡ (ai+1pi)!pai+1pi ≡ ai+1!pai+1(1+p+...+pi−1)pai+1pi (mod p). Thus (ai+1pi+1)!≡ai+1!pai+1(1+p+...+pi−1+pi) (mod p). Hence the result follows. (cid:3) We now prove Theorem 2.3. 4 ALEXANDRELAUGIERANDMANJILP.SAIKIA Proof. If a = 0 for i ∈ [[1,l]], then n = a and we have n! = qa ! with q = 1. So, if a = 0 for i 0 0 i i∈[[1,l]], q ≡1 (mod p). Let consider the case where a = 0 for all i > 1, then n = a +a p and we have n! = qa !(a p)!. i 0 1 0 1 Then n! a0−1 qa != =(a +a p)(a +a p−1)...(a p+1)= (a p+a −r). 0 (a p)! 0 1 0 1 1 1 0 1 rY=0 Since 0<a −r ≤a for r ∈[[0,a −1]], we obtain 0 0 0 a0−1 a0 qa !≡ (a −r)≡ r ≡a ! (mod p). 0 0 0 rY=0 rY=1 Since a ! and p are relatively prime, we have q ≡1 (mod p). 0 Since q =q ≡q (mod p), we conclude that q ≡1 (mod p) whatever n is. (cid:3) a,l,k,0 a,l,1,0 We come back to the proof of Theorem 1.1. Proof. Let m,n be two positive integers whose base p expansion with p a prime, are m=a +a p+...+a pk, 0 1 k and n=b +b p+...+b pl, 0 1 l such that m ≥ n. We assume that a ≥ b with i = 0,1,2,...,max(k,l). We denote a = ⌊m⌋ and i i p b=⌊n⌋. Since a ≥b with i=0,1,2,...,max(k,l), we have a≥b. We define p i i 0 if k <l a = max(k,l) (cid:26) ak if k ≥l and b if k ≤l b = l max(k,l) (cid:26) 0 if k >l In particular if max(k,l) = k, b = 0 for i > l and if max(k,l) = l, a = 0 for i > k. Since m ≥ n, i i max(k,l)=k. So, we have a =a and b =b with b =0 when l<k. max(k,l) k max(k,l) k k Using these m!=q a !(a p)!...(a pk)!, a,k,1,0 0 1 k n!=q b !(b p)!...(b pl)!, b,l,1,0 0 1 l and (m−n)!=qa−b,k,1,0(a0−b0)!((a1−b1)p)!...((ak−bk)pk)!. We have m q a a p a pmax(k,l) = a,k,1,0 0 1 ... max(k,l) . (cid:18)n(cid:19) qb,l,1,0qa−b,k,1,0(cid:18)b0(cid:19)(cid:18)b1p(cid:19) (cid:18)bmax(k,l)pmax(k,l)(cid:19) Rearranging m a a p a pmax(k,l) qb,l,1,0qa−b,k,1,0(cid:18)n(cid:19)=qa,k,1,0(cid:18)b0(cid:19)(cid:18)b1p(cid:19)...(cid:18)bmax(k,l)pmax(k,l)(cid:19). 0 1 max(k,l) Since qa,k,1,0 ≡qb,l,1,0 ≡qa−b,k,1,0 ≡1 (mod p), we get m a a p a pmax(k,l) ≡ 0 1 ... max(k,l) (mod p). (cid:18)n(cid:19) (cid:18)b (cid:19)(cid:18)b p(cid:19) (cid:18)b pmax(k,l)(cid:19) 0 1 max(k,l) Notice that if for some i, a =0, then b =0 since we assume that a ≥b and b ≥0. In such a case i i i i i aipi = ai =1. bipi bi (cid:0) W(cid:1)e as(cid:0)sum(cid:1)e that a ≥ 1. For k ∈ [[1,a pi −1]] and for i ∈ [[0,max(k,l)]] with 1 ≤ a ≤ pi −1, i i i aipi ≡0 (mod p) k (cid:0) (cid:1) LUCAS’ THEOREM 5 Therefore for a =1 we have i (1+x)pi = pi pi xk ≡1+xpi (mod p), (cid:18)k(cid:19) kX=0 and for any a ∈[[1,pi−1]] i (1+x)aipi =((1+x)pi)ai ≡(1+xpi)ai (mod p). Now comparing (1+x)aipi =aipi aipi xk, (cid:18) k (cid:19) Xk=0 and (1+xpi)ai = ai ai xlpi (cid:18)l(cid:19) Xl=0 we get by taking k =b pi and l=b , i i a pi a i ≡ i (mod p). (cid:18)b pi(cid:19) (cid:18)b (cid:19) i i Finally we have m a a a ≡ 0 1 ... max(k,l) (mod p). (cid:18)n(cid:19) (cid:18)b (cid:19)(cid:18)b (cid:19) (cid:18)b (cid:19) 0 1 max(k,l) (cid:3) References [1] E. Lucas, The´orie des Fonctions Nume´riques Simplement Pe´riodiques, Amer. J. Math., 1 (2), 184–196; 1 (3), 197–240; 1(4),289–321 (1878). Lyc´eeprofessionnelhotelierLaCloserie,10ruePierreLoti-BP4,22410Saint-Quay-Portrieux,France E-mail address: [email protected] Departmentof MathematicalSciences, Tezpur University,Napaam,Sonitpur,Assam,Pin-784028,India E-mail address: [email protected]