ebook img

A new paradigm for reproducing and analyzing N-body simulations of planetary systems PDF

0.93 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A new paradigm for reproducing and analyzing N-body simulations of planetary systems

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed26January2017 (MNLATEXstylefilev2.2) A new paradigm for reproducing and analyzing N-body simulations of planetary systems Hanno Rein1,2 and Daniel Tamayo1,3,4 1DepartmentofPhysicalandEnvironmentalSciences,UniversityofTorontoatScarborough,Toronto,OntarioM1C1A4,Canada 2DepartmentofAstronomyandAstrophysics,UniversityofToronto,Toronto,Ontario,M5S3H4,Canada 7 3CanadianInstituteforTheoreticalAstrophysics,60St.GeorgeSt,UniversityofToronto,Toronto,OntarioM5S3H8,Canada 1 4CentreforPlanetarySciencesFellow 0 2 n Accepted2017January24.Received2017January20;inoriginalform2016November18 a J 5 ABSTRACT 2 The reproducibility of experiments is one of the main principles of the scientific method. However,numericalN-bodyexperiments,especiallythoseofplanetarysystems,arecurrently ] not reproducible. In the most optimistic scenario, they can only be replicated in an approx- P imate or statistical sense. Even if authors share their full source code and initial conditions, E differences in compilers, libraries, operating systems or hardware often lead to qualitatively h. differentresults. p We provide a new set of easy-to-use, open-source tools that address the above issues, - allowingforexact(bit-by-bit)reproducibilityofN-bodyexperiments.Inadditiontogenerat- o ingcompletelyreproducibleintegrations,weshowthatourframeworkalsooffersnoveland r t innovativewaystoanalyzethesesimulations.Asanexample,wepresentahigh-accuracyin- s tegrationoftheSolarSystemspanning10Gyrs,requiringseveralweekstorunonamodern a [ CPU. In our framework we can not only easily access simulation data at predefined inter- valsforwhichwesavesnapshots,butatanytimeduringtheintegration.Weachievethisby 1 integrating an on-demand reconstructed simulation forward in time from the nearest snap- v shot.Thisallowsustoextractarbitraryquantitiesatanypointinthesavedsimulationexactly 3 (bit-by-bit),andwithinsecondsratherthanweeks. 2 4 WebelievethatthetoolswepresentinthispaperofferanewparadigmforhowN-body 7 simulationsarerun,analyzed,andsharedacrossthecommunity. 0 Keywords: methods:numerical—gravitation—planetsandsatellites:dynamicalevolution . 1 andstability 0 7 1 : v 1 INTRODUCTION arenotindividuallyreproducible.Thecentralproblemisthatmost i X dynamicalsystemsofinterest(e.g.,theSolarSystem)arechaotic. Scientists have studied the motion of gravitationally interacting r Thus,anydiscrepancyintherepresentationoffloatingpointnum- a bodies such as the planets in the Solar System for centuries (for bers amplifies exponentially fast. This means that seemingly in- a comprehensive historical review see Laskar 2012). Today, such significantdifferencesinhardware,software,initialconditions,or studies are mostly done on computers through N-body experi- even the choice of which times to output data can change, e.g., ments. Unsurprisingly, answering new questions often requires whethertwoplanetscollideornotinagivensimulation. pushing the limits of current technology. When studying the dy- namicalevolutionofastrophysicalsystems,thisoftentranslatesto For example, Laskar & Gastineau (2009) showed by direct severalmonthsofcomputingtime. integration that in about 1% of their simulations, Mercury col- Working with such simulations can be cumbersome. Tradi- lideswithanotherterrestrialplanetorplungesintotheSuninthe tionally, one has to specify both the quantities to record and the next5Gyr.Sincethen,severalothergroupshavestudiedthephys- output cadence ahead of time. But this is not easy to do, as the icaloriginofthisinstability(Lithwick&Wu2011;Batyginetal. appropriatechoicesareoftenonlyclearafteraninitialanalysisof 2015),butcouldnotdirectlycomparetheirtheorytothe6.2million the data. The problem is compounded if one considers that other CPU-hourdatasetproducedbyLaskar&Gastineau(2009).Aswe groups (perhaps with different goals) might also want to analyze explainfurtherbelow,ifoneisinterestedinanalyzingthesimula- theoutputdataatalatertime. tionsresultingincollision,itisnotenoughtohavethesamecode Evenworse,currentN-bodyintegratorsyieldtrajectoriesthat andexactinitialconditions.Onewouldhavetoexpendcomparable (cid:13)c 0000RAS 2 HannoRein,DanielTamayo computational time to generate many simulations, and select the access to the actual source code used in a simulation, there is no (different!)onesthatleadtocollisions. hopeofachievingbit-wisereproducibility. Chaos in N-body integrations therefore not only leads to in- Unfortunately,itisoftenoverlookedthateventheexactsource efficient use of computational resources, it is also a fundamental code(orevenbinaryexecutable)andinitialconditionsmightpro- challengetoreproducibilityandabarriertothescientificprocess. ducedistinctoutcomesondifferentmachines.Machine-dependent Inthispaperwepresentsolutionstothetechnicalobstaclesham- resultscanoriginatefromphysicaldifferencesinhardware,compil- pering reproducibility, and propose a new paradigm for perform- ers,compileroptions,operatingsystemsorlibraries.Infact,onlya ingN-bodyintegrations.Inourframework,machine-independent verylimitedsetoffloatingpointoperationssuchasadditionsand integrationalgorithmsgeneratereloadablebinarysnapshotsofthe multiplicationsareguaranteedbytheIEEE754floatingpointstan- simulation as it progresses. The resulting Simulation Archive can dard(seeISO2011)togivethesameresultsonallmachinesthat then be shared across the community, and different members can comply with the standard. We note in particular that often-used robustlychooseafterthefactwhatdynamicalquantities(e.g.,or- functions such as sin(), cos(), and pow(), and thus any codes bitalelements)toextract.Animportantdifferenceinthisdataanal- thatemploysthem,arenotmachineindependent. ysisstageisthat(unlikewiththeoriginalsimulation)thetaskcan Finally,oneobviouslyrequiresasetofinitialconditionstore- beeasilyparallelized.Wehaveimplementedthesefeaturesinthe produce an N-body simulation. Bit-wise reproducibility addition- open-sourceN-bodypackageREBOUND. allydemandsstoringtheseinitialconditionsinabinaryformat,in Although, for the sake of definiteness, we focus on the So- ordertohavetheexactfloatingpointrepresentationofallnumbers; larSystemandtheHLTausysteminthispaper,ourdiscussionis atext-basedformatisnotsufficient. equallyapplicabletoawidevarietyofdynamicalsystems.Thepa- perisorganizedasfollows.Wefirstdiscussindetailtheissueof reproducibilityinSec.2.Then,wedescribetheconceptoftheSim- 3 THESIMULATIONARCHIVE ulationArchiveandhowitcanbeusedtoefficientlyanalyzelong- termsimulationsinSec.3.WelookattwoexamplesinSec.4,a Wenowdescribehowtoovercomethebarrierstoreproducibility longtermintegrationoftheSolarSystem(Sec.4.1)andanunsta- mentioned above. First, it is essential to work with open-source blesystemresemblingtheorbitalparametersoftheHLTausystem software and tools. We work with REBOUND (Rein & Liu 2012), (Sec.4.2).WeconcludewithasummaryinSec.5. and in particular the integrators WHFast (Rein & Tamayo 2015) andIAS15(Rein&Spiegel2015).WHFastisaheavilyoptimized implementationofthestandardsecond-orderWisdom-Holmanal- 2 BARRIERSTOREPRODUCIBILITY gorithm(Kinoshitaetal.1991;Wisdom&Holman1991)andcan beusedwithsymplecticcorrectorsuptoorder11(Wisdom2006) Current N-body simulations, especially those of chaotic systems, inbothJacobiandheliocentriccoordinates.IAS15isahigh-order, are only reproducible in a statistical sense. Different groups em- adaptive Gauss-Radau scheme that is accurate to machine preci- ployingthesamesimulationwillonlyagreeonthedistributionsof sionandcanhandlebothconservativeandnon-conservativeforces. outcomes from a large enough number of simulations. However, BoththesymplecticWHFastandnon-symplecticIAS15integrators oneisofteninterestedinparticularoutcomes,e.g.,Mercurydiffus- aremachineindependent. ing onto a collisional trajectory with Venus (Laskar & Gastineau Weachievethisbysubstitutingfunctioncallstomathematical 2009), or Jupiter ejecting a fifth giant planet from the Solar Sys- librarieswithappropriateseriesexpansions.Forexample,weim- temtoexplainthecurrentorbitalarchitectureofthegiantplanets plementaseriesexpansionofStumpfffunctionsforWHFast(Rein (Nesvorny`&Morbidelli2012).Insuchacase,twogroupswillnot & Tamayo 2015). For IAS15, we implement our own routine to beabletoreproducethesameoutcomeeveniftheysharetheirex- calculate7throotsinordertoavoidcallingthemachine-dependent act initial conditions. To obtain these rare cases, one would have pow()function.Implementingourownmathematicalfunctionsof- toexpendthecomputationalcostofalargesuiteofsimulationsto ten also leads to a more accurate and faster algorithm (Rein & extractafewqualitativelysimilarbutdistincttrajectories.Thisis Tamayo2015).WealsonotethatREBOUNDiswritteninC99,apro- notonlygrosslyinefficient,butalsorendersdetailedcomparisons grammingstandardthatexplicitlystatesthatfloating-pointopera- impossible. tionsmaynotberearrangedbythecompilerunlessitcanguarantee Oneofthefirstobstaclesinreproducibilityofnumericalsimu- thattheresultisbit-wiseequivalent.Thisisstilltrueifoptimization lationsisthelackofaccesstosourcecode(Baker2016).Although flagssuchas-O3areused,butnotif--fast-mathisenabled. manyauthorshavepublishedtheirnumericalmethodsnotonlyas Thus,byusingREBOUNDandoneoftheaboveintegrators,sim- papers but with the accompanying code (Chambers & Migliorini ulationsareautomaticallymachineindependent.Ifauthorschoose 1997;Duncanetal.1998;Rein&Tamayo2015),othershavenot. to share their initial conditions, simulations are then in principle Whereas one should in principle be able to reconstruct the algo- bit-wise reproducible. However, several additional technical de- rithmfromadescriptioninapaper,thisisoftennotpractical,and tails haveto be overcomein orderto replicate thesame series of iseffectivelyimpossiblewhenthegoalisbit-wisereproducibility. timesteps.Inthefollowingsectionwedescribeourconceptofthe Asasimpleexample,considertheexpressions SimulationArchive,whichaddressestheseissues,andallowsusers y =(2/3)·x and y =(2·x)/3 torecreateandrestartintegrationsatarbitrarytimesalmostinstan- 1 2 taneously. This enables exciting new ways to analyze and share whicharemathematicallyequivalentbutwillyielddifferentresults simulationdata. onacomputerwithfinitefloatingpointprecision1.Thus,without Bycontrast,y1 mightleadtobiasedresultsbecause2/3evaluatestothe 1 Notethaty2isingeneralthebetterchoicebecauseitrandomizeserrors. sameroundednumbereachtimetheexpressionisevaluated. (cid:13)c 0000RAS,MNRAS000,000–000 AnewparadigmforreproducingandanalyzingN-bodysimulationsofplanetarysystems 3 3.1 Asinglebinaryfile of mixed-variable symplectic integrators (e.g., Saha & Tremaine 1992),whicharethedefactostandardforlong-termplanetaryin- General purpose binary file formats for N-body simulations have tegrations,tonon-symplecticintegrators,andtotheincorporation alreadybeendevelopedbyseveralothergroups(seee.g.Faberetal. ofadditionaleffectsbeyondpoint-sourcegravitationalforces. 2010; Farr et al. 2012; Cai et al. 2015). This paper is not about anewbinaryformatfor N-bodysimulations.Rather,wedescribe howtostoredatainawaythatallowssimulationstoberestarted in a way that reproduces the original simulation exactly. To our 3.3 Mixed-variablesymplecticintegratorsand knowledge,thishasneverbeendonebeforeinapubliclyavailable synchronization codethatisusedforlongtermplanetarysimulations. When trying to restart a simulation using a mixed-variable sym- WhatwerefertoastheSimulationArchiveisasinglebinary plectic (MVS) integrator like WHFast, one encounters three syn- filethatincludesallrelevantinformationtoreproducean N-body chronizationissues.Wedetailhowweovercomethesechallenges simulationdowntothelastbit.Inparticular,westore: inWHFastspecifically,butemphasizethatthesepitfallsandsolu- - Nameandversionoftheprogramusedtogeneratethefile tionsareapplicabletoMVSintegratorsingeneral. - Initialconditions First, MVS integrators split the evolution of the system into - Allconstantsandconfigurationparameters,suchasgravitational exactly solvable steps, which are then interleaved with one an- constantandtimestep other.TheWHFastintegrator,likemanyotherMVSintegrators,is aleapfrog-styledrift-kick-driftscheme.Thedriftstepcorresponds Then,asthesimulationprogresses,weappendthebinaryfilewith toanoperatorevolvingthesystemundertheKeplerianpartofthe snapshotsofalldataneededtorestartthesimulationatthattime. Hamiltonianandthekickstepevolvesthesystemundertheinter- In the case of a simulation of the Solar System with eight plan- actionterm.Eachofthetwodriftstepsevolvesthesystemforhalf ets,wetypicallyappendasnapshotevery50000yrstotheSimu- atimestep.Inalongsimulation,onecanspeedupthecalculation lationArchive.Eachsnapshotisonly500byteslongbutcontains bycombiningthelastandfirstdriftstepsofadjacenttimestepsinto allthenecessaryinformationtoexactlyrestartasimulationatthat one.However,ifpositionsandvelocitiesarerequiredafterapar- time.Fora10Gyrintegration,thetotalfilesizeoftheSimulation ticulartimestep,onemustreintroducethehalf-timestepdriftstep, Archiveisabout100MB.Cosmologicalorotherlarge-Nsimula- aprocessthatwerefertoassynchronizingthepositionsandveloc- tionswouldhavetofindadifferentbalancebetweenfilesizeand ities.Thisleadstoaproblemifoneconsiderstwointegrationsof thecomputationtimebetweensnapshots. thesametrajectoryacrossaparticulartimestep,whereinonecase We note that our implementation does currently not support onechoosestooutputparticleinformation(andthusmustsynchro- big-endianmachines.However,sinceallmodernx86/x64architec- nize),andintheotheronedoesnot(andthusperformsafulldrift turesarelittleendian,weseefewreasonstoimplementthisfeature. step). While evolving the system under the drift operator for two Shouldtheneedarise,itisstraightforwardtoextendtheformatto half-timesteps(inordertooutputdata)ismathematicallyequiva- beendianagnostic. lenttoafulldriftstep,thetwowillgiveadifferentnumericalresult Furthermore,wenotethatourimplementationsupportsboth becauseofthefinitefloatingpointprecision.Todealwiththis,the 32 and 64 bit architectures. However, files created on 32 bit ma- SimulationArchivealwaysstorestheparticlepositionsandveloc- chinescancurrentlynotbereadona64bitmachineandviceversa. itiesintheunsynchronizedstatefollowingthekickstep.Ifanad- Giventhewidespreadadoptionof64bitsystemsthesedays,wesee ditionalhalfdriftstepisrequiredtosynchronizethepositionsand fewreasonstoimplementtheSimulationArchiveinanarchitecture velocities, the result is then discarded before the integration con- agnosticway.Shouldtheneedarise,thisfeatureisstraightforward tinueswithafulldriftstepfromthestatethatwascachedbythe toimplementanddoesnotaffectthereproducibilityofsimulations. SimulationArchive. Second,thedriftandkickstepsareoftensolvedindifferent coordinatesystems(e.g.,Wisdom&Holman1991).TheKeplerian 3.2 Extractingarbitraryquantitiesatanytime partisbestsolvedinJacobicoordinates2,whereastheinteraction Hamiltonianissolvedinaninertialframe.Wethushavetoconvert ManyN-bodycodesallowonetosavebinarysnapshotsofsimu- backandforthbetweentwodifferentcoordinatesystems,whichcan lations.TheSimulationArchivegoesbeyondthisbyguaranteeing thatdifferentmachinesreloadingandintegratingthesamesnapshot harm precision in long term integrations (Rein & Tamayo 2015). However, at closer inspection one finds that the interaction step willgiveidenticalresultsbit-by-bit. onlyneedstoaccessthepositionsintheinertialframe,nottheve- Thestoragerequirementsforonesnapshotareverysmall,only locities. Furthermore, only the accelerations calculated in the in- 500bytesforaWHFastsimulationoftheSolarSystem.Thisallows ertial frame are needed in Jacobi coordinates. Thus, a simulation ustostoremanysnapshotswhicharetypicallyspacedonlyafew can stay in Jacobi coordinates for the entire integration and only secondsapartinwalltime.Onecanthereforeaccessanyvalueof calculatethepositionsintheinertialframefortheinteractionstep any particle at any timestep by loading the snapshot just prior to (butnotrecalculatetheJacobicoordinatesfromthosepositionsas therequestedtimeandthenintegratingthesimulationforwardin positionsdonotchangeintheinteractionstep).IntheSimulation time.Sincerestoringasimulationfromabinaryfileisalmostin- Archive,westoretheJacobicoordinates,notthecoordinatesinthe stantaneousandsnapshotsareonlyafewsecondsapart,onehasto waitatmostafewsecondsforthisshortintegrationtofinishand yieldthedesiredquantities.Furthermore,wenotethatthisprocess iseasilyparallelizableifonewantstoaccessparametersatmultiple 2 Jacobi coordinates are advantageous for systems with planets on well times(SeeSec.4.1and4.2). separatedorbitssuchastheSolarSystem.Forothersystemswhereorbits We now address technical details pertaining to the class mightcross,heliocentriccoordinatesmightbebeneficial. (cid:13)c 0000RAS,MNRAS000,000–000 4 HannoRein,DanielTamayo inertialframe.Werewetostoretheinertialcoordinatesandthenre- perform a synchronization step. This can lead to a further issue calculatetheJacobicoordinateslater,wewould,onceagain,geta ifnon-gravitational effectsare present,whichisoften thecasein differentnumericalresultbecauseoffinitefloatingpointprecision. N-body simulations, for example to model the effects of general Thus,wewouldnotbeabletorestartsimulationsexactly. relativityortides. Third,whensymplecticcorrectorsareused,acorrectorstepis In REBOUND these effects are modelled as either additional performedatthebeginningoftheintegrationandwheneveranout- forces or so called post-timestep modifications. If the effects are putisneeded(e.g.,Wisdom2006).Similartothecalculationfrom simplyforces,thentheydonotneedtobeappliedforthesynchro- Jacobicoordinatestotheinertialframeandback,thiscorrectorstep nizationstepwhichonlyinvolvesadriftstep,butnotakickstep candegradetheprecisionandspeedinlongtermsimulationsifap- (whereforcesarecalculated).However,ifpost-timestepmodifica- pliedrepeatedly.Andagainsimilartoabove,wewouldnotbeable tionsareused,thentheseneedtobealsoappliedwhenthesynchro- torestartasimulationexactlywerewetostorethecoordinatesafter nizationstepsareperformed.Furthermore,ifsymplecticcorrectors applyingasymplecticcorrector.Thisiswhywhenstoringcoordi- areused,theneitherkindofeffectmustbepresentatthetimeof nates in the Simulation Archive, we do not apply the symplectic synchronizationbecausesymplecticcorrectorsapplyboththekick correctorstepsbeforehand.Thecorrectorstepwillbeperformedat anddriftstepsrepeatedly. alatertime. Insummary,intheSimulationArchive,westoretheJacobico- ordinatesofallparticlesinwhatwecallanunsynchronizedstate, i.e.afterthekickstepandwithoutapplyingsymplecticcorrectors. Onlythecombinationoftheseconceptsallowsustorestartsimula- 4 EXAMPLES tionsexactlydowntothelastbit. As a result, if we want to get any physical meaningful out- WenowgivetwoconcreteexamplesofhowtheSimulationArchive put from the Simulation Archive, we need to synchronize the co- canbeusedinpractice,onewiththesymplecticWHFastalgorithm, ordinates beforehand. To reemphasize, this is done at a time the andtheotherwiththeadaptive,high-accuracyIAS15integrator. simulationisanalyzed,notwhilethesimulationisrunning.Inthis synchronizationstep,wefirstperformhalfadriftsteptoadvance positionsandvelocitiestothesametime.Wethenapplythesym- plecticcorrectorsandconvertfromJacobitoinertialcoordinates. Ifwewanttorestartasimulation(anddonotrequireanout- 4.1 SolarSystem put),thenwedonotneedtoperformthesynchronizationstepsand As an example, we now integrate the eight major planets of our simply restart from the Jacobi coordinates in the unsynchronized SolarSystemforwardintime.Thesamediscussionappliestoother state. dynamicalsystemssuchasexoplanetarysystems. WealsoimplementtheSimulationArchivefortheheliocentric The shortest timescale in the Solar System that we consider versionofWHFast.Heliocentriccoordinatescanbebeneficialfor isthe88-dayorbitalperiodofMercury.Thelongesttimescalewe system in which orbits are crossing (for a discussion of differnet areinterestedinisroughlytheageoftheSolarSystem,4.6billion coordinatesystems,seee.g.Hernandez&Dehnen2016).Thesyn- years, which also happens to approximate the remaining lifetime chronization issues described above are exactly the same, except oftheSunonthemainsequence.Thehugeseparationofscales(11 thatwehaveheliocentriccoordinatesinsteadofJacobicoordinates. ordersofmagnitude)makesthisanextremelydifficultproblemto Indeed,theaboveconsiderationsneedtobeaddressedtocreateany calculate,eventhoughthephysicallawsgoverningthemotionof reproducibleMVSintegrator. planetshavebeenwellknownsinceNewton(ignoringsmallgen- eralrelativisticandothercorrections). 3.4 IAS15 Becauseofthis,thedynamicalevolutionoftheSolarSystem stilloffersmanysurprisesforresearcherstothisday.Infact,only For integrators that do not rely on coordinate transformations inthelast25yearshavedirectnumericalintegrationsofallSolar restartingsimulationsbit-by-bitismorestraightforward.However, Systemplanetsbecomefeasible.Thisismainlythankstothedevel- someissuesmightstillarise,forecampleiftheintegratorsdepends opmentoffastcomputersandnovelintegrationmethods,mostno- oninformationfromprevioustimestepssuchasapredictedvalues tablymixed-variablesymplecticintegrators(Kinoshitaetal.1991; forthetimestepandcoordinates.WeimplementedtheSimulation Wisdom&Holman1991).Nevertheless,accuratedirectnumerical ArchivefortheIAS15integrator(Rein&Spiegel2015).Forthis integrationsoftheeightSolarSystemplanetsoverseveralbillion specificintegrator,oneneedstostoreseveralinternalarrayswhich years may still require months of computing time per simulation IAS15usestopredictvaluesforthenextstepandspeedupconver- andseveralmillionCPU-hoursforanensembleofsimulations.At- gence.BecauseaniterationinIAS15mightconvergetoaslightly temptstosignificantlyspeedupsimulationswiththehelpofparal- different value depending on the initial guess, we need to store lelizationarefutileastheunderlyingproblemisinherentlysequen- thesepredictedvaluesateverysnapshottoguaranteebit-wisere- tial(althoughattemptshavebeenmade,seeSahaetal.1997). producibility.Thisresultsinasinglesnapshotbeingaboutafactor A further complication arises because the Solar System is of10largerthanforWHFast. chaoticontimescalesofseveralmillionyears,whereasthelife-time ofthesystemisseveralbillionyears.Onethushastointegratean ensembleofsimulationstodrawstatisticalconclusionsofthesys- 3.5 Additionalforcesandpost-timestepmodifications tem’slong-termevolution.ForexampleLaskar&Gastineau(2009) Asdiscussedabove,whenaccessingaWHFastSimulationArchive requiredmorethan6millionhoursofwalltimeforasetof2500 snapshot to output physically meaningful quantities, we have to simulations,eachspanning5Gyrs. (cid:13)c 0000RAS,MNRAS000,000–000 AnewparadigmforreproducingandanalyzingN-bodysimulationsofplanetarysystems 5 4.1.1 Initialconditionsandintegrator 10-9 FzoonrsosuyrsitnetmegtroatpiornovoidfethuesSwoiltahriSnyitsitaelmco,nwdeitiuosnes3th.eMNoAreSaAccHuroartie- error10-10 y ephemeridesareavailable(Fiengaetal.2011),butgiventheother nerg10-11 approximations we make (see below), we feel confident that the e e v imnietniatallcpohnydsitiicoanlseffweecutss.eareaccurateenoughtocapturethefunda- relati10-12 We use the symplectic Wisdom-Holman type integrator 10-13 WHFast(Rein&Tamayo2015)mentionedabovewithatimestep 107 108 109 1010 time [yrs] of6days.Toimprovetheenergyconservation,weuseasymplectic correctoroforder11(Wisdom2006).Withthesesettings,asimu- Figure1. ThisplotshowstherelativeenergyerrorofourSolarSystem lationtakesapproximatelyonemonthofwalltimeonanIntelXeon simulationasafunctionoftime.Thebluecurveshowstheslopeexpected CPU(E5-2697v2,2.70GHz). fromanunbiased t1/2errorgrowth.Ittakes1.9secondstogeneratethedata forthisplotfromtheSimulationArchiveandthenrendertheplot. 4.1.2 Non-gravitationaleffects y0.45 ur0.40 Weincludeapost-Newtoniancorrectionforgeneralrelativityinthe erc0.35 M0.30 formofasimplepotential(Nobili&Roxburgh1986), of 0.25 Φ = −3G2mM(cid:12)2 1 (1) ntricity 000...112050 GR c2 r2 ce0.05 ec0.00 foreachplanetwithmassm.IntheaboveequationM isthemass 0 2 4 6 8 10 (cid:12) time [Gyrs] oftheSun,r istheheliocentricdistanceoftheplanet,andG and carethegravitationalconstantandthespeedoflight,respectively. Figure2. ThegraylineshowstheeccentricityofMercuryasafunctionof Thisensuresthatwereproducethecorrectapsidalprecessionfre- time.Becausetheeccentricitybehaviourisdominatedbyshort-termoscil- lations,wealsoplotamovingaveragewitha1.5-million-yearwindowas quenciesfortheplanets,inparticularthatofMercury.Weignore all other non-gravitational effects and the Earth-Moon system is ablackline.Ittakes2.3secondstogeneratethedataforthisplotfromthe SimulationArchiveandthenrendertheplot. treatedasoneparticle. thesnapshotsstoredintheSimulationArchive.Thiskindofanaly- 4.1.3 Simulationarchive sisisextremelyfast.Readingthebinaryfile,restoringthesimula- WeusetheSimulationArchiveforourintegration.Individualsnap- tions,synchronizingtheintegrator,andcalculatingtheenergyerror shotsare51434yearsapart,whichcorrespondstoroughly10sec- foreverysnapshot,followedbyproducingtheplot,takeslessthan onds in wall time. We integrate the system for 10 billion years, 2seconds. thusendingupwith194000snapshots.Giventhateachsnapshot In Fig. 2, we plot the eccentricity of Mercury as a function requires500bytes,thisyieldsafinalSimulationArchivebinaryfile oftime(graycurve).Wealsoover-plottherunningaverageovera ofroughly100MB. windowof1.5Myrsasablackcurvetofilterouthigh-frequency Withthissetup,wecannowaccessanarbitrarytimeduringthe oscillations. This plot illustrates that Mercury remains stable in entire10Gyrintegrationwithin5secondsonaverageandwithinat this particular simulation as expected for ≈ 99% of the simula- most10seconds. tions (Laskar & Gastineau 2009). Again, we used the Simulation Archivetoproducethisplotafterthesimulationhadfinished.Read- ingthebinaryfile,restoringthesimulations,synchronizingthein- tegrator, calculating the orbital elements, calculating the running 4.1.4 Results averageandproducingtheplottakesonlyabout2seconds. WehaverunseveralhundredsimulationsoftheSolarSystemover The first two plots illustrate the usefulness of the Simula- 10Gyrswithslightlydifferentinitialconditions(fractionaldiffer- tion Archive in quickly analyzing and visualizing very long in- ences of 10−10). We will present the full set of simulations and a tegrations. The next figure illustrates how to extract data at a discussionofthephysicalresultsinafuturepaper.Inthispaper,we higher cadence than provided by the snapshots in the Simulation onlyuseonesimulationintheensembletodemonstratetheSimu- Archive.Figure3plotstheeccentricityvariationsoftheEarthover lationArchive. a 800000 yrs interval, starting at the present day (top panel) and InFig.1weshowtherelativeenergyerrorofthesystemasa 5billionyearsfromnow(bottompanel).Onecanseelargeoscilla- functionoftime.Thestraightbluelinecorrespondstoasub-linear tionsonaroughly100000yrtimescale,whichareassociatedwith errorgrowth∝ t1/2.Wecanseethattheerrorgrowthfollowsthis Milankovitch cycles and changes in the Earth’s climate. Because t1/2 behaviour for the entire 10 Gyr integration, thus confirming thevariationshappenonatimescalecomparabletotheoutputca- thattheWHFastintegratorisunbiasedandfollowsBrouwer’slaw denceintheSimulationArchive,wecannotrelyonthesnapshots (Brouwer1937;Rein&Tamayo2015).Wecreatedthisplotusing intheSimulationArchivetogeneratethisplot.Instead,weloada snapshotthatisnearbyandthenre-integratethesimulationforward intime,thistimeoutputtingdatamorefrequently.Theentirepro- 3 http://ssd.jpl.nasa.gov/?horizons cess is automated so that a user can simply request a simulation (cid:13)c 0000RAS,MNRAS000,000–000 6 HannoRein,DanielTamayo 0.06 planetshadacloseencounterafter∼3.5Myrs.Tofurtheranalyze h art0.05 thisencounter,werestartthesimulationjustbeforetheencounter E eccentricity of 00000.....0000001234 atcthhnoeidusnbwitineto-rcburwyleda-ibslnleitootrtcehccpeuurrroordeuinnutptcltuiyhbteiblciertaeydpseoteansnrscstieeub.drleeTsswihmtihistuahtliasatthniooeynneol.xytTahcopetroosspausumirbbkelleinccollbyowesacleevadauegisnlee-- 0 100000 200000 300000 400000 500000 600000 700000 800000 ableintegrator. time [yrs] 0.08 Earth00..0067 of 0.05 entricity 000...000234 5WeCprOesNenCtLaUneSwIOpNarSadigmforperformingN-bodysimulationsthat ecc00..0001 allowsresearcherstoreproduceoneanother’sresultsexactly.This 0 100000 200000 300000 ti4m0e0 0[y0r0s]500000 600000 700000+850e09000 is fundamentally different to what has been done before, where, inthebestcase,simulationswereonlyreproducibleinastatistical Figure3. ThetopandbottompanelbothshowtheeccentricityoftheEarth sense.Webelievethiswillimprovethescientificmethod’sability overa800000yearperiod.Thetoppanelstartsatthepresentday,while tooperateeffectively. thebottompanelstarts5billionyearsfromnow.Theoscillationsvisiblein Weachievebit-by-bitreproducibilitybycarefullyimplement- theseplotsarerelatedtoMilankovitchcycles.Ittakesonly41secondsto ing machine-independent integrators and storing all initial condi- generatethedataforthisplotfromtheSimulationArchiveinparallelwith 24threadsandthenrendertheplot. tionsandparametersinabinaryfile.Becauseourapproachallows everyone (not just the original authors of a study) to reproduce particular simulations exactly, this opens up new possibilities for at a given time, and the Simulation Archive will load the nearby sharingandanalyzingdynamicalsystems.Inparticular,thismakes snapshotandintegrateittothattime.Notethatthisprocessistriv- it possible for the first time to reanalyse particular trajectories in iallyparallelizable,allowingustospeeduptheanalysisbymak- chaoticsystemsthatleadtointeresting(andperhapsrare)outcomes ing use of multi-core desktop machines and clusters. While pro- whichotherwisewouldbeunrecoverable. ducingFig.3,wemadeuseof24threads,renderingbothplotsin WedescribetheconceptofourSimulationArchive,whichen- only 41 seconds. The bit-by-bit reproducibility of the Simulation ablestheaboveandprovidesaneasy-to-useinterfaceforextracting Archivemeansthatwearenolongerrestrictedtoapredefinedout- simulationdataatsavedsnapshots,oratintermediatetimes.This putcadence;wecanalwaysresamplethesimulationafterthefact makesiteasyandefficienttoanalyzethesimulationretrospectively, toinvestigateinterestingfeatures. andtooutputarbitraryquantities,exactly(bit-by-bit)asifonehad storedthemintheoriginalrun.Becauseouralgorithmsaremachine independent, Simulation Archives can be shared between groups, 4.2 Collisionaltrajectory eveniftheyusedifferentoperatingsystems,compilersorlibraries. Wehopethattheideaspresentedinthispaperwillbecomea TheSimulationArchivecanalsobeusedtoanalyzesystemswith new paradigm for running N-body simulations. This includes the closeencounters,forexampleifstudyingtheejectionofafifthgiant expectation that when scientists present N-body simulations, that planet from the Solar System (Nesvorny` & Morbidelli 2012). As theywouldsharetheirmachine-independentsourcecode,aswellas anotherexample,wehereconsideranintegrationoffiveplanetsin theirexactinitialconditionsandallothernumericalparametersand the HL Tau system, with semi-major axes at the locations of the constants.Suchapracticewouldmakeitpossibletoverifyandex- fivemostprominentgapsinthecircumstellardiskasreportedby tendoneanother’sresults,renderingthescientificenterprisemore Brogan et al. (2015). We assign the star one solar mass, and the planets a mass 3·10−4 times smaller, roughly one Saturn mass, efficientandrobust. The Simulation Archive has been implemented in the whichwillquicklyleadtocrossingorbitsanddynamicalinstability REBOUND code which can be downloaded at https://github. (Tamayo et al. 2015). The orbits are initialized as circular, with com/hannorein/rebound. iPython notebooks to reproduce the aninclinationdrawnfromauniformdistributionbetween0and1 plotsinthispapercanbedownloadedathttps://github.com/ degrees.Theremaininganglesaredrawnrandomlyfromauniform hannorein/reproducibility-paper. distribution. We integrate the system for 10 million years using IAS15, whichisideallysuitedtostudysuchanunstablesystem,givenits adaptivetimestep.Forsuchunstablesystems,whereequalintervals ACKNOWLEDGMENTS insimulationtimemightcorrespondtovastlydifferentintervalsin computationtimewhileresolvingparticularlycloseencounters,it ThisresearchhasbeensupportedbytheNSERCDiscoveryGrant isusefultospecifytheoutputcadenceinwalltime.Thisensures RGPIN-2014-04553.Wethankananonymousreviewerforvalue- thatintegratingfromonesnapshottothenextalwaystakesanequal ablefeedbackthathelpedusimprovethemanuscript. amountoftime.Inourcase,wesavesnapshotsat10secondinter- valsinwalltime,yieldingabinaryof∼3MB. InFig.4,weplotthesemi-majoraxesofallplanetsassolid REFERENCES blacklines,andalsoshowtheradialrangebetweentheirperiastra andapastrashadedingrey.Theinitialoutputsamplinginthetop Baker,M.2016,Nature plotiscoarse,butwecaneasilyidentifythatthesecondandthird Batygin,K.,Morbidelli,A.,&Holman,M.J.2015,ApJ,799,120 (cid:13)c 0000RAS,MNRAS000,000–000 AnewparadigmforreproducingandanalyzingN-bodysimulationsofplanetarysystems 7 103 U] A axis [102 or aj m mi- e s 101 0.0 0.2 0.4 0.6 0.8 1.0 time [yrs] 1e7 60 55 50 U] xis [A45 a or 40 aj m mi-35 e s 30 25 20 2800000 3000000 3200000 3400000 3600000 3800000 time [yrs] Figure4. Thesemi-majoraxes(solidblacklines)ofthefiveplanetsinahypotheticalHLTausystem.Thegrayareascorrespondtotheradialrangebetween theperiastraandapastraoftheplanets.Planetstwoandthreehaveacloseencounterafter∼3.5Myrs.Toanalysethisspecificcloseencounter,werestartthe simulationjustbeforethecloseencounterandincreasetheoutputcadencetogeneratethebottomplot.ThankstotheexactreproducibilityoftheSimulation Archive,thesamecloseencounterisreproduced. Brogan,C.,Pe´rez,L.,Hunter,T.,Dent,W.,Hales,A.,Hills,R., icsandDynamicalAstronomy,50,59 Corder,S.,Fomalont,E.,Vlahakis,C.,Asaki,Y.,etal.2015,The Laskar,J.2012,ArXive-prints AstrophysicalJournalLetters,808,L3 Laskar,J.&Gastineau,M.2009,Nat,459,817 Brouwer,D.1937,AJ,46,149 Lithwick,Y.&Wu,Y.2011,ApJ,739,31 Cai,M.X.,Meiron,Y.,Kouwenhoven,M.B.N.,Assmann,P.,& Nesvorny`,D.&Morbidelli,A.2012,TheAstronomicalJournal, Spurzem,R.2015,ApJS,219,31 144,117 Chambers,J.E.&Migliorini,F.1997,inBulletinoftheAmeri- Nobili,A.&Roxburgh,I.W.1986,inIAUSymposium,Vol.114, canAstronomicalSociety,Vol.29,AAS/DivisionforPlanetary Relativity in Celestial Mechanics and Astrometry. High Preci- SciencesMeetingAbstracts#29,1024 sion Dynamical Theories and Observational Verifications, ed. Duncan,M.J.,Levison,H.F.,&Lee,M.H.1998,AJ,116,2067 J.Kovalevsky&V.A.Brumberg,105–110 Faber,N.T.,Stibbe,D.,PortegiesZwart,S.,McMillan,S.L.W., Rein,H.&Liu,S.-F.2012,A&A,537,A128 &Boily,C.M.2010,MNRAS,401,1898 Rein,H.&Spiegel,D.S.2015,MNRAS,446,1424 Rein,H.&Tamayo,D.2015,MNRAS,452,376 Farr, W. M., Ames, J., Hut, P., Makino, J., McMillan, S., Mu- Saha,P.,Stadel,J.,&Tremaine,S.1997,AJ,114,409 ranushi, T., Nakamura, K., Nitadori, K., & Portegies Zwart, S. Saha,P.&Tremaine,S.1992,AJ,104,1633 2012,NewAstron.,17,520 Tamayo, D., Triaud, A. H. M. J., Menou, K., & Rein, H. 2015, Fienga,A.,Laskar,J.,Kuchynka,P.,Manche,H.,Desvignes,G., ApJ,805,100 Gastineau,M.,Cognard,I.,&Theureau,G.2011,CelestialMe- Wisdom,J.2006,AJ,131,2294 chanicsandDynamicalAstronomy,111,363 Wisdom,J.&Holman,M.1991,AJ,102,1528 Hernandez,D.M.&Dehnen,W.2016,ArXive-prints ISO. 2011, ISO/IEC/IEEE 60559:2011 Information technology —MicroprocessorSystems—Floating-Pointarithmetic(New York,NY,USA:IEEE),58 Kinoshita,H.,Yoshida,H.,&Nakai,H.1991,CelestialMechan- (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.