ebook img

A New Optimal Bound on Logarithmic Slope of Elastic Hadron-Hadron Scattering PDF

0.37 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A New Optimal Bound on Logarithmic Slope of Elastic Hadron-Hadron Scattering

A NEW OPTIMAL BOUND ON LOGARITHMIC SLOPE OF ELASTIC HADRON-HADRON SCATTERING D. B. Ion1,2) and M. L. D. Ion3) 1)TH Division, CERN, CH-1211 Geneva 23, Switzerland and 2)NIPNE-HH, Bucharest P.O Box MG-6. Romania 3)University of Bucharest, Department of Atomic and Nuclear Physics, Romania In thispaperweprovea newoptimal boundon thelogarithmic slope of theelastic slope bwhen: σ and dσ(1) and dσ(−1), are known from experimental data. The results on the experimental el dΩ dΩ tests of this new optimal bound are presented in Sect. 3 for the principal meson-nucleon elastic scatterings: (π±P → π±P and K±P → K±P) at all available energies. Then we show that the saturation ofthisoptimal boundisobservedwith highaccuracy practically at allavailableenergies in meson-nucleon scattering. 5 0 PACSnumbers: 0 2 n 1. Introduction x=cosθ,θ being the c.m. scattering angle. The formal- Ja Recently, in Ref. [1], by using reproducing kernel izations of the helicity amplitudes f++(x) and f+−(x) Hilbert space (RKHS} methods [2-4], we described the are chosen such that the differential cross section dσ(x) 6 dΩ quantum scattering of the spinless particles by a princi- is given by 1 ple of minimum distance in the space of the scattering 1 quantum states (PMD-SQS). Some preliminary experi- dσ(x)=|f++(x)|2 +|f+−(x)|2 (2) v mental tests of the PMD-SQS, even in the crude form dΩ 6 [1], when the complications due to the particle spins are 4 neglected, showed that the actual experimental data for Then, the elastic integrated cross section σel is given by 1 the differential cross sections of all PP, PP, K±P, π±P, 1 σ +1 dσ +1 0 scatteringsatallenergieshigherthan2GeV,canbewell el = (x)dx= [|f++(x)|2 +|f+−(x)|2]dx 5 systematized by PMD-SQS predictions. Moreover, con- 2π Z−1 dΩ Z−1 0 nections between the optimal states [1], the PMD-SQS (3) h/ in thespace of quantumstates and themaximum entropy Since wewillworkatfixedenergy,the dependence ofσel and,dσ(x) and of f(x), on this variable was suppressed. p principle for the statistics of the scattering channels was dΩ p- alsorecentlyestablishedbyintroducingquantumscatter- Hareendcee,nothteedhbeylicµit,ieµs′,ofanindcowmasinwgraitntdenoaustg(o+in)g,(-n),uccloerornes- e ing entropies [5]-[8]. sponding to (1) and (−1), respectively. In terms of the h Theaimofthispaperistoproveanewoptimalbound 2 2 v: on the logarithmic slope of the elastic hadron-hadron partial waves amplitudes fJ+ and fJ− we have i scattering by solving the following optimization prob- X lem: to find an lower bound on the logarithmic slope f++(x)= JJm=a1x(J + 21)(fJ−+fJ+)dJ11(x) 2 22 (4) ar b when: σel, ddΩσ(+1) and ddΩσ(−1), including spin ef- (f+−(x)=PJJm=a1x(J + 21)(fJ−−fJ+)dJ−11(x)) fects, are given. The results on the experimental tests 2 22 P of this new optimal bound are presented for the prin- where the dJ (x)-rotation functions are given by cipal meson-nucleon elastic scatterings: (π±P → π±P µν and K±P → K±P) at all available energies. Then it dJ (x)= 1 · 1+x 21 P, (x)−P,(x) was shown that the saturation of this optimal bound is 11 l+1 2 l+1 l 22 (5) observed with high accuracy practically at all available dJ (x)= 1 (cid:2)· 1−(cid:3)x 12(cid:2) P, (x)+P,(x(cid:3))   −11 l+1 2 l+1 l  energies in meson-nucleon scattering. 22 (cid:2) (cid:3) (cid:2) (cid:3) 2. Optimal helicity amplitudes for spin andprimeindicatesdifferentiationofLegendrepolinomi- (0−1/2+ →0−1/2+) scatterings als P (x) with respect to x ≡cosθ. l First we present some basic definitions and results fwohretnhteheopintitmegarlatsetdateelsasitnictchreosmsseescotni-onnuσcleoanndscdaitffteerrienng- σ2eπl = (2J +1) |fJ+|2+[fJ−|2 (6) el tial cross sections dσ(±1) are known from experiments. X (cid:2) (cid:3) dΩ Now, let us consider the optimization problem Therefore, let f++(x) and f+−(x), x ∈ [−1,1], be the scatteringhelicityamplitudesofthe meson-nucleonscat- tering process: min (2J +1)(|fJ+|2+|fJ−|2) , subject to: dσ(+1)=fixed,and dσ(−1)=fixed M(0−)+N(1/2+)→M(0−)+N(1/2+) (1) (cid:26) dΩ (cid:2)P dΩ (cid:3) (cid:27)(7) 2 whichwillbesolvedbyusingLagrangemultipliermethod Now from Eqs. (14) and (15) we obtain the optimal [9] where solution(9)inwhichthereproducingfunctionsK (x,y) 11 22 and K (x,y) are defined by (10). £= (2J +1)(|fJ+|2+|fJ−|2) 3. O−p12t21imal bound on logarithmic slope +α (cid:2)ddPΩσ(+1)−| (J +1/2)(fJ−+(cid:3) fJ+)|2  (8) We recall the definition of the elastic slope b, and the +β(cid:2)ddΩσ(−1)−|P(J +1/2)(fJ−−fJ+)|2(cid:3) relation So, we(cid:2)prove that tPhe solution of the problem(cid:3)(7)- (8) 2 d dσ λ d dσ is as follows b≡ ln (s,t) | = ln (x) | (16) t=0 x=1 dt dt 2 dx dΩ fo (x)=f (+1)· K1221(x,+1) (cid:20) (cid:21) (cid:20) (cid:21) ++ ++ K11(+1,+1) wheretransfermomentumisdefinedby: t=−2q2(1−x), f+o−(x)=f+−(−1)· KK−2−122212112((−x1,−,−11))  (9) λ=No1w/q,,laentdusqaissstuhmeec.tmhamtoσmel,enddtΩσu(m+.1), and ddΩσ(−1) are where thereproducing kernel functions are defined as known from the experimental data. Then, taking into accountthesolution(9)-(10)oftheoptimizationproblem K (x,y)= Jo(J + 1)dJ (x)dJ (y) (7), it is easy to provethat the elastic slope b definedby 1212 21 2 2112 2112 (16) must obey the optimal inequality: K22KK−−212121121((1x+(,−1y,1)+,=−1P)1P)=J=21o(J((JoJo+++112)1)2d)2−J−−12121/1(4/x4)dJ−1221(y) (10) b≥bo ≡ λ42 σ4π · ddΩσ(+1)+ ddΩσ(−1) −1 (17) (J +212)2− 1 = 4π · dσ(1)+ dσ(−1) (cid:26) el (cid:20) (cid:21) (cid:27) Proof:oLet us co4nsidσeerl th(cid:2)edΩcompledxΩparti(cid:3)al amplitudes canPrboeofo:btInaidneeeddaas spirnogouflaorfstohleutoiopntimofatlhienefoqluloawlitinyg(1o7p)- fJ± ≡rJ±+iaJ±,where rJ± andaJ± are realandimag- timization problem inary parts, respectively. Then, Eq.(8) can be expressed completely in terms of the variational variables rJ± and min{b}, subject to: σel =fixed, (18) aJ±. Therefore,bycalculatingthe firstderivativeweob- ddΩσ(+1)=fixed,ddΩσ(−1)=fixed tain So, the lower limit of the elastic slope b is just the ( ((22JJ11++11))∂∂∂∂raJ£J£±± ==raJJ±±−−ααRA++++((++11))±±ββRA++−−((−−11))==00) e(b9la)is-s(t1igc0iv)o.efnCthobenydseiffqeureennttliya,lwceroosbstsaeicntitohnatgitvheenobpytitmhaelrselsouplet (11) o wherewehavedefinedf++(x)≡R++(x)+iA++(x),and f+−(x)≡R+−(x)+iA+−(x), respectively, where b =λ2 d K2112(x,+1) | = λ2 J (J +2)− 1 o x=1 o o dx K (+1,+1) 4 4 R++(+1)= (J + 21)(rJ+ +rJ−) " 2112 # (cid:26)(cid:20) (19)(cid:21)(cid:27) AAR+++−+−(((−+−111)))===PPP(((JJJ+++ 122121)))(((aarJJJ−+−−+−raaJJJ+−+))) (12) TeqhuAeannl,itimyusp(i1no7rg)t.atnhtemseocdoenldinpdaerptenodfe(n1t4)rewsueltoobbttaaininetdheRienf-. [1], via the description of quantum scattering by the Therefore, from Eqs (11P) we get principle of minimum distance in space of states (PMD- r =αR++(+1)−βR+−(−1) SS), is the following optimal lower bound on logarithmic J+ arJ− ==ααRA++++((++11))+−ββRA++−−((−−11)) (13) selloapsteicosfcathteterfoinrgw:ard diffraction peak in hadron-hadron aJJ+− =αA++(+1)+βA+−(−1) 2 λ 4π dσ Then, using the definitions (2) and (3), we get b≥bo ≥ 4 σ dΩ(1)−1 (20) (cid:20) el (cid:21) 4π dσ dσ α−1 =β−1 =(J +1)2−1/4= (+1)+ (−1) In is important to remark, the optimal bound (17) im- o σ dΩ dΩ el (cid:20) (cid:21) proves in a more general and exact form not only the (14) unitarity bounds derived by MacDowell and Martin [10] and,consequentlyweobtainthatthe optimalsolutionof for the logarithmic slope b of absorptive contribution A the problem (7) can be written in the form dσA(s,t) to the elastic differential crosssections but also dΩ fo (x)= 2f++(+1) Jo (J + 1)dJ (x)dJ (+1) theunitaritylowerboundderivedinRef. [1](seealsoRef. f++o−+(x)= ((JJ2oof+++11−))2(2−−−111)//44P1J12/o2(J + 212)dJ−12212112(x)d12J−211221(−1) c[1r1o]s,s[1se5c])tifoonr.tThehesrloepfoereb,oifttwhoeuelndtibree iddmΩσp(so,rtt)andtiffteoremntaikael (15) an experimental detailed investigation of the saturation P 3 of this bond in the hadron-hadron scattering, especially of the scattering amplitudes are analogous to the coher- in the low energy region. ent states from the RKHS of the wave functions. 4. Experimental tests of the bound (17) Acomparisonoftheexperimentalelasticslopesbwith (iv) The PMD-SQS-optimal state (9)-(10) have not the optimal slope b (17) is presented in Figs. 1 for only the property that is the most forward-peaked quan- o (π±P and K±P)-scatterings: The values of the χ2 = tum state butalsopossessesmanyotherpeculiarproper- (b −b )2/(ǫ2 +ǫ2 ),(whereǫ andǫ aretheex- tiessuchasmaximumTsallis-likeentropies,aswellasthe perjimjentaoljerrorsbjcorrbeosjpondingtobbjandbborjespectively) scalingandthes-channelhelicityconservationproperties, o aPreusedfortheestimationofdeparturefromtheoptimal etc.,thatmakeitagoodcandidateforthe descriptionof PMD-SS-slopeb ,andthen, we obtainthe statisticalpa- thequantumscattering.viaanoptimumprinciple. Infact o rameters presented in Table 1. For π±P-scattering the the validity of the principle of least distance in space of experimentaldataonb, dσ(+1), dσ(−1),andσ ,forthe states in hadron-hadron scattering is already well illus- dΩ dΩ el laboratorymomentaintheinterval0.2GeV≤p ≤10 trated in Fig. 1 and Table 1. LAB GeV are calculated directly from the phase shifts analy- All these important properties of the optimal helicity sis (PSA) of Hohler et al. [12]. To these data we added amplitudes (9)-(10) will be discussed in more detail in a some values of b from the linear fit of Lasinski et al. [14] forthcoming paper. and also from the original fit of authors quoted in some references in [15]. Unfortunately, the values of b cor- o responding to the Lasinski’s data [14] was impossible to becalculatedsincethevaluesof dσ(1)fromtheiroriginal dΩ ± fitarenotgiven. ForK P−scatteringstheexperimental [1] D. B. Ion, Phys. Lett. B 376, 282 (1996), and quoted dataonb, ddΩσ(+1), ddΩσ(−1)andσel ,inthecaseofK−P, therein references. are calculated from the experimental (PSA) solutions of [2] N. Aronsjain, Proc. Cambridge Philos. Soc. 39 (1943) Arndtetal. [13]. Tothesedataweaddedthosecollected 133, Trans. Amer. Math. Soc. 68 (1950) 337; A. Meschkowski, Hilbertische Raume mit Kernfunction, fromthe originalfitofdata fromreferencesof[15]which Springer Berlin, 1962. the approximation dσ(−1)=0. ForK+P-scattering,we dΩ [3] D.B.Ion andH.Scutaru,InternationalJ.Theor.Phys. 24, addedsomevaluesofbfromthelinearfitofLasinskietal. 355 (1985); [14] and also those pairs (b,bo) calculated directly from [4] D.B.Ion, International J.Theor.Phys. 24, 1217 (1985) ; the experimental (PSA) solutions of Arndt et al. [13]. D.B.Ion, International J.Theor.Phys. 25, 1257 (1986). All these results can be compared with those presented [5] D. B. Ion, M. L. Ion, Phys. Lett. B 352, 155 (1995), in Ref. [15]. [6] D. B. Ion, M. L. Ion, Phys. Lett. B 379, 225 (1996). [7] D.B.Ion,M.L.D.Ion,Phys.Rev.Lett.81,5714(1998). 5. Summary and Conclusion [8] M.L.D.Ion,D.B.Ion,Phys.Rev.Lett.83, 463 (1999); The main results and conclusions obtained in this pa- D. B. Ion, M. L. D. Ion, Phys. Rev. E 60, 5261 (1999); per can be summarized as follows: M. L. D. Ion, D. B. Ion, Phys. Lett. B 482, 57 (2000); (i) In this paper we proved the optimal bound (17) D. B. Ion, M. L. D. Ion, Phys. Lett. B 503, 263 (2001); as the singular solution (λ0 = 0) of the optimization D. B. Ion, M. L. D. Ion, Phys. Lett. B 519, 63 (2001); problem to find a lower bound on the logarithmic slope b D.B.Ion,M.L.D.Ion,ChaosSolitonsandFractals,13, with the constraints imposed when σ and dσ(+1) and 547 (2002). el dΩ dσ(−1) are fixed from experimental data. This result is [9] M. B. Einhorn and R. Blankenbecler, Ann. of Phys. (N. dΩ Y.), 67, 480 (1971). similar with that obtained recently in Refs. [1], [15] for [10] S. W. MacDowell, A. Martin, Phys. Rev. 135B, 960 the problem to find an upper bound for the scattering (1964). entropies when σel and ddΩσ(+1) are fixed. [11] D. B. Ion, St. Cerc. Fiz. 43, 5 (1991). (ii)We findthatthe optimalbound(17)isverifiedex- [12] G. Hohler, F. Kaiser, R. Koch, E. Pitarinen, Physics perimentally with high accuracy at all available energies Data, Handbook of Pion Nucleon Scattering, 1979, Nr. for all the principal meson-nucleon scatterings. 12-1. [13] R. A. Arndt and L. D. Roper, Phys. Rev. D31, 2230 (iii). From mathematical point of view, the PMD- (1985). SQS-optimal states (9)-(10), are functions of minimum [14] T. Lasinski, R. Seti, B. Schwarzschild and P. Ukleja, constrained norm and consequently can be completely Nucl. Phys. B37, 1 (1972). described by reproducing kernel functions (see also Ref. [15] See the complete list of references in: D. B. Ion, M. L. [1,3-4]. So, with this respect the PMD-SQS-optimal Ion, Rom. J. Phys. 49, Nr. 7-8 (2004) . e-Print archive states fromthe reproducing kernel Hilbert space (RKHS) hep-ph/0302018. 4 TABLEI:χ2 −statistical parameters oftheprincipalhadron-hadronscattering. Intheseestimations forPLAB ≤2GeV/cthe errors ǫPbSA(π±P)=0.1 bPSA and ǫPboSA(K±P)=0.1bPSA are taken intoaccount while for theerrors to theoptimal slopes bo calculated from phase shifts analysis and [15]. For PLAB ≥2GeV/c Forall PLAB ≥0.2GeV/c Statistical parameters Np χ2/ndof Np χ2/ndof π+P →π+P 28 1.02 90 3.37 π−P →π−P 31 0.92 93 8.00 K+P →K+P 37 1.15 73 1.91 K−P →K−P 37 1.52 73 7.84 PP →PP 29 5.01 32 5.06 P¯P →P¯P 27 0.56 45 1.86 FIG. 1: The experimental values (black circles) of the logarithmic slope b for the principal meson-nucleon scatterings are compared with the optimal PMD-SQS-predictions bo (white circles). The experimental data for b, ddΩσ(+1) and σel, are taken from Refs. [12]-[14]. (see the text).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.