Astronomy&Astrophysicsmanuscriptno.arxivpaper (cid:13)c ESO2013 January14,2013 A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy T.C.Junqueira, J.R.D.Le´pine,C.A.S.BragaandD.A.Barros InstitutodeAstronomia,Geof´ısicaeCieˆnciasAtmosfe´ricas,UniversidadedeSa˜oPaulo,CidadeUniversita´ria,Sa˜oPaulo,SP,Brazil e-mail:[email protected] Received;accepted 3 1 ABSTRACT 0 2 Aims.Weproposeanew,morerealisticdescriptionoftheperturbedgravitationalpotentialofspiralgalaxies,withspiralarmshaving n Gaussian-shapedgrooveprofiles.Theaimistoreachaself-consistentdescriptionofthespiralstructure,thatis,oneinwhichaninitial a potentialperturbationgenerates,bymeansofthestellarorbits,spiralarmswithaprofilesimilartothatoftheimposedperturbation. J Self-consistencyisaconditionforhavinglong-livedstructures. 1 Methods.Usingthenewperturbedpotentialweinvestigatethestablestellarorbitsingalacticdisksforgalaxieswithnobarorwith onlyaweakbar.ThemodelisappliedtoourGalaxybymakinguseoftheaxisymmetriccomponentofthepotentialcomputedfrom 1 theGalacticrotationcurve,inadditiontootherinputparameterssimilartothoseofourGalaxy.Theinfluenceofthebulgemasson thestellarorbitsintheinnerregionsofadiskisalsoinvestigated. ] A Results.The new description offers the advantage of easy control of the parameters of the Gaussian profile of its potential. We computethedensitycontrastbetweenarmandinter-armregions.Wefindarangeofvaluesfortheperturbationamplitudefrom400to G 800km2s−2 kpc−1,whichimpliesanapproximatemaximumratioofthetangentialforcetotheaxisymmetricforcebetween3%and . 6%.Goodself-consistencyofarmshapesisobtainedbetweentheInnerLindbladresonance(ILR)andthe4:1resonance.Nearthe h 4:1resonancetheresponsedensitystartstodeviatefromtheimposedlogarithmicspiralform.Thiscreatesbifurcationsthatappear p asshortarms.Thereforethedeviationfromaperfectlogarithmicspiralingalaxiescanbeunderstood asanaturaleffectofthe4:1 - o resonance.Beyondthe4:1resonancewefindclosedorbitsthathavesimilaritieswiththearmsobservedinourGalaxy.Inregionsnear r thecenter,elongatedstellarorbitsappearnaturally,inthepresenceofamassivebulge,withoutimposinganybar-shapedpotential, st butonlyextendingthespiralperturbationalittleinwardoftheILR.Thissuggeststhatabarisformedwithahalf-size∼3kpcbya a mechanismsimilartothatofthespiralarms. [ Conclusions.The potential energy perturbation that we adopted represents an important step in the direction of self-consistency, comparedtoprevioussinefunctiondescriptionsofthepotential.Inaddition,ourmodelproducesarealisticdescriptionofthespiral 2 structure,whichisabletoexplainseveraldetailsthatwerenotyetunderstood. v 2 Keywords.Galaxies:spiral–Galaxies:structure–Galaxy:kinematicsanddynamics–Galaxy:disk–galaxies:bulges 1 3 3 1. Introduction totheclosedstellarorbits,wecangenerateregionswherethese . 2 orbitsarecrowded.Suchanorganizationisachievedbyrotating 1 Despiteitshistoricalmerit,thespiralstructuretheory, proposed orbits of increasing size by a given angle, relative to previous 2 byLin&Shu(1964),haswell−knownlimitations.Forinstance, ones.Theseregionsofhighstellardensitieslooklikelogarithmic 1 Lin&Shuaddgasandstarintoasinglecomponent,whentheir spirals and rotate with the required pattern speed to transform : dynamicsdifferin responsetothesamepotential;stars,forex- v the usually open orbits into closed ones. Furthermore, such an ample,arenotaffectedbypressuregradients.Additionally,real i organizationofstellar orbitscan be achievedvia galactic colli- X arms are not tightly wound, as assumed in that theory, and the sions(Gerber&Lamb1994).ThegreatadvantageoftheKalnajs r physicalpropertiesofthedisk(densities,velocityperturbations) model in comparison to Toomre’s is that the former’s spiral a donothaveasine-shapeddependenceinazimuth,asarguedin structureisnotdisruptedbydifferentialrotation;inotherwords, thepresentpaper.Aroundthesametime,Toomre(1964),inan itcanbelonglived.Itisimportanttonotethatthesearchforsta- opposingpointofview,arguedthatsincethelargestfractionof ble or quasi-stationary solutions has traditionally been the aim matterin the disk is in the formof stars, one can, in a first ap- ofdynamicalmodelsofdisks.Thisisstillalegitimateconcern, proximation,neglectthegasandworkwithstellardynamics.He giventhatthenear-infraredmorphologyofseveralgranddesign devoted much of his attention to understandingwhy an excess galaxies reveals the existence of an underlying two-arm struc- of stars in a given region does not grow without limit, due to ture constituted mainly of old stars (Grosbøl&Patsis 1998; theexcessofgravitationalattraction.Regardless,hismodelfor Block&Wainscoat 1991; Rix&Rieke 1993; Rix&Zaritsky thearmsfocusedmoreonstellardynamics,consideringthemas 1994;Blocketal.1994).Also,Le´pineetal.(2011b)arguedthat, regionswithstellarexcessofstars,thatrotatewithvelocitythat basedonthemetallicitygradient,thepresentspiralstructureof doesnotdivergefromthevelocityofthediskmatter. Galaxyhasanageofatleastseveralbillionyears. Kalnajs(1972)proposedaninnovativewayofunderstanding thespiralstructure,whichwasfocusedsolelyonstellardynam- The Kalnajs model is the most promising one, as it gives ics.Heshowedthatbyintroducingsomedegreeoforganization a correct understanding of the nature of the arms as regions 1 T.C.Junqueiraetal.:ThespiralstructureoftheGalaxy where stellar orbits are crowded. However, Kalnajs’ model is curve and pattern speed (discussed, respectively, in Sects. 4.1 only a first approximation, since it makes use of stellar orbits and6.1).Thereforeitisworthconstructingamodelthatisade- associated with an axisymmetric potential. In order to reach quateforcomparisonswith observationsandothermodels.We self-consistency,one must introduce the effect of the perturba- areconsciousthatanumberofauthorsconsiderthatourGalaxy tions of the potential on the stellar orbits. The perturbations hasastrongbar,sothatourmodelwouldnotbeapplicable,but produce changes in the shapes of the orbits, which in turn inanycase,thecomparisonwithobservationsmaygiveusclues change the regions where the orbits are crowded and gener- to this question. Othermodels that we have already mentioned ate a new perturbation. If at the end of this cycle we obtain (A&L, Pichardo et al, Contopoulos & Grosbøl) use the same approximately the same density distribution as at the end of hypothesis of spiral-dominated structure and are directly com- the starting one, we say that the model is self-consistent, and parable. that the structure will be long lived. Self-consistentmodels, or Theorganizationofthispaperisasfollows.InSect.2.1,we at least approximately self-consistent models in terms of arm review the classical modelfor the spiral arms. In Sect. 2.2, we shapes, were constructed by Contopoulos&Grosbøl (1986), presentour new modelfor the spiral arms discuss the required Contopoulos&Grosbøl(1988)andPatsisetal.(1991)forlarge parameters.InSect.3,wededucetherelationbetweentheden- spiralgalaxies,andbyAmaral&Lepine(1996)(hereafterA&L) sity contrast and the perturbation amplitude. We constrain the andPichardoetal.(2003)forthespecialcaseofourGalaxy.In perturbationamplitudeto arangeofvaluesbymeansof obser- the works of Contopoulos and collaborators and of A&L, the vationalevidenceforthedensitycontrast.InSect.4andsubsec- classicalexpressionfortheperturbationΦ wasusedinaframe tions, we compute the axisymmetric potentialfor two different 1 ofreferencerotatingwithconstantvelocityΩ : rotation curves. First, we use a realistic rotation curve, which p isobtainedbyfittingthedataoftheGalaxy.Thesecondmodel lnR usesa“flat”rotationcurvethatismodeledbytwoaxisymmetric Φ1(R,ϕ)=ζ0Re−εsR cos mtani −mϕ!, (1) components(bulge+disk)withdifferentbulge-to-diskratiosin ordertobetterunderstandtheeffectofthebulgecomponenton withsomediversityintheamplitudeζ ,thebehavioroftheam- the stellar orbits. In Sect. 5.1, we presentthe equationsof mo- 0 plitudewithradius(hererepresentedby Re−εsR),thenumberof tionandtheintegrationscheme,andinSect.5.2,wederivethe arms (m), and the pitch angle i. A property of this expression density response. In Sect. 6, we discuss the adopted corotation is that if we fix the radius R, the variationof the potentialas a radius and the angular velocity of the spiral pattern. The main function of the azimuthal angle is a sine function. In the work resultsarepresentedinthissection,discussedseparatelyfordif- ofPichardoetal.(2003),theperturbingpotentialisrepresented ferent ranges of radii: between the Inner Lindblad Resonance as a superposition of a large number of oblate spheroids, with (ILR)andthe4:1resonance,beyondthe4:1resonance,andthe their centersdistributed along the locii of the spiral arms. This connectionbetweenthebulgeandtheinnerstellarorbits.InSect. approachdoesnotgiveaccesstoasimpleanalyticalexpression 7,wegiveourconclusions. fortheperturbation. One motivation for this work is that it has become evident 2. Thespiralarms that the traditional description of the potential perturbation in terms of a sine function in the azimuthaldirection is not satis- 2.1.Theclassicalmodel factory. It is simple to estimate the stellar density in a region Thesurfacedensityofazero-thicknessdiskcanberepresented wheretheorbitsarecrowdedandtocompareitwiththeaverage mathematically as the sum of an axisymmetric or unperturbed field,aswellastoperceivethattheperturbationsaremuchbet- surfacedensityΣ (R),andaperturbedsurfacedensity Σ (R,ϕ), terdescribedasnarrowgroovesorchannelsinthegravitational 0 1 whichrepresentsthespiralpatterninaframethatrotatesatan- potentialwithanapproximatelyGaussianprofile.Wepresentan gularspeed Ω .Theazimuthalcoordinateatthe rotatingframe analyticaldescriptionoftheperturbingpotential,which isreal- ofreferenceispϕ = θ−Ω t, where θ isthe angleattheinertial istic when compared to observations and produces better self- p frame.Asusual,thephysicalsurfacedensityisgivenbythereal consistency compared to other models. Strictly speaking, we partofthefollowingequation(seeBinney&Tremaine2008): give priority to the analysis of one aspect of self-consistency, which corresponds to the shape of the arms or equivalently to Σ1(R,θ−Ωpt)=Σsei[m(θ−Ωpt)+fm(R)], (2) thepositionofthedensitymaximaintheplaneofthegalaxyand where f (R) is the shape function, which describes the spiral, totheirprofiles.Weemploytheexpression“self-consistencyof m andΣ isavaryingfunctionofradiusthatgivestheamplitudeof armshape”todescribeourresults,althoughseveralauthorsthat s thespiralpattern.FromΣ ,asdescribedbyEq.2,wederivethe wementionedabovesimplyreferto“self-consistency”forsimi- 1 potentialΦ ,usingGauss’law,andobtain laranalyses.Otheradvantagesrelatedtotheexpressionproposed d inthisworkfortheperturbationare1)avoidingfluctuationsbe- Φ1(R,θ−Ωpt)=Φdei[m(θ−Ωpt)+fm(R)], (3) tweenpositiveandnegativevaluesforthepotential(asproduced byasinusoidalfunction)overthewholediskforthewholerange where of parameters, 2) controlling the arm-interarm contrast and, 3) 2πGΣ dealingofthethicknessofthespiralarms. Φd =− |k| s. (4) The focus in this work is on normal galaxies in which the structure is dominated by spiral arms, not by a bar. Naturally, In the above expression, k is the wavenumber and G the many galaxies present a weak bar in their center, with an ex- Gravitationalconstant.UsingEqs.3and4,weget tended region of spiral arms beyond the end of the bar. The 2πGΣ presentmodelcanbeusefultointerprettheirstructure. Φ1(R,θ−Ωpt)=− |k| sei[m(θ−Ωpt)+fm(R)]. (5) In addition to the motivations mentioned above, there has beenconsiderableimprovementinrecentyearsintheknowledge Thisisawell−knownresult,foundbyLinetal.(1969)andde- of the structure of ourGalaxy and, in particular, of its rotation rivedfromtheWKBtheory(seealsoAppendixB). 2 T.C.Junqueiraetal.:ThespiralstructureoftheGalaxy Fig.2.Mapoftheperturbingpotentialintheplaneofthegalaxy. Fig.1. Azimuthal density profile at different radii for m = 2, ThecolorsrepresentthevaluesofΦ (R,ϕ)inarbitraryunits.The 1 i = 14o, and σ = 4.7 kpc. Here we set Σ = 1, since we only pictureonthe leftisthe potentialwith σ = 2.5kpc andonthe wantto showhow thedensity profilevaries0swith the azimuthal rightσ=4.7kpc.Fori=14owehaveontheleftσ⊥ =0.6kpc angle. andontherightσ⊥ =1.1kpc 2.2.Thenewpotentialforthespiralarms Our Model 3 Classical Model Beforewebegin,itisimportanttoclarifywhatweunderstandby spiralarms.ThemodelweadoptisbasedontheideaofKalnajs 2 (1972) of stellar orbits of successively increasing radii in the disk,organizedinsuchawaythattheygetclosetogetherinsome regions,thuspresentingexcessesofstellardensity. 1 Traditionally, the perturbed surface density has been de- FR scribed by Eq. 2. This approach, however, is not realistic. The 0 brightness profiles observed in galactic disks in circles around the center are not sine functions, nor are the density profiles -1 obtained theoretically from the crowding of stellar orbits. The surfacedensityweconsidertoberealisticisgivenbyadensity -2 excessthatfollowsalogarithmicspiral,withaGaussianprofile inthetransversaldirection.Thepotentialthatproducesthiskind 2 4 6 8 10 12 ofdensityhastheform R (kpc) Φ1(R,ϕ,z)=−ζ0Re−σR22[1−cos(mϕ−fm(R))]−εsR−|kz|, (6) FTihge.3ci.rRclaedsiianlfreodrcreepdrueesetontththeesrpaidraiallafromrciendthueedtoiroeuctriopnotϕen=tia0l., while the crosses in green representthe radial force associated whereζ istheperturbationamplitude,ε−1thescalelengthofthe 0 s withtheclassicalsinefunctionperturbation.Here,positiveval- spiral, σthewidthofthe Gaussianprofilein thegalactocentric azimuthaldirection, k = m the wavenumber,and f (R) the uesoftheforcemeanthatastarwouldbepushedoutwardand Rtan(i) m negativesvaluesthat it would be pulled inward with respect to shapefunction.Thescale-lengthofthediskandofthespiralare thegalacticcenter.Inthisfigure,thenumberofarmsis m = 2, notnecessarily the same. This questionis discussed in Sect. 3. the pitch angle i = 14o, ε = 0.4 kpc−1, and forourmodelthe Theshapefunctionis armwidthσ=4.7kpc s m f (R)= ln(R/R)+γ, (7) m i tan(i) indirectionsofgalactocentriccircles(seedeductioninAppendix where m is the number of arms, i is the pitch angle, R is the A).Becauseallthesecirclescrossthelogarithmicarmswiththe i pointwherethespiralcrossesthecoordinatex=0,andγisonly same angle i, the true width in a directionperpendicularto the aphaseangle. armsisgivenbyσ⊥ SolvingPoisson’sequationusingEq.6,withtheassumption ofzero-thicknessdiskandoftightlywoundspiralarms(TWA) σ⊥ =σsin(i). (10) intheplanez=0wehave Thisparameterallowsustoreproducearmsofdifferentwidths, Σs =Σs0e−σR22[1−cos(mϕ−fm(R))], (8) asshFoigwunrein3Fpilgo.ts2t.heradialforceproducedbythespiralarmsin where Σ is associated with the perturbation amplitude (see ourmodel(redcircles,whichareverysimilartoPichardoet al. Appendixs0Bformoredetails)bytheequation 2003)comparedwiththeclassicalmodel(greencrosses,derived fromEq.3) asa functionof Galactocentricdistance R. In both ζ m R2 casestheperturbationamplitudewassettobeequaltoone,since Σs0(R)= 2π0Gσ2|tani|e−εsR. (9) wejustwanttoseehowtheforceprofilevariesandarenotinter- ested inabsolutevalues.Thefirst thingwe cannoticeinFig. 3 TheazimuthalprofilecorrespondingtoEq.8isillustratedin isthatfortheclassicalmodeltheradialforceisstrongerforthe Fig.1.Weemphasizethatσisthehalf-widthofthespiralarms sameperturbationamplitude,mainlyininnerregions.Thus,the 3 T.C.Junqueiraetal.:ThespiralstructureoftheGalaxy perturbationamplitudeintheclassicalcasewouldbelowerthan wantthe amplitudeof the spiralto droptoo fast outwards)and in ourmodel. This is due to the fact that a sinusoidal potential compute the value of σ using the density of the solar neigh- 0 varies between positive and negative values and that the force, borhood,Σ (R ) = 49 M pc−2 (see Binney&Tremaine 2008, d 0 ⊙ proportionalto the variationsof potential, is strongerthan in a Table1.1),forR =7.5kpcandε−1 =2.5kpcwegetσ =984 0 d 0 case wherethe potentialgroundlevelis equalto zero.Another M pc−2.Then,usingthevaluesfromTable1forthenumberof ⊙ differencebetweenthetwomodelsoccursaround9kpc,where, armsandthepitchangle,Eq.13reducesto in the classical model, the force becomespositive while in our modeltheforceslowlytendstozero,butitisstillnegative.This Σ ζ R2 happensbecausea starin thatregionfeelsthe effectofthe last Σs0 =3.10−4 σ02 . (14) piece of the arm, as we can see in Fig. 2 in the x direction, so d thatitwouldbepulledinwards. Sincewehaveused,uptonow,parametersofthespiralstruc- ture that are based on studies of our Galaxy, we shall estimate thecontrastfora galactocentricdistanceofabout5 kpc,which 3. Relationbetweendensitycontrastand inourmodelisaboutmidwaybetweentheILR andcorotation, perturbationamplitude asdiscussedinSect.6.NumericallywehaveR≈ σ,sothatEq. FollowingAntojaetal.(2011)wetakeasameasureoftheden- 14becomes sitycontrast Σ s0 ≈3.10−4ζ . (15) Σ Σ 0 A ∼ s0, (11) d 2 Σ d Aplotofthedensitycontrastbasedonthisequationisshown wimhuemreΣddenissitthyeoafxitshyemsmpiertarlicasrumrfsa.cTehdiesnrseitlyataionndΣiss0viasltihdeumndaxer- icnusFsiegd.4a.bCovoem,pwaritihngththisefivagluurees,owfeAfi2nfrdoma rtahnegleiteorfataumrep,laistuddiess- the assumption of a mass-to-light ratio of the order of 1 when oftheperturbationbetween400to800km2 s−2 kpc−1,whichis A is measuredin the infraredbands(Kent1992). Antojaetal. compatiblewiththerangeofdensitycontrastsofTable1.Taking (22011)collectedintheliteraturetheestimationsofGalacticand anaveragevalueA2 =0.18givesusζ0 =600km2s−2kpc−1. extragalacticdensitycontrasts,andfoundthemtobeintherange 0.13 ≤ A ≤ 0.23.Therefore,anaveragevaluewouldbeabout 2 A =0.18. 0.36 2 0.32 Table1.Adoptedspiralarmsproperties 0.28 0.24 Property Symbol Value Unit Numberofarms m 2 - Σd 0.2 PHiatclfhwanidgtlhe σi 144.7o kp-c Σ / s0 0.16 Scalelength ε−1 2.5 kpc s 0.12 Spiralpatternspeed Ω 23 kms−1kpc−1 p Perturbationamplitude ζ0 600 km2s−2kpc−1 0.08 0.04 The maximumdensityof the spiralarmsis givenbyEq. 9. 0 We refer to the maximum at a certain radius, not a maximum 100 200 300 400 500 600 700 800 900 1000 ζ0 (km2 s-2 kpc-1) overthewholedisk.Tosimplifytheanalysis,weassumethatthe axisymmetric surface density has an exponentialbehavior(Eq. Fig.4.DensitycontrastΣ /Σ asafunctionofperturbationam- 12).Galacticdisksareoftenrepresentedbyexponentialdensity plitudefortheMilkWay.s0 d laws and, depending on the value of ε , can explain relatively d flatrotationcurves.We knowthatsuchanexponentiallawwill notgeneratean exactfit to the rotationcurve,givenbyEq. 17, butitsimplifiestheanalysisandgivesusa goodhintaboutthe This is an estimate for R ≈ 5kpc. However as we can valueoftheperturbationamplitude see from Eq. 14, the density contrast increases with radius. Kendalletal.(2011)andElmegreenetal.(2011)showedmany Σd(R)=σ0e−εdR. (12) galaxies with a growth of density contrast with radius. If we adopt ε = ε , the density contrast varies as the square of the d s Thereforethedensitycontrastis radius, which seems a little too fast in many cases. This prob- lem can be attenuated in two ways: 1) the scale length of the Σ ζ m R2 spiralandofthediskmaybeslightlydifferent(ε < ε ),which s0 = 0 e−(εs−εd)R. (13) d s Σ 2πGσ2|tani|σ will produce an exponential decrease, 2) the arms width may d 0 increase with radius, producinga density contrast with moder- The density contrast depends not only on the perturbation ateincrease,closertotheresultsofKendalletal.Foraspecific amplitudeζ ,butalsoonσ,whichdescribesthearmswidth.In galaxy,itwouldbepossibletochecktheazimuthaldensitypro- 0 ourmodel,wecansetσasaconstantorafunctionofradius.If fileanditsvariationwithradiusandtoadjusttheparametersto weassumethatthescalelengthisthesameforbothcomponents matchtheobservations.Onemeritofourmodelisthatitfacili- (ε = ε , which is a reasonableassumptionbecause we do not tatessuchadjustments. d s 4 T.C.Junqueiraetal.:ThespiralstructureoftheGalaxy 4. Theaxisymmetriccomponent 0 The main dynamical information of a spiral galaxy is derived fromitsobservedrotationcurve.Infact,therotationcurvegives -0.05 us the radial gradient of the potential, since we can compute Φ0(R)byintegratingEq.16: 2) -yr -0.1 ∂Φ V2 (R) M F =− 0 =− rot , (16) 2 ∂R R Kpc -0.15 whereVrotistherotationcurve. ntial ( e -0.2 ot 4.1.TherotationcurveoftheGalaxy P To contributeto a deepunderstandingof the spiral structureof -0.25 anygivengalaxy,wemustmaketheeffortofintroducingthereal parameters,suchasthedimensionofthecomponents,therota- -0.3 tioncurve,andthepatternrotationspeed.Althoughtheremaybe 0 2 4 6 8 10 12 14 16 18 20 controversiesconcerningsomeoftheseparameters,wechoseto R (kpc) illustrate ourmodelof spiralperturbationby applyingit to our Galaxy. However, we also used a simplified analytical expres- Fig.6.Axisymmetricalpotentialasafunctionofthegalactocen- sion for the rotation curve, introduced in the next subsection, tricradiusR. with the aim of reaching qualitatively a general understanding oftheeffectofthethemassofthebulgeontheinnerorbits. The“real”rotationcurveoftheGalaxythatwehaveadopted (Fig. 5) is quite flat, except for a local minimum at about 8.8 kpc. The existence of this dip in the curve is revealed, for in- Thefirsttwocomponentscontaintermsin(1/R)and(1/R)2 stance, by the study of the epicycle frequency in the galactic inside the exponential function, which produce a decrease of disk(Le´pineetal.2008).Thisisconfirmedinarecentworkby theircontributiontowardssmallradii.Thelast(Gaussian)term Sofueetal. (2009), which makes use of different data sets, in- representsthelocaldip.Theinterpretationofasimilarcurve,ex- cludingdataonmaserswithprecisedistancesmeasuredbypar- ceptforthedip,intermsofcomponentsoftheGalaxyisgivenby allax,to trace the curve.The rotationcurvespresentedin these Le´pine&Leroy(2000)andisdifferentfromthatofSofueetal. two papers are quite similar, except for minor scaling factors (2009).ThepatternspeedisdiscussedinSect.6.1. due to the adoptedgalactic parameters, the solar distance from Figure6showstheaxisymmetricpotentialthatresultsfrom the Galactic centers R , and the solarvelocity V . The curveis 0 0 theintegrationofEq.16.Weusedthetrapeziumrulewithadap- convenientlyfittedbytwoexponentialsandaGaussian tivesteptosolvetheintegral,andwefixedthepotentialasequal toΦ (100)= 0atR=100kpcinordertosetthearbitrarycon- 0 V (R)=398e−R/2.6−0.14/R+257e−R/65−(3.2/R)2 stant. rot −20e−[(R−8.8)/0.8]2. (17) 4.2.Amodelofaflatrotationcurvewithabulge Many galaxies have a flat rotation curve, but some of them 300 presentapeakintheinnerpart.Forinstance,asseeninFig.5,a peakforourGalaxyappearsataradiussmallerthan2kpc,with 250 amaximumaround300pc.Thenatureofthepeakisasubjectof debate.Someauthorsconsiderthatitisnotduetorotation,like 200 Burton&Liszt(1993),whobelievethatthereisastrongvelocity m/s) componentofgasoutflowfromthecentralregionsoftheGalaxy. V (krot 150 rOicth,elirksecaotnrsiaidxeiarltbhualtgaenacimcoprodrintagnttodGepearhrtaurrde&froVmietarix(is1y9m86m),eits- 100 required to explain the peak. To perform a first approximation analysis on the effects of the presenceof a bulge on the stellar 50 orbitsin theinnerregionsofa galaxy,we adoptthe hypothesis thatthebulgeisaxisymmetric,asitseemstobe,atleastapproxi- 0 0 2 4 6 8 10 12 14 mately,inmostspiralgalaxies(Me´ndez-Abreuetal.2010).Also R (kpc) inaxisymmetricbulges,onecanfindellipticalorbitsintheircen- Fig.5.RotationcurveoftheGalaxy.Theredlineistherotation tralregions.Then,evenaverysmallperturbationcouldgiverise curvefitted usingClemens’data(blackdots),andthe blueline to an oval structure. Since in this part of the work we are not isthepatternspeedΩ ×Rcorrespondingtoanangularvelocity interested in solving the specific case of our Galaxy, but want p Ω = 23kms−1 kpc−1. Thecorotationradiusisat8.4kpc.We to have a moregeneralidea of the effectof a bulge,we do not p adoptedR =7.5kpcandV =210kms−1. use the observedrotation curve of our Galaxy. Instead, we use 0 0 asimpleronefromwhichthepotentialisobtainedanalytically, thusavoidingnumericalintegrations.Forthisstudyweadoptthe model for the rotation curve given by Contopoulos&Grosbøl 5 T.C.Junqueiraetal.:ThespiralstructureoftheGalaxy (1986), in which the presence of the peak is modeled by two Poincare´’ssurfaceofsection(Poincare´ 1892).ThePoincare´sec- axisymmetriccomponents(bulge+disk): tionwasfixedwheretheorbitscrosstheaxis ϕ= 0o. Theperi- odic orbits trapped around circular orbits are represented by a Vrot(R)=Vmax fbǫbRexp(−ǫbR)+[1−exp(−ǫdR)]. (18) sequence of points in the phase-space (R,pr), lying on a curve calledaninvariantcurve. p Hereǫ−1 andǫ−1 arethescalelengthforthebulgeanddisk Inpractice,whatwedoistocomputetheenergyofacircular b d components, respectively. The relative importance of the two orbitusingEq.19.Thusthisequationbecomes componentsisgivenbythebulgefraction f . b We analyzed the inner stellar orbits obtained with rotation h(R)= J02 −Ω J +Φ (R). (24) curveswith differentvaluesof f , thatis, with differentimpor- 2R2 p 0 0 b tanceofthebulge.Theresultsarediscussedlater,inSect.6. Thisexpressionhasnoperturbationterms.Theangularmo- mentumpermassunitisgivenby J = RV ,andΦ (R)isthe 0 rot 0 5. Stellarorbits galacticpotential.Foreachradius,wehaveavalueofenergyh, then we come back to the Eq. 19 with H = h. Thus, we have 5.1.Theintegrationscheme tofindtheinitialconditions(R,p ,J ,ϕ)thatwillclosetheorbit r 1 Onceweknowthetwocomponentsofthepotential,Φ (R)and for a given h. The last variable can be fixed at ϕ = 0, and the Φ (R,ϕ), we can derive the equations of motion gove0rned by angularmomentumJ1isfoundsolvingEq.19foragivenRand 1 p . Therefore, we only have to deal with the pair of variables them.Figure7illustratestheanglesandangularvelocitiesused r (R,p ).Thepairthatgivesusastableperiodicorbitisfoundat intheequations.WhentheGalacticplaneisrepresented,themo- r thecenteroftheislandinthePoincare´section. tion of stars andthe patternspeed are shown clockwise,which The families of periodic orbits that we obtained (starting correspondstonegativevaluesofangularvelocities. fromenergiesequivalenttocircularorbitsspaced0.2kpcapart, from3upto8kpc)areshowninFig.8.Theinnerpartfrom2up to3kpcwasavoidedhere;wediscussthisregioninSect.6.4. 5.2.Responsedensity Theresponsedensityiscomputedbyconsideringtheconserva- tion offlux betweentwo successive orbitsin the perturbedand unperturbed cases (Contopoulos&Grosbøl 1986). In our case weconsideraseriesofcircularorbitsspacedat0.2kpc.Wecan imagineineachorbitalargenumberofstarsequallyspacedin Fig.7.SchemeoftheGalacticplane.Theyellowdotrepresents the unperturbed case. The area S of an angular sector, which astarrotatingwithspeedθ˙inaframeofreference(dashedline) is between two neighboring orbits and two successive stars in corotatingwiththespiralarmsattheangularvelocityΩ . eachorbit,istransformedintoS′whentheperturbationisintro- p duced.Thetwoareascontainthesamemass,sothatthedensity is proportional to 1/S′. There are two reasons for the change indistancebetweenneighboringstars.Intheradialdirection,it TheHamiltonianforsuchasystemisgivenby is because the orbitsapproachorrecede one fromthe other. In the azimuthal direction, it is because the stars travel at differ- H = 1 p 2+ J12 −Ω J +Φ (R)+Φ (R,ϕ), (19) ent angular velocities along the orbit. Due to the conservation 2" r R2 # p 1 0 1 of angular momentum, the stars move more slowly when they areatlargergalacticradius,andgetclosertooneanother, since wherep and J arethelinearandangularmomentumpermass thefluxisconserved.Thisiseasytotakeintoaccount,sincethe r 1 unit,respectively.ItisimportanttonotethatJ ismeasuredwith spacingbetweenstarsis∆ϕ∝ϕ˙−1.Theresponsedensitycanbe 1 respecttotheinertialframe.Theequationsofmotionare writtenas Σ 2πR ∆R ∆t dR = pr, (20) Σresp = cTR∆cR∆ϕc , (25) dt dp J2 ∂Φ (R) ∂Φ (R,ϕ) whereΣc isthedensity,Rc istheradius,and∆Rc isthespacing r = 1 − 0 − 1 , (21) between two successive orbits, all of them in the unperturbed dt R3 ∂R ∂R case, while the same quantities in the denominatorrefer to the perturbedsituation.Thequantity∆tisthetimespentbyastarto dϕ J = 1 −Ω , (22) movefromϕtoθ+∆ϕ,whileT istheperiod.Inpractice,what dt R2 p wedoistodividethecirclesinNsectors,thusmakingitpossible dJ ∂Φ (R,ϕ) tofindthepositionsRandthetimeforeachangle,definedbyi∆θ 1 =− 1 . (23) (i=1..N).Thereforewecanfindthetime∆tspentbythestarto dt ∂ϕ movebetweentwoadjacentsectors. Sinceweareinterestedinthepositionofmaximumresponse The equations above were integrated using the 6th order densityforeachorbit,Eq.25reducesto implicit Runge-Kutta-Gauss (RKG) (see Sanz-Serna&Calvo 1994,formoredetails),withafixedtimestep dt = 10−1 Myrs. ∆t To find the stable periodic orbits, we applied the method of Σresp ∝ R∆R∆θ. (26) 6 T.C.Junqueiraetal.:ThespiralstructureoftheGalaxy AsthevaluesofΣ ,R ,∆R ,andT donotchangeinagiven c c c circle,theycanbeignoredinEq.25.Thusthepositionofmax- imum density is the sector where Eq. 26 reaches its maximum value. Weareinterestedinthepositionofmaximumresponseden- sityforeachorbit.Thepositionofthedensitymaximaisshown inFig.8. 10 5 c) kp 0 Y ( -5 Fig.9.Thisfigureshowsaplotoftheobservedarmstructureof theGalaxyinthesolarneighbourhood.TheSunisatthecenter of the figure, and the distances on the two axes are relative to theSun.TheGalacticcenterisdownwardandoutsidethefigure. -10-10 -5 0 5 10 Different kinds of objects have been added to better trace the X (kpc) structure, all of them shown with a same symbol (gray dots): Cepheids,openclusters,CSsources(seetextfordetails).Curve Fig.8.Hereweshowaseriesofclosedorbitsintheplaneofthe a, in brown,represents a stellar orbitat the 4:1 resonance, and GalaxyobtainedusingtherotationcurveofEq.17.Thespirals curvebanorbitatthe6:1resonance.Curvecisnotidentifiedin indicatedin green representthe imposedperturbation;theyco- termsofresonances,sinceitisalinearfittotheobservedpoints. incidewiththeresponsedensity(reddots)upto4:1resonance. Theotherlines(twoinred,oneingreen)arelogarithmicspirals Theredcircleisthecorotationradius(R =8.4kpc).Theper- cor fittedtothedata. turbationamplitudeisζ = 600km2 s−2 kpc−1.Theyellowdot 0 showstheSunposition. clusters back to their birthplaces. As shown by Dias&Le´pine (2005), the result, R = (1.06±0.08)R , does not have any CR sun strongdependenceon the adoptedrotation curve.A seconddi- rect observation is the position of the ring-shaped HI void at 6. Results corotation(Amoˆresetal. 2009), anda thirdone thepositionof the square-shapedspiralarmassociated with the 4:1resonance 6.1. AmodelforourGalaxy (Le´pineetal.2011a).Theexistenceofa gapinthedistribution Throughoutthiswork,wehaveadoptedtheparametersthatap- ofopenclustersandofCepheids,alongwithastepinthemetal- pearedtoustocorrespondtoourGalaxy,likethosepresentedin licity distribution, is naturally explained in terms of the coro- Table1,andtherotationcurve.Inthenextsections,wepresent tation resonance (Le´pineetal. 2011b). What we call a direct bothgeneralresults,whicharevalidinprincipleforotherspiral methodisonethatdoesnotinvolveanycomplexmodelwithun- galaxies,andspecificresults,whichdependontheexactchoice certainparametersandthereforegeneratesrobustresults.Thisis ofparameters.Oneofthemostimportantchoiceswhenweapply notthecaseofn-bodysimulations,orchemicalevolutionmod- amodeltoagalaxyisthatofthepatternspeed,orequivalently, els.Based ontheresultsabove,weadoptRCR = 8.4±0.2kpc; iftherotationcurveisknown,ofthecorotationradius. accordingly,withEq.17,wefindΩp =23kms−1kpc−1. In the last few decades, many papers have pointed to a Inthepresentwork,wehavenotinvestigatedthespiralstruc- corotation radius of the Galaxy situated close to the orbit turebeyondcorotation,ataskleftforfuturework.Aswediscuss of the Sun (Marochniketal. 1972, Creze&Mennessier 1973, inthenextsections,thereisachangeinthenatureofthearmsat Mishurov&Zenina 1999, among others). An additional argu- the4:1resonance.OnlybetweentheILRandthatresonanceare ment is that the classical theory of spiral arms tells us that thearmsexplainedbythecrowdingofstellarorbits. the arms exist between the Inner and Outer Lindblad reso- There are models of the spiral structure that are in conflict nances and that the corotation falls roughly midway between withthecorotationradiusthatweadvocate.Forinstance,model these resonances. The data from the literature collected by oftheinnerGalaxybyDehnen (2000)suggeststhattheradius Scarano&Le´pine (2012) supportsthe theory,showingthat the oftheOuterLindbladResonance(OLR)oftheGalacticbarlies corotationoccursaboutmidway between extremities of the re- inthevicinityoftheSun.Hismodeldoesnotbelongtothecate- gion where the arms are seen. In our Galaxy, the spiral arms goryofdirectmethods,aswedefinedabove,sinceitisasimula- extend from about3 kpc to 13 kpc (e.g., Russeil 2003), which tionandbynature,basedonmanyapproximationsanduncertain wouldsituatethecorotationatabout8kpc.Recently,a fewdi- parameters.Theauthordoesnotclaimthathepresentsaprecise rectmethodsallowedthedecreaseoftheuncertaintyonthecoro- determinationoftheOLRofthebarandsuggeststhatthisradius tation radius to a few hundredparsecs. One exampleis the de- is≈6-9kpc.ArecentreviewofpatternspeedsintheGalaxyis terminationofthepatternspeedbyintegratingtheorbitsofopen given by Gerhard (2011). He recognizesthat the pattern speed 7 T.C.Junqueiraetal.:ThespiralstructureoftheGalaxy Fig.10. Rotation curvesand correspondinginnerorbitsfordifferentstrengthsof the bulge.At the top are the rotationcurvesfor differentvaluesof f (seetext).Fromlefttoright,theparameter f is3.2,2.2,1.2,and0,respectively.Belowaretheorbitsassociated b b witheachrotationcurve.Thebluelineisthebulgecontribution,thegreenlineisthediskcontribution,andtheredlineisthebulge +diskcontribution. of the spiral structure is about 25 km s−1 kpc−1, but favors the concentratedaround24kms−1kpc−1(Scarano&Le´pine2012), ideathatthebarrotatesatahighervelocity.Thereviewdoesnot inotherwords,theyarenotarbitrary. mention the work of Ibata&Gilmore (1995), who determined We wouldliketo callattentiontoan interestingeffect.One therotationspeedofthebulge,whichwasfoundtobethesame can see that the maximum response density starts to be out of thatweadoptforthespiralarms.Inastudyofthemorphology phasewithrespecttothelogarithmicspiralperturbationnearthe of bars in spiral galaxies,Elmegreen&Elmegreen(1985) con- 4:1 resonance. This suggests that the deviation from a perfect cluded that in late-type spirals the bar may extend only to the logarithmicspiralingalaxiescanbeunderstoodnaturally asan ILR.Thisisthehypothesisthatweadopttocompareourmodel effectofthe4:1resonance.Aconsequenceofthisistheappear- with the Galaxy, based on the fact that the solar neighborhood ance of bifurcations. They happen because when the response containsspiralarmsonly. densitystartstobeoutofphasewiththeimposeddensity,partof thematterremainsfollowingtheimposeddensity.Thisresultsin aweakerpieceofarm.Ingalaxieswithastructuresimilartothat 6.2.ThestructurebetweentheILRandthe4:1resonance oftheMilkyWay,theappearanceofbifurcationsispossiblyas- sociatedwiththe4:1resonance,ratherthanwiththecorotation. Many studies of self-consistency have been per- This is not a new result, since it was already discovered from formed (Contopoulos&Grosbøl 1988; Patsisetal. 1991; a theoretical approach, for instance, by Patsisetal. (1994) and Amaral&Lepine 1997; Pichardoetal. 2003; Martosetal. Patsisetal.(1997).Thisisalsoarobustresultbecauseitdoesnot 2004; Antojaetal. 2011). Contopoulos&Grosbøl (1986) dependonthedetailsofagivenrotationcurve.Observationally, already studied the response density and concludedthat strong the workof Elmegreen&Elmegreen(1995) also states thatbi- spiralsdo notexistbeyondthe 4:1innerresonance.Thisresult furcationsstartattheendofthetwoprominentsymmetricarms. wasconfirmedbytheotherworksandalsobythepresentwork. InFig.8weshowthelociiofmaximumresponsedensityofour model.Itcanbeseen thatthereis averygoodself-consistency 6.3.Beyondthe4:1resonance of the shape of the spiral arms in the region inside the 4:1 resonance. This self-consistency is particularly satisfactory in In our model, there is a clear change in the nature of the arms the case of our model, since a potential perturbation with a beyondthe4:1resonance.Therearenomorearmsproducedby Gaussian profile generates a very similar response density and theconcentrationofstellarorbits,butonlydiscreteresonantor- responsepotential.Thefactthattwowell−behavedlogarithmic bits. Howcoulda resonantorbitbehavelike a spiralarm?This spiral arms extend about the 4:1 resonance is a robust result, mayhappenifstarsarecapturedwithinresonances,similarlyto whichwasencounteredbythevariousworksmentionedabove, asteroidsintheSolarsystem,forwhichthetrappingmechanism although they use a variety of axisymmetric potentials and wasdescribedbyGoldreich(1965).Forinstance,intheasteroid perturbation potentials. It also corresponds to an observed belt,the3:2,4:3,and1:1resonanceswithJupiterarepopulated characteristic of spiral arms, since Elmegreen&Elmegreen byclumpsofasteroids.Similarly,thestarscapturedwithinres- (1995) observed that most spiral galaxies have two prominent onances could produce a local increase of density and turn it symmetricarmsintheirinnerregions,insideapproximately0.5 intoakindofarm.Ifthismodeliscorrect,whenappliedtoour R ,whereR wasdefinedbythemastheradiusforwhichthe Galaxy,itwouldpredictthatsomeofthearmsseeninthesolar 25 25 surface brightness is 25 mag arcsec−2. These authors suggest neighborhoodhavetheformofresonantorbits. that the termination of these arms could coincide with corota- Directevidence of an arm with the shape of a 4:1 resonant tion.Thisrobuststructure,with a similaraspectin manyspiral stellarorbitwasfoundbyLe´pineetal.(2011a)usingastracers galaxies,ispossiblytheonethatisabletodeterminethepattern molecular CS sources, Cepheids with a period longer than six speed. That the pattern speeds are found to have a distribution days, and open clusters with ages less than 30 Myr. The map 8 T.C.Junqueiraetal.:ThespiralstructureoftheGalaxy obtained in that paper is reproduced in Fig. 9. Here, the same symbolhas been used forall the kindsof tracers, since we are onlyinterestedinthe generalstructure.Itmustberemembered thatnowadaysonlyintheSolarneighborhoodwecanhaveade- taileddescriptionofthespiralstructure,sinceinterstellarextinc- tiondoesnotallowopenclustersandCepheidstobeobservedat morethanafewkpc. Figure 9 can beseen as a zoomofthe upperpartof Fig. 8, in the region aroundthe Sun. One can observe the presence of a structure with an angle of about 90◦ (labeled “a” and brown inthefigure),whichwasidentifiedbyLe´pineetal.(2011a)with the 4:1resonance.Theargumentwasnotonlythe fitpresented in this figure, but also much more the points observed along a straightportionofabout7kpcin length,inadditiontothe fact thattheresonanceisexactlywhereitispredictedtobe,basedon the knownpatternspeed.Now,we also presenta fit ofan orbit atthe6:1resonancetomanyoftheobservedpoints(curvewith label“b”,inblue).Thisgreatlyresemblesa predictedstructure inFig.8,whichpassesclosetothecornerofthearmatthe4:1 Fig.11.Poincare´ diagramsandtheirrespectivefamilies(x1,x2) resonanceandclosetotheSun,inadditiontopresentinganacute ofperturbedperiodicorbits(seeContopoulos1975,fordetails). cornerinthesecondquadrantoftheGalaxy. InbothcaseswesettheenergyatRc = 2.2kpc,andthepertur- bationparametersare the same asTable 1. The onlydifference Stableperiodicorbitsattractaroundthemquasi-periodicor- is the bulgefraction f ;at thetop we have f = 3.2and below bits,asindicatedbythecontoursoftheislandsinthePoincare´’s b b wehave f =0. surface of section. It seems that in the region of the disk dis- b cussed here, quasi-periodic orbits are trapped around the sta- ble periodic orbits of the 4:1 and 6:1 families, with very small region of the galactic plane but worse in another. So, we also deviations from the periodic orbits themselves. As a result the leavethistaskforfuturework. quasi-periodic orbits could be considered as building a “thick Like the previous works on self-consistent spiral structure, periodic orbit” structure. These arms, which are composed of we did not extend the calculation of stable orbits beyond the similarquasi-periodicorbits,wouldhaveverysmalldispersions corotationradius.We expectto see resonantorbitsas well, but ofvelocities. the comparisonswith real arms will be even more difficult be- Finally,onecanseeinFig.8,justbelowthecornerofthe4:1 causethedistancesandshapesoftheexternalarmsofourGalaxy resonance,anorbitthatcrossesitintwopoints.Thisresembles arepoorlyknown.Whatisknown,fromanobservationalpoint the arm-like structure with label C in Fig. 9. We consider that ofview,isthatthespiralarmsshowstrongdeparturesfromloga- thisobservedstructureisprobablyreal,duetothelargenumber rithmicspiralsintheexternalregionsofgalaxies.Inmostcases, of tracers that fall on it. This suggests an interesting concept. the arms look more like a sequence of straight segments that Sinceresonantorbitscancrosseachother,itisalsopossibleto roughlyfollowaspiralpath(e.g.,Chernin1999). havearm-likestructureswhichcorrespondtothemcrossingeach other. This contrasts with the classical view of spiral arms, in 6.4.Thebulgeandthebar whichnosuchintersectionsexist. Ofcourse,theinterpretationwegiveofsomelocalstructures About50%ofspiralgalaxieshaveabar,eitherstrongorweak, may not seem convincing. One possible argument against it is and there are both kinematic and photometric evidences that that the resonantorbitsdo notseem to be uniformlypopulated the MilkyWay hasa bar(Binney&Tremaine2008, Sect. 6.5). by stars all around them. However, the mechanism of the cap- Shenetal. (2010) arguethat the Galactic bulge is a part of the ture of stars by resonancesdeservesdeeper study to determine diskandsuggestthatthebulge(inreality,aboxypseudobulge) ifsomeregionsoftheorbitsshouldpresentalargerpopulation. oftheMilkyWay isanedge-on,buckledbarthatevolvedfrom The solarneighborhoodis rich in structuresthathave notbeen acold,massivedisk. explainedby any model.One couldarguethat they are not ex- Inthissection,weanalyzetheconnectionbetweenthespher- plainablebecausetheyareduetostochasticevents.Theideathat ical central bulge and the inner stellar orbits. Figure 10 shows weproposehere,thatsomeofthesestructurescorrespondtores- the rotation curves from Eq. 18. The scale lengths for the disk onantorbits,canbeverified,sinceateachpointofsuchanorbit and the bulge are fixed at ǫ−1 = 2 kpc−1 and ǫ−1 = 0.4 kpc−1, d b we have a particular velocity of the stars that are trapped into V = 220 km s−1. The parameter f , defined in Eq. 18 as max b it. However, this is not the scope of the present paper. We did “the bulge fraction”, is equivalent to a measure of the “bulge notmakeanyadjustmentoftheparametersofthemodelinorder strength”, since the disk component is kept constant (only the tofit observedstructures.Parameterslike V (whichaffectsthe bulgeisvaried),oreventoameasureofthebulgedensity,since 0 rotation curve), the exact depth and location of the local mini- its scale size is kept constant. We will refer to it as the bulge mumin the rotationcurve, Ω , andthe width, depth,andpitch strength.Wevaried f from3.2downto0.Beloweachrotation p b angleoftheimposedperturbationcouldallhavebeensubmitted curveinFig.10,weshowthefamilyofperturbedperiodicorbits tominorvariations.Ourexperienceisthatthisisalengthytask, trappedaroundunperturbedperiodicorbitsfrom R = 2upto4 c with minor variations of the structures produced and some re- kpc;seeSect.5.1formoredetails.Foragivenenergy h,which dundancy(differentcombinationscangivesimilarresults).The correspondtoaradiusR ,wemayhavemorethenoneperiodic c comparisonwith the observeddata isdifficultin partdue to its orbit.Thefamilyofperiodicorbitsliesatthecenteroftheisland poorquality.Besides,somefittedmodelsmaylookbetterinone inthePoincare´diagram.Wecallitfamily x ifthecenterofthe 1 9 T.C.Junqueiraetal.:ThespiralstructureoftheGalaxy islandliesatR≤R ,andfamily x ifR≥R ,(seeContopoulos We must add to the list of similarities between our model c 2 c 1975). andtherealGalaxytheagreement,inFig.8,betweentheorien- tationoftheelongatedinnerorbits,wherethespiralarmsseem The parameters for the spiral perturbation are the same as to begin, with respect to the Sun. This is very similar with the giveninTable1.Theorbitsintheinnerregion,almostperpen- observed angle between the Sun and the extremities of the bar diculartothemoreexternalorbits,belonginFig.10,tothefam- (see,e.g.,Le´pineetal.2011a). ilyx ofperiodicorbit.Theyaremoreprominentwherewehave 2 astrongcentralbulge(f =3.2);asthebulgeweakens,thefam- b iliesoforbits x disappear,aswecanseeinFig.11.Inthecase 7. Conclusions 2 where f , 0, we havetwo familiesofstable orbits(x ,x ).In b 1 2 We have presented a new description of the spiral structure of Fig. 10, we plotthe orbits correspondingto families forwhich galaxies,basedontheinterpretationofthearmsasregionswhere wehaveonlysmalldeviationsfromR andthosewitharealistic c thestellarorbitsofsuccessiveradiicomeclosetogether,produc- distribution of velocities. As we can see in Fig. 11 on top, the ing large stellar densities. In other words, the arms are seen as familyx hasalargedeviationfromR withavelocityintheor- derof p1≈−150kms−1generatingavceryeccentricorbit,while groovesinthepotentialenergydistribution.Suchanapproachis thefamirlyx isclosetoR with p ≈20kms−1;thus,weexpect not new (e.g., Contopoulos&Grosbøl 1986; Amaral&Lepine 2 c r 1997). The innovation is that the potential energy perturbation thatitwouldbethefavoritefamilytopopulatethisregion.Itis thatwe haveadoptedisitself likea groovethatfollowsaloga- clearthatstrongbulgesfavorthe x familyin theinnerregions 2 rithmicspiral,withaGaussianprofileinthedirectionperpendic- oftheGalaxy,whilewithoutabulgewehaveonlythefamilyx . 1 ulartothearms.Thisrepresentsanimportantstepinthedirec- Avisualinspectionoftheorbitsassociatedwithdifferentro- tion ofself-consistency,since this potentialperturbationgener- tationcurvesshowselongatedstellarorbitsintheinnerregions ates,bymeansofthestellarorbits,spiralarmswithasimilarpro- ofthedisk forrotationcurveswiththe presenceofa peaknear file.Inpreviousclassicalmodels,thepotentialperturbationwas thecenter,suggestingtheformationofabarwithahalf-size∼3 representedby a sine function(ora sum of two sine functions, kpc.Thismodelshowstheexistenceofacorrelationbetweenthe if four arms are presented) in the azimuthal direction, but the formationof a barand the magnitudeof the centralbulge.The responsepotentialresembledthegroove-likeoneofthepresent peakintherotationcurvebecomesvisiblewhen f isrelatively work, so that the self-consistency was poorer. One of the clas- b large(3.2or2.2).Astrongbulgegeneratesaprominentvelocity sicalmodels(Pichardoetal.2003)doesnotuseasinefunction peak in the rotation curve and modifies the inner stellar orbits. forthe imposedpotential,butits complexitydoesnotallow an Inotherwords,thestrengthofthebulgehasaninfluenceonthe easycheckofself-consistency. existenceofabar.Thisbarappearsasaconsequenceofthesame Anew parameterappearsin ourdescription,allowingusto potentialperturbationthatweintroducedforthespiralarms,so controlthewidthof thearms.We founda relationbetweenthe thatthebarandthespiralarmshavethesamerotationvelocity. density contrastbetweenthe arm andinter-arm region,and the Thetypeofbarthatwearediscussingherecorrespondstowhat perturbationamplitude,undertheassumptionofanexponential isunderstoodasaweakbar.Inprinciple,thiswouldseemtobe disk. morecompatiblewiththemodelofspiralarmspresentedinthis We confirm the conclusion of previous works that the 4:1 work,inwhichnoeffectofabaristakenintoaccountinthelarge inner resonanceis a fundamentalstructure of the disk and that “spiral” regionthat we described.A baris weak if it generates similar strong arms do not appear beyond this resonance. This onlyasmallfractionofthetotalgravitationalfieldaroundit.In resultissupportedbyobservations,since itis knownthatmost suchsystems,thestellarorbitscanbedescribedbytheepicyclic spiralgalaxieshavetwosymmetricprominentarmsintheirinner theoryplus a weak drivingforce due to the periodic motionof regions(Elmegreen&Elmegreen1995). the bar. In our Galaxy, the mass associated with the spherical ThemodelisappliedtoourGalaxy,usingadescriptionofthe bulgeismuchlargerthanthatassociatedtothebar,asdeduced axisymmetricpotentialsimilartothatderivedfromtheobserved frominfraredluminosity(e.g.,Le´pine&Leroy(2000)).Onecan rotationcurve,alongwiththeknownpatternrotationspeed and evenexpectthatatadistanceoftheorderof1kpcfromthecen- pitchangle.The rangeof valuesforthe perturbationamplitude ter,outsidethebulgebutunderitsstronginfluence,thepotential compatiblewithobservationalevidencesofthecontrastdensity is Keplerian,with a dominantmass atthe center.In such a po- is 400−800 km2 s−2 kpc−1. Using a density contrast of about tential, the orbits are elliptic, with the center of the Galaxy at 20%,anacceptedaveragevalue,the perturbationamplitude ζ , 0 one focus of the ellipse, like the orbits of comets in the solar is equalto 600 km2 s−2 kpc−1. It is foundthatthe orbitsin the system.Inepicycletheory,theseare1:1orbits.Twofamiliesof regionbetweenthe4:1resonanceandcorotationdonotreinforce suchorbitsalignedalongastraightline,oneoneachsideofthe spiralarmslikeintheinnerregions,butonlyfeaturessimilarin bulge,wouldbeinpartresponsibleforthebar.Thealignmentof shapewiththeperiodicorbitsexistinginthisregion.Ifthemodel suchelongated,one-sidedorbitswiththeinnerextremityofthe can validly explain the spiral arms in the solar neighborhood, spiralarmswouldoccurnaturally,sincestarstravelslowlywhen thenthedynamicsinthatregionisdeterminedbythemotionof theyareattheapogalacticpartsoftheirorbitsandthisfacilitates starsinquasi-periodicorbits. synchronization.Of course, we are not presenting here a com- Interestingly,anumberofobservedstructuresareverysim- pletemodelofaweakbar,butonlyarguingthattheexistenceof ilar to the predicted resonant orbits. The similarities of the aweakbarinourGalaxyshouldnotberejected.Ifweconsider model with the Galaxy include the orientation of the bar, the thattheoriginofthespiralstructureisrelatedtotheinteraction size and orientation of the 4:1 resonance orbits as revealed by withanexternalgalaxy,itismorelogicaltothinkthatthebaris Le´pineetal.(2011a),andpossiblyaresonantorbitwithoutward inducedbythe spiralstructure,andnotvice versa.Aninterest- peaksor“corners”and invertedcurvaturebetweenthe corners, ingpossibilityisthatsincetheonlyimposedperturbationhereis situatedclosetotheSun. thatofthe spiralarms,ourresults supportthe ideathata pseu- The idea that the spiral structure can be self-consistent (a dobulge could have evolved from a perturbed disk (Shenetal. certain perturbing potential gives rise to stellar orbits that re- 2010). producethisperturbation)pointstowardsalong-livedstructure. 10