ebook img

A New Measurement of eta_b(1S) From Upsilon(3S) Radiative Decay at CLEO PDF

0.37 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A New Measurement of eta_b(1S) From Upsilon(3S) Radiative Decay at CLEO

h ¡ A New Measurement of (1S) From (3S) Radiative Decay b at CLEO Sean Dobbs (for the CLEO Collaboration) NorthwesternUniversity,Evanston,IL60208,USA 0 1 0 Abstract. UsingCLEOdata,wereportontheconfirmationoftheh b(1S0)groundstateofbottomoniumintheradiativedecay 2 ¡ (3S)→gh b.WedetermineitsmasstobeM(h b)=9391.8±6.6±2.1MeV,whichcorrespondstothehyperfinesplitting D Mhf(1S)=68.5±6.6±2.0MeV,andthebranchingfractionB(¡ (3S)→gh b)=(7.1±1.8±1.1)×10−4.Theseresults n agreewiththosepreviouslyreportedbyBaBar. a J Keywords: BottomoniumSpectroscopy,Upsilons,Quarkonia PACS: 14.40.Pq,12.38.Qk,13.25.Gv 3 1 INTRODUCTION ] x e Bottomonium ((cid:12)bb¯(cid:11)) is the preferred system for the study of the qq¯ interaction. Theoretical calculations for bot- - (cid:12) p tomoniumaregenerallymorereliablethanforotherqq¯systemsduetothesmallrelativisticcorrections(v/c≈0.1). e However,muchaboutthespectrumofbottomoniumstatesremainsunknown.Althoughpotentialmodelspredict∼26 h bottomoniumstatestoliebelowtheBBthreshold(asillustratedinFig.1),only10ofthemhadbeenidentifiedsince [ thediscoveryofbottomoniumin1977[1]until2008.Mostimportantly,thegroundstateh b(11S0),hadnotbeeniden- 1 tified,despitemanysearchesbyCUSB[2]andCLEO[3]atCESR,andALPEH[4]andDELPHI[5]atLEP,among v others. 8 ThissituationchangedinJuly2008,whentheBaBarCollaborationannouncedthediscoveryofh (1S)intheirdata b 3 for109million¡ (3S)[6, 7] in theradiativedecay¡ (3S)→gh (1S),witha significanceof>10s ,asillustratedin 2 b 2 Fig.2.WenotethatthesmallpeakatEg ≈920MeVduetotheradiativetransitiontoh b(1S)isnotvisibleuntilthe . large smooth backgroundis subtracted. BaBar’s success is due not simply due to their large data set, more than an 1 orderofmagnitudelargerthanpreviouslycollectedatCLEO,butalsodueafactor3greaterbackgroundsuppression 0 bytheuseofacutonthe“thrustangle”.Thethrustangleisdefinedastheanglebetweenthesignaltransitionphoton 0 1 candidateandthethrustaxisoftherestoftheevent[8]. v: BaBar’sdiscoveryofh b isexcitingandlikeallsuchclaims,needstobeconfirmedbyanindependentexperiment. WereportonsuchameasurementatCLEO. i X r a ANALYSISOF CLEO DATA At CLEO we have an 18 times smaller data set than BaBar (5.9Mcomparedto 109M),so severalimprovementsin analysis procedure were needed in order to identify the h signal. The three main improvementswere: performing b a detailed study of the background parameterization; obtaining accurate parameterizations of the photon peak line shapes;andusingthepowerofthe thrustangleto separatesignalandbackgroundto performa jointanalysisof the fulldatainthreebinsofthethrustangle. InFig.2,weshowtheinclusiveenergyspectraforisolatedelectromagneticshowersinCLEO¡ (3S)and¡ (2S)data, aftercontributionsfromp 0→gg havebeenrejected.Threefeaturesareimmediatelyvisiblefromthesespectra.One, thespectraaredominatedbyalarger,smoothlyvaryingbackgroundfromotherbottomoniumdecaysanddecaysfrom e+e− →g ∗ →lighter hadrons. Two, the visible peaks come from the unresolved transitions c (2P,1P)→g ¡ (1S), bJ J=0,1,2.Lastly,thepeaksfrome+e−→gISR¡ (1S)and¡ (3S,2S)→gh b(1S)(withEg(h b)≈600MeVfor¡ (2S) andEg(h b)≈920MeVfor¡ (3S))areexpectedtobemorethananorderofmagnitudeweakerthanthe c bJ(2P,1P) peaks,andtheyresideonthehighenergytailsofc (2P,1P). bJ FIGURE1. Spectrumof thebound bottomonium (bb¯)states. TheM1 transitionsfromthe¡ (n3S1) statestotheh b(11S0) are indicatedbyredarrowsforthetransitionsreportedinthispaper. ·· 110033 05 GeV )05 GeV ) 550000 (a) 5 GeV) 5 GeV) 110088000000000000 (b) Entries / ( 0.0Entries / ( 0.0 234234000000000000 Entries/ (0.00Entries/ (0.00246246000000000000000000 110000 00 --22000000 00 00..55 00..66 00..77 00..88 00..99 11 11..11 00..55 00..66 00..77 00..88 00..99 11 11..11 EEgg ((GGeeVV)) EEgg ((GGeeVV)) FIGURE2. BaBarresultsfortheobservationofh [6].(Left)Theobservedinclusivephotonspctrum.(Right)Thebackground b subtractedphotonspectrum.Thepeaks,fromlefttoright,arefromc bJ,¡ (1S)ISR,andh b. PhotonLineShapes:Photonlineshapesincrystalcalorimeters,likethoseusedbyCLEO,aregenerallyparame- terizedintermsoftheCrystalBallfunction.ThisfunctioncombinesaGaussian(widths ),withalow-energypower lawtail(parametersa andn).Knowingtheshapeofthelowenergytailisespeciallyimportantforthec peaks,since bJ theyareimportantin determingtheshapeof thebackgroundatthe energyof thesmallh signal.These parameters b must be determined by fitting a background-freephoton peak. In our analysis we use two independentmethods. In one method, we use the observed shape of photons from a given energy from radiative Bhabha events, and in the otherweusetheshapeofphotonsfromtheexcusivedecaysc (2P,1P)→g ¡ (1S), ¡ (1S)→l+l−.Bothmethodsgive b1 consistentresults,andoncetheparametersaredetermined,theyarefixedinsubsequentanalyses. ISR Peak:All the parametersof the ISR photonpeakfrom¡ (nS)→g ¡ (1S)were fixed. Theyield of the ISR ISR peakwasestimatedbyextrapolatingtheobservedyieldinCLEOdatatakenat¡ (4S),andwasthenfixedtothisvalue. Background:We find that fitting the smooth backgroundis the most crucialcomponentin determingthe results for the weak h peak. We made severalhundredbackgroundfits to the data in each of three binsof |cosq |, using b T exponentialpolynomialsof various orders (2,3,4), in various energy regions(500–1340MeV), and with linear and logarithmicbinningofthedata.Wefoundthatmanyofthesefitthedataacceptably,andtookasourfinalresultsthe averageofEg(h b),B(¡ (nS)→gh b),andsignificanceforallthegoodfits(CL>10%).Ther.m.s.variationofthese fitswasthentakenasameasureofthesystematicuncertaintyintheresultsfromthissource,±1MeVinEg,±10%in B(h ),and±0.4s insignificance. b · 103 ·103 V V 0 Me400 U (3S) DATA 0 Me500 U (2S) DATA unts/1330500 U (2Sfi) c bJ(1P) unts/1400 c bJ(1P) o o C250 C 300 200 150 c (2P) 200 bJ 100 100 50 0 400 600 800 1000 1200 0 400 600 800 1000 1200 Inclusive E(g ) (MeV) Inclusive E(g ) (MeV) FIGURE3. CLEOinclusivephotonspectrafor(left)¡ (3S)decay,and(right)¡ (2S),illustratingthebroadfeaturesdescribedin thetext. FIGURE4. (Left)Thrustangle|cosq T|distributionfor¡ (3S)dataintheexpectedh bsignalregion,andtheexpecteddistribution fortheh signalfromMCsimulations.(Right)Inclusivephotonspectraforthedatainthethreethrustangleregions,illustrating b theirdifferentsignal/backgroundratios. JointAnalysisinThreeBinsof|cosq |:AsFig.4(left)shows,thedistributionofthrustangle(|cosq |)forthe T T background-dominateddata is strongly peaked in the forward direction, but for the transition photon to the h , the b distributionis expectedto be uniform.Thishappensbecausethe transition photonis uncorrelatedwith the particles produced by the decay of the h , whereas the background photons tend to be correlated with the other particles b producedintheunderlyingevent.Wethereforedefinethreedifferentregionsof|cosq |:regionI(|cosq |=0−0.3), T T regionII(|cosq |=0.3−0.7),andregionIII(|cosq |=0.7−1.0)).Fig.4(right)illustratesthedifferentlevelsof T T signalandbackgroundinthethreeregions. Unlike BaBar, we do notreject eventsin the |cosq |>0.7 region.Instead, we simultaneouslyfit the spectra for T each of the three regions, which lets each region contribute to the total result weighted by its individual signal-to- background. We call this method the “joint fit”. We have analyzed our data by the joint fit method, and also with |cosq |<0.7,forcomparisonwithBaBar’smethod.Wefindthatthejointfitmethodenhancesthesignificanceofthe T h identificationby∼1s . b JOINTFITRESULTS We show a representative fit for the three bins of thrust angle in Fig. 5. The results of the fit are: N(h ) = b 2311±546counts,Eg(h b)=918.6±6.0(stat)MeV,whichcorrespondstothehyperfinesplittingof68.5±6.6MeV, B(¡ (3S)→gh )=(7.1±1.8(stat))×10−4,andsignificance4.1s . b AlthoughwefixG (h )=10MeV,becausethewidthofh isunknownwefindthatthebranchingfractiondepends b b ontheassumedh widthlinearlyasB(¡ (3S)→gh )×104=5.8+0.13(G (h )inMeV).Ourresultsaredominated b b b FIGURE5. Backgroundsubtractedspectraandrepresentativefitresultfor¡ (3S)→gh b(1S).Theh b(1S)peakisclearlyvisible in|cosq T|regionIandII. FIGURE6. Backgroundsubtractedspectraandrepresentativefitresultfor¡ (2S)→gh b(1S).Thedashedlinecorrespondstothe 90%CLupperlimitgiveninthetext.Theh b(1S)isnotseeninanyofthethreeregionsof|cosq T|. TABLE1. Systematicuncertaintiesinmeasurementof¡ (3S)→gh b photonenergyandbranchingfractions. Uncertaintyin Source EEEggg (MeV) B(((¡¡¡ (((333SSS)))→→→ggghhh bbb))) Background(fn,range,binning) ±1.0 ±10% PhotonEnergyCalibration ±1.2 — PhotonEnergyResolution ±0.3 ±2% CBandc bJ(2P)Parameters ±0.7 ±8% ISRYield ±0.4 ±3% PhotonReconstruction — ±2% N(¡ (3S)) — ±2% MCEfficiency — ±7% Total ±1.8 ±15% TABLE 2. Summary of h b resultsfrom CLEOand BaBar for hyperfine splitting D Mhf(1S)bb¯ and branchingratio,andcomparisonwiththeoreticalpredictions. D Mhf(1S)bb¯,(MeV) B(¡ (nS)→gh b)×104 significance ¡ (3S)→gh b (CLEO)[9] 68.5±6.6±2.0 7.1±1.8±1.1 4s (BaBar)[6] 71.4+3.1±2.7 4.8±0.5±0.6 ≥10s −2.3 ¡ (2S)→gh b (CLEO)[9] — <8.4(90%CL) — (BaBar)[7] 66.1+4.9±2.0 3.9±1.1+1.1 3.0s −4.8 −0.9 Lattice(UKQCD+HPQCD)[10] 61±14 (TWQCD)[11] 70±5 (Ehrman)[12] 37±8 pQCD(various) 35−100 0.05−25(¡ (3S)) 0.05−15(¡ (2S)) bytheirstatisticaluncertainties;thesystematicuncertaintiesweredeterminedconservativelyandaregiveninTable1. Wefurthernotethatalthoughwequoteanuncertaintyinphotonenergycalibrationof±1.2MeV,theenergiesofthe ISRpeakandthec (2P)centroidagreewiththeirexpectedenergieswithin±0.3MeV. bJ The analysis method described for ¡ (3S) was also used for our ¡ (2S) data. Because the background near the expected¡ (2S)→gh b(1S)signal(Eg ≈610MeV)isapproximately6timeshigherthanthecorresponding¡ (3S)(see Fig.3)transition,noevidencefortheexcitationofh wasobservedinany|cosq | bin,asillustratedin Fig.6.The b T jointanalysisledtoanupperlimitofB(¡ (2S)→gh )<8.4×10−4,at90%confidencelevel. b We summarize our results and compare them to BaBar’s results in Table 2. Both results are in agreement. In Table2wealsolistthetheoreticalpredictionsforhyperfinesplittingandbranchingratio.Thevariouspotentialmodel predictionsvaryoverawiderange.Latticecalculationsforthehyperfinesplittingarealsogiven[10,11,12],which generallyagreewiththeexperimentalresults. REFERENCES 1. S.W.Herbetal.,Phys.Rev.Lett.39,252(1977). 2. P.Franzinietal.,(CUSBCollaboration),Phys.Rev.D35,2883(1987). 3. M.Artusoetal.(CLEOCollaboration),Phys.Rev.Lett.94,032001(2005). 4. A.Heisteretal.(ALEPHCollaboration),Phys.Lett.B530,56(2002). 5. J.Abdallahetal.(DELPHICollaboration),Phys.Lett.B634,340(2006). 6. B.Aubertetal.(BABARCollaboration),Phys.Rev.Lett.101,071801(2008). 7. B.Aubertetal.(BABARCollaboration),Phys.Rev.Lett.103,161801(2009). 8. S.Brandtetal.,Phys.Lett.12,57(1964);E.Farhi,Phys.Rev.Lett.39,1587(1977). 9. G.Bonvicinietal.(CLEOCollaboration),submittedtoPhys.Rev.Let.[arXiv:0909.5474]. 10. A.Grayetal.,(HPQCDandUKQCDCollaborations),Phys.Rev.D72,094507(2005). 11. T.BurchandC.Ehmann,Nucl.Phys.A797,33(2007). 12. T.W.Chiu,T.H.Hsieh,C.H.HuangandK.Ogawa(TWQCDCollaboration),Phys.Lett.651,171(2007).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.