ebook img

A New Foundation for Finitary Corecursion PDF

0.32 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A New Foundation for Finitary Corecursion

A New Foundation for Finitary Corecursion The Locally FiniteFixpointand itsProperties StefanMilius1,⋆,DirkPattinson2,andThorstenWißmann1,⋆ 1 Friedrich-Alexander-Universita¨tErlangen-Nu¨rnberg 2 TheAustralianNationalUniversity Abstract. This paper contributes to a theory of the behaviour of “finite-state” systemsthatisgenericinthesystemtype.Weproposethatsuchsystemsaremod- eledascoalgebraswithafinitelygeneratedcarrierforanendofunctoronalocally finitelypresentablecategory.Theirbehaviourgivesrisetoanewfixpointofthe coalgebraictypefunctorcalledlocallyfinitefixpoint(LFF).Weprovethatifthe givenendofunctorpreservesmonomorphismsthentheLFFalwaysexistsandisa subcoalgebraofthefinalcoalgebra(unliketherationalfixpointpreviouslystudied byAda´mek,MiliusandVelebil).Moreover,weshowthattheLFFischaracterized by two universal properties: 1. as the final locally finitely generated coalgebra, and2.astheinitialfg-iterativealgebra.AsinstancesoftheLFFwefirstobtainthe knowninstancesoftherationalfixpoint,e.g.regularlanguages,rationalstreams andformalpower-series,regulartreesetc.Andweobtainanumberofnewexam- ples,e.g.(realtimedeterministicresp.non-deterministic)context-freelanguages, constructivelyS-algebraicformalpower-series(andanyotherinstanceofthegen- eralizedpowersetconstructionbySilva,Bonchi,Bonsangue,andRutten)andthe monadofCourcelle’salgebraictrees. 1 Introduction Coalgebrascapturemanytypesofstatebasedsystemwithinauniformandmathemati- callyrichframework[39].Oneoutstandingfeatureofthegeneraltheoryisfinalseman- ticswhichgivesafullyabstractaccountofsystembehaviour.Forexample,coalgebraic modellingofdeterministicautomata(withoutafinitenessrestrictiononstatesets)yields the set of all formallanguagesas a final model,and restricting to finite automataone preciselyobtainstheregularlanguages[38].Thiscorrespondencehasbeengeneralized tolocallyfinitelypresentablecategories[8,20],wherefinitelypresentableobjectsplay the role of finite sets, leading to the notion of rational fixpoint that provides final se- manticstoallmodelswithfinitelypresentablecarrier[31].Itisknownthattherational fixpointisfullyabstract(identifiesallbehaviourallyequivalentstates)aslongasfinitely presentableobjectsagreewithfinitelygeneratedobjectsinthebasecategory[12,Propo- sition3.12].Whilethisisthecaseinsomecategories(e.g.sets, posets,graphs,vector spaces, commutative monoids), it is currently unknown in other base categories that are used in the construction of system models, for example in idempotent semirings (usedinthetreatmentofcontext-freegrammars[43]),inalgebrasforthestackmonad ⋆SupportedbyDeutscheForschungsgemeinschaft(DFG)underprojectMI717/5-1 2 S.Milius,D.PattinsonandT.Wißmann (usedformodellingconfigurationsofstackmachines[23]);oritevenfails,forexample in the category of finitary monads on sets (used in the categorical study of algebraic trees[7]),orEilenberg-Moorecategoriesforamonadingeneral(thetargetcategoryof generalizeddeterminization[41],inwhichtheaboveexampleslive).Coalgebrasovera categoryofEilenberg-MoorealgebrasoverSetinparticularprovideaparadigmaticset- ting:automatathatdescribelanguagesbeyondtheregularlanguagesconsistofafinite state set, buttheirtransitionsproducesideeffectssuchasthemanipulationof astack. Thesecanbedescribedbyamonad,sothatthe(infinite)setofsystemstates(machine states plusstackcontent)isdescribedbya freealgebra(forthatmonad)thatisgener- atedbythefinitesetofmachinestates.Thisisformalizedbythegeneralizedpowerset construction[41]andinteractsnicelywiththecoalgebraicframeworkwepresent. Technically,the shortcomingof the rationalfixpointis due to the fact thatfinitely presentableobjectsarenotclosedunderquotients,sothattherationalfixpointitselfmay failtobeasubcoalgebraofthefinalcoalgebraandsoidentifiestoolittlebehaviour.The mainconceptualcontributionofthispaperistheinsightthatalsoincaseswherefinitely presentableandfinitelygenerateddonotagree,thelocallyfinitefixpointprovidesafully abstract model of finitely generated behaviour. We give a construction of the locally finite fixpoint, and support our claim both by general results and concrete examples: we show that under mild assumptions, the locally finite fixpointalways exists, and is indeed a subcoalgebraof the finalcoalgebra.Moreover,we give a characterizationof thelocallyfinitefixpointastheinitialiterativealgebra.Wetheninstantiateourresults toseveralscenariosstudiedintheliterature. First, we show that the locally finite fixpoint is universal (and fully abstract) for theclassofsystemsproducedbythegeneralizedpowersetconstructionoverSet:every determinizedfinite-state system inducesa uniquehomomorphismto the locally finite fixpoint,andthelattercontainspreciselythefinite-statebehaviours. Appliedtothecoalgebraictreatmentofcontext-freelanguages,weshowthatthelo- callyfinitefixpointyieldspreciselythecontext-freelanguages,andreal-timedetermin- istic context-freelanguages,respectively,when modelled using algebrasfor the stack monad of [23]. For context-free languages weighted in a semiring S, or equivalently for constructively S-algebraic power series [36], the locally finite fixpoint comprises preciselythose,byphrasingtheresultsofWinteretal.[44]intermsofthegeneralized powersetconstruction.Ourlastexampleshowstheapplicabilityofourresultsbeyond categories of Eilenberg-Moore algebras over Set, and we characterize the monad of Courcelle’s algebraic trees over a signature [16, 7] as the locally finite fixpointof an associatedfunctor(onacategoryofmonads),solvinganopenproblemof[7]. Theworkpresentedhereisbasedonthethirdauthor’smasterthesisin[45].Most proofsareomitted;theycanbefoundintheappendix. 2 Preliminaries andNotation Locallyfinitelypresentablecategories.A filteredcolimit isthecolimitofadiagram D → C where D is filtered (everyfinite subdiagramhas a coconein D) anddirected if D is additionally a poset. Finitary functors preserve filtered (equivalently directed) colimits. Objects C ∈ C are finitely presentable (fp) if the hom-functorC(C,−) pre- TheLocallyFiniteFixpointanditsProperties 3 serves filtered (equivalently directed) colimits, and finitely generated (fg) if C(C,−) preservesdirectedcolimitsofmonos(i.e.colimitsofdirecteddiagramswhereallcon- nectingmorphismsaremonic).Clearlyanyfpobjectisfg,butnotviceversa.Also,fg objectsareclosedunderstrongepis(quotients)whichfailsforfpobjectsingeneral.A cocomplete category is locally finitely presentable (lfp) if the full subcategory C of fp finitelypresentableobjectsisessentiallysmall,i.e.isuptoisomorphismonlyaset,and every object C ∈ C is a filtered colimit of a diagram in C . We refer to [20, 8] for fp furtherdetails. Itis wellknownthatthe categoriesofsets, posets andgraphsare lfp with finitely presentableobjectspreciselythefinitesets,posets,graphs,respectively.Thecategoryof vectorspacesislfpwithfinite-dimensionalspacesbeingfp.Everyfinitaryvarietyislfp (i.e.anequationalclassofalgebrasinducedbyfinite-arityoperationsorequivalentlythe Eilenberg-MoorecategoryforafinitarySet-Monad,seeSection4.1later).Thefinitely generatedobjectsarethefinitelygeneratedalgebras,andfinitelypresentableobjectsare algebrasspecifiedbyfinitelymanygeneratorsandrelations.Thisincludesthecategories ofgroups,monoids,(idempotent)semirings,semi-modules,etc.Everylfpcategoryhas mono/strongepifactorization[8,Proposition1.16],i.e.everyf factorsasf =m·ewith mmono(denotedby֌),estrongepi(denotedby։),andwecallthedomainIm(f) ofetheimageoff.Anystrongepiehasthediagonalfill-inproperty,i.e.m·g =h·e withmmonoandestrongepigivesauniquedsuchthatm·d=handg =d·e. Coalgebras. If H : C → C is an endofunctor, H-coalgebras are pairs (C,c) with c : C → HC, and C is the carrier of (C,c). Homomorphismsf : (C,c) → (D,d) are maps f : C → D such that Hf · c = d · f. This gives a category denoted by CoalgH. If its final object exists then this final H-coalgebra (νH,τ) represents a canonical domain of behaviours of H-typed systems, and induces for each (C,c) a unique homomorphism,denoted by c†, giving semantics to the system (C,c). The fi- nal coalgebra always exists provided C is lfp and H is finitary. The forgetfulfunctor CoalgH →Ccreatescolimitsandreflectsmonosandepis.Amorphismf inCoalgH is mono-carried(resp.epi-carried)iftheunderlyingmorphisminC ismonic(resp.epic). Strong epi/mono factorizations lift from C to CoalgH whenever H preserves monos yieldingepi-carried/mono-carriedfactorizations.Adirectedunionofcoalgebrasisthe colimit of a directed diagram in CoalgH where all connecting morphisms are mono- carried. The Rational Fixpoint. For C lfp and H : C → C finitary let Coalg H denote the fp full subcategoryof CoalgH of coalgebraswith fp carrier, and Coalg H the full sub- lfp categoryof CoalgH of coalgebrasthatarise as filtered colimits of coalgebraswith fp carrier[31,CorollaryIII.13].ThecoalgebrasinCoalg H arecalledlfpcoalgebrasand lfp forC =Setthosearepreciselythelocallyfinitecoalgebras(i.e.thosecoalgebraswhere everyelementiscontainedinafinitesubcoalgebra).Thefinallfpcoalgebraexistsand isthecolimitoftheinclusionCoalg H ֒→ CoalgH,anditisafixpointofH (see[6]) fp calledtherationalfixpointofH.Herearesomeexamples:therationalfixpointofapoly- nomialsetfunctorassociatedtoafinitarysignatureΣ isthesetofrationalΣ-trees[6], i.e. finite and infinite Σ-treeshaving,up to isomorphism,finitely manysubtreesonly, andoneobtainsrationalweightedlanguagesforNoetheriansemiringsS fora functor onthecategoryofS-modules[12],andrationalλ-treesforafunctoronthecategoryof 4 S.Milius,D.PattinsonandT.Wißmann presheavesonfinitesets[2]orforarelatedfunctoronnominalsets[34].Iftheclasses of fp and fg objects coincide in C, then the rational fixpoint is a subcoalgebra of the finalcoalgebra[12,Theorem3.12].Thisisthecase intheaboveexamples,butnotin general,see[12,Example3.15]foraconcreteexamplewheretherationalfixpointdoes not identifybehaviourallyequivalentstates. Conversely,even if the classes differ,the rationalfixpointcanbeasubcoalgebra,e.g.foranyconstantfunctor. Iterative Algebras. If H : C → C is an endofunctor,an H-algebra (A,a : HA → A) is iterative if every flat equation morphism e : X → HX + A where X is an fp object has a unique solution, i.e. if there exists a unique e† : X → A such that e† = [a,id ]·(He†+id )·e.Therationalfixpointisalsocharacterizedastheinitial A A iterative algebra [6] and is the starting point of the coalgebraic approach to Elgot’s iterativetheories[18]andtotheiterationtheoriesofBloomandE´sik[11,6,3,4]. 3 The LocallyFiniteFixpoint Thelocallyfinitefixpointcanbecharacterizedsimilarlytotherationalfixpoint,butwith respecttocoalgebraswithfinitelygenerated(notfinitelypresentable)carrier.Weshow thatthelocallyfinitefixpointalwaysexists,andisasubcoalgebraofthefinalcoalgebra, i.e. identifies all behaviourally equivalent states. As a consequence, the locally finite fixpointprovidesafullyabstractnotionoffinitelygeneratedbehaviour.Fromnowon, werelyonthefollowing: Assumption3.1. ThroughouttherestofthepaperweassumethatC isanlfpcategory andthatH :C →C isfinitaryandpreservesmonomorphisms. As forthe rationalfixpoint,we denotethefullsubcategoryofCoalgH comprisingall coalgebraswith finitely generatedcarrier by Coalg H and have the followingnotion fg oflocallyfinitelygeneratedcoalgebra. x Definition3.2. AcoalgebraX −→ HX iscalled locallyfinitelygenerated(lfg)iffor all f : S → X with S finitely generated, there exist a coalgebra p : P → HP in Coalg H,acoalgebramorphismh:(P,p)→(X,x)andsomef′ :S →P suchthat fg h·f′ =f.Coalg H ⊆CoalgH denotesthefullsubcategoryoflfgcoalgebras. lfg Equivalently, one can characterize lfg coalgebras in terms of subobjects and subcoal- gebras, making it a generalization of of local finiteness in Set, i.e. the property of a coalgebrathateveryelementiscontainedinafinitesubcoalgebra. x f Lemma3.3. X −→HX isanlfgcoalgebraiffforallfgsubobjectsS X,thereexist asubcoalgebrah:(P,p)֌(X,x)andamonof′ :S ֌P withh·f′ =f,i.e.S is asubobjectofP. Proof. (⇒) Given some mono f : S ֌ X, factor the induced h into some strong epi-carriedandmono-carriedhomomorphismsandusethatfgobjectsareclosedunder strongepis.(⇐)Factorf :S →X intoanepiandamonog :Im(f)֌X andusethe diagonalfill-inpropertyforg. ⊓⊔ TheLocallyFiniteFixpointanditsProperties 5 Evidentlyall coalgebraswith finitely generatedcarriersare lfg. Moreover,lfg coalge- brasarepreciselythefilteredcolimitsofcoalgebrasfromCoalg H. fg Proposition3.4. EveryfilteredcolimitofcoalgebrasfromCoalg H islfg. fg Proof (Sketch;forthefullproofseetheappendix).Onefirstprovesthatdirectedunions ofcoalgebrasfromCoalg H arelfg.Nowgivenafilteredcolimitc : X → C where fg i i X arecoalgebrasinCoalg H,oneepi-monofactorizeseverycolimitinjection:c = i fg i ( Xi ei Ti mi C ).UsingthediagonalizationofthefactorizationoneseesthattheTi formadirecteddiagramofsubobjectsofC.FurthermoreC isthedirectedunionofthe T andthereforeanlfgcoalgebraasdesired. ⊓⊔ i Proposition3.5. Everylfgcoalgebra(X,x)isadirectedcolimitofitssubcoalgebras fromCoalg H. fg Proof. Recallfrom[8,ProofIofTheorem1.70]thatX isthecolimitofthediagramof allitsfinitelygeneratedsubobjects.Nowthesubdiagramgivenbyallsubcoalgebrasof X iscofinal.Indeed,thisfollowsdirectlyfromthefactthat(X,x)isanlfgcoalgebra: for every subobject S ֌ X, S fg, we have a subcoalgebra of (X,x) in Coalg H fg containingS. ⊓⊔ Corollary3.6. The lfg coalgebras are precisely the filtered colimits, or equivalently directedunions,ofcoalgebraswithfgcarrier. Asaconsequence,acoalgebraisfinalinCoalg F ifthereisauniquemorphismfrom lfg everycoalgebrawithfinitelygeneratedcarrier. Proposition3.7. AnlfgcoalgebraLisfinalinCoalg H iffforeveryforeverycoalge- lfg braX inCoalg H thereexistsauniquecoalgebramorphismfromX toL. fg The proof is analogousto [31, Theorem 3.14];the full argumentcan be found in the Appendix.CocompletenessofC ensuresthatthefinallfgcoalgebraalwaysexists. Theorem3.8. ThecategoryCoalg H hasafinalobject,andthefinallfgcoalgebrais lfg thecolimitoftheinclusionCoalg H ֒→Coalg H. fg lfg Proof. By Corollary3.6, the colimit of the inclusion Coalg H ֒→ Coalg H is the fg lfg sameasthecolimitoftheentireCoalg H.Andthelatterisclearlythefinalobjectof lfg Coalg H. ⊓⊔ lfg Thistheoremprovidesaconstructionofthefinallfgcoalgebracollectingpreciselythe behavioursofthe coalgebraswithfgcarriers.Inthefollowingweshallshowthatthis constructiondoesindeedidentifypreciselybehaviourallyequivalentstates,i.e.thefinal lfg coalgebra is always a subcoalgebra of the final coalgebra. Just like fg objects are closed under quotients – in contrast to fp objects – we have a similar property of lfg coalgebras: Lemma3.9. Lfgcoalgebrasareclosedunderstrongquotients,i.e.foreverystrongepi carriedcoalgebrahomomorphismsX ։Y,ifX islfgthensoisY. 6 S.Milius,D.PattinsonandT.Wißmann The failure of this property for lfp coalgebras is the reason why the rational fixpoint is not necessarily a subcoalgebra of the final coalgebra and in particular the rational fixpointin[12,Example3.15]isanlfpcoalgebraforwhichthepropertyfails. Theorem3.10. ThefinallfgH-coalgebraisasubcoalgebraofthefinalH-coalgebra. Proof. Let(L,ℓ)be the finallfg coalgebra.Considerthe uniquecoalgebramorphism L→νH andtakeitsfactorization: id (L,ℓ) e (I,i) m (νH,τ) , withestrongepiinC. i† By Lemma3.9, I is an lfg coalgebra and so by finality of L we have the coalgebra morphismi†suchthatid =i†·e.Itfollowsthateismonicandthereforeaniso. ⊓⊔ L In other words, the final lfg H-coalgebra collects precisely the finitely generated be- haviours from the final H-coalgebra. We now show that the final lfg coalgebra is a fixpointofH whichhingesonthefollowing: c Hc Lemma3.11. ForanylfgcoalgebraC −→HC,thecoalgebraHC −−→HHC islfg. Proof. Consider f : S → HC with S finitely generated. As C is lfp we know that HC is the colimit of its fg subobjects, and so f : S → HC factors through some subobject in : Q ֌ HC with Q fg and f = in · f′. On the other hand, (C,c) q q is lfg, i.e. the directed union of its subcoalgebras from Coalg H. Then, since H is fg c finitaryandmono-preserving,HC −→HHCisalsoadirectedunionandthemorphism Hp in : Q → HC factors through some HP −−→ HHP with (P,p) ∈ Coalg H via q fg in :(P,p)֌(C,c),i.e.Hin ·q =in .Finally,wecanconstructacoalgebrawithfg p p q carrier [q,p] Hinr Q+P −−−→HP −−−→H(Q+P) andacoalgebrahomomorphismHin ·[q,p]:Q+P →HC.Inthediagram p f Hc S HC HHC Hinp HHinp f′ inq HP Hp HHP H(Hinp·[q,p]) q [q,p] H[q,p] inl [q,p] Hinr Q Q+P HP H(Q+P) everyparttriviallycommutes,soHin ·[q,p]isthedesiredhomomorphism. ⊓⊔ p SowithaproofinvirtuetoLambek’sLemma[28,Lemma2.2],weobtainthedesired fixpoint: Theorem3.12. ThecarrierofthefinallfgH-coalgebraisafixpointofH. We denote the above fixpoint by (ϑH,ℓ) and call it the locally finite fixpoint (LFF) of H. In particular,the LFF always exists under Assumption3.1, providinga finitary corecursionprinciple. TheLocallyFiniteFixpointanditsProperties 7 3.1 IterativeAlgebras Recall from [6, 31] that the rational fixpoint of a functor H has a universal property bothasacoalgebraandasanalgebraforH.Thissituationiscompletelyanalogousfor the LFF. We already established its universalpropertyas a coalgebrain Theorem3.8. NowweturntostudytheLFFasanalgebraforH. Definition3.13. AnequationmorphismeinanobjectAisamorphismX →HX+A, whereX isafinitelygeneratedobject.IfAisthecarrierofanalgebraα : HA → A, we callthe C-morphisme† : X → Aasolutionofe if[α,id ]·He† +id ·e = e†. A A An H-algebra A is called fg-iterative if every equation morphism in A has a unique solution. Example3.14 (see [30, Example 2.5 (iii)]). The final H-coalgebra (considered as an algebraforH)isfg-iterative.Infact,inthisalgebraevenmorphismsX →HX+νH whereX isnotnecessarilyanfgobjecthaveauniquesolution. Definition3.15. For fg-iterative algebrasA andC, an equationmorphism e : X → HX +A anda morphism h : A → C of C defineanequationmorphism h•e in C as X e HX +AHX+hHX+C. Wesaythathpreservesthesolutione† of eifh·e† = (h•e)†.Themorphismhiscalledsolutionpreservingifitpreservesthe solutionofanyequationmorphisme. Similarlyto[6],thealgebrahomomorphismsarepreciselythesolutionpreservingmor- phismsbetweeniterativealgebras,theproofisalsoverysimilar. Proposition3.16. Thelocallyfinitefixpointisfg-iterative. Proof (Sketch).Onecantransforme:X →HX+ϑHintoanlfgcoalgebraonX+ϑH. Then one shows that there is a one-to-one correspondence between homomorphisms intoϑH andsolutionsofeinthealgebraℓ−1 :H(ϑH)→ϑH bydiagramchasing. ⊓⊔ Theorem3.17. For an fg-iterative algebra α : HA → A and an lfg coalgebra e : X →HX thereisauniqueC-morphismu :X →Asuchthatu =α·Hu ·e. e e e Corollary3.18. Thelocallyfinitefixpointistheinitialfg-iterativealgebra. 3.2 RelationtotheRationalFixpoint Thereareexamples,wheretherationalfixpointisnotasubcoalgebraofthefinalcoal- gebra.Incategories,wherefpandfgobjectscoincide,therationalfixpointandtheLFF coincideaswell(cf.therespectivecolimit-constructioninSection2andTheorem3.8). Inthissectionwewillsee,underslightlystrongerassumptions,thatfg-carriedcoalge- brasarequotientsoffp-carriedcoalgebras,andinparticularthelocallyfinitefixpointis aquotientoftherationalfixpoint:namelyitsimageinthefinalcoalgebra. 8 S.Milius,D.PattinsonandT.Wißmann Assumption3.19. In additiontoAssumption3.1, assume thatin the basecategoryC, everyfinitelypresentableobjectisastrongquotientofafinitelypresentablestrongepi projectiveobjectandthattheendofunctorH alsopreservesstrongepis. Theconditionthateveryfgobjectisthestrongquotientofastrongepiprojectiveoften isphrasedashavingenoughstrongepiprojectives[14].Thisassumptionisapparently verystrongbutstillismetinmanysituations: Example3.20. – Incategoriesinwhichall(strong)episaresplit,everyobjectispro- jectiveandanyendofunctorpreservesepis,e.g.inSetorVec . K – InthecategoryoffinitaryendofunctorsFun(Set),allpolynomialfunctorsarepro- f jective.ThefinitelypresentablefunctorsarequotientsofpolynomialfunctorsH , Σ whereΣ isafinitesignature. – IntheEilenberg-MoorecategorySetT forafinitarymonadT,strongepisaresur- jectiveT-algebrahomomorphisms,andthuspreservedbyanyendofunctor.InSetT, everyfreealgebraTX isprojective;thisiseasytoseeusingtheprojectivityofX in Set. Every finitely generated object of SetT is a strong quotient of some free algebraTX withX finite.Formoreprecisedefinitions,seeSection4.1later. Proposition3.21. Every coalgebra in Coalg H is a strong quotient of a coalgebra fg withfinitelypresentablecarrier. Theorem3.22. ϑH istheimageoftherationalfixpoint̺H inthefinalcoalgebra. Proof. Consider the factorization (̺H,r) ։e (B,b) ֌m (νH,τ). Since ̺H is the colimit of all fp carried H-coalgebras it is an lfg coalgebra by Proposition3.4 us- ing that fp objects are also fg. Hence, by Lemma3.9 the coalgebra B is lfg, too. By Proposition3.7itnowsufficestoshowthatfromevery(X,x)∈Coalg H thereexists fg auniquecoalgebramorphisminto(B,b).Given(X,x)inCoalg H,itisthequotient fg q : (P,p) ։ (X,x) of an fp-carried coalgebra by Proposition3.21. Hence, we ob- tainauniquecoalgebramorphismp† : (P,p) → (̺H,r). ByfinalityofνH,wehave m·e·p† =x†·q(withx† :(X,x)→(νH,τ)).Sothediagonalfill-inpropertyinduces ahomomorphism(X,x)→(B,b),beingtheonlyhomomorphism(X,x)→(B,b)by thefinalityofνH andbecausemismonic. ⊓⊔ 4 Instances ofthe LocallyFiniteFixpoint We will now present a numberof instances of the LFF. First note, that all the known instances of the rational fixpoint(see e.g. [6, 31, 12] are also instances of the locally finitefixpoint,becauseinallthosecasesthefpandfgobjectscoincide.Forexample,the classofregularlanguagesistherationalfixpointof2×(−)ΣonSet.Inthissection,we willstudyfurtherinstancesoftheLFFthataremostlikelynotinstancesoftherational fixpointandwhich–to thebestofourknowledge–havenotbeencharacterizedbya universalpropertyyet: 1. Behavioursoffinite-statemachineswithside-effectsasconsideredbythegeneral- izedpowersetconstruction(cf.Section4.1),particularlythefollowing. TheLocallyFiniteFixpointanditsProperties 9 (a) Deterministicandordinarycontext-freelanguagesobtainedasthebehaviours ofdeterministicandnon-deterministicstack-machines,respectively. (b) ConstructivelyS-algebraicformalpowerseries,i.e.the“context-free”subclass ofweightedlanguageswithweightsfromasemiringS,yieldedfromweighted context-freegrammars. 2. ThemonadofCourcelle’salgebraictrees. 4.1 GeneralizedPowersetConstruction Thedeterminizationofanon-deterministicautomatonusingthepowersetconstruction is an instance of a more general framework, described by Silva, Bonchi, Bonsangue, and Rutten [41] based on an observation by Bartels [10] (see also Jacobs [26]). In that generalized powerset construction, an automaton with side-effects is turned into anordinaryautomatonbyinternalizingtheside-effectsinthestates.TheLFFinteracts wellwith thisconstruction,becauseitpreciselycapturesthebehavioursoffinite-state automatawithsideeffects.Thenotionofside-effectisformalizedbyamonad,which inducesthecategory,inwhichtheLFFisconsidered. In the following we assume that readers are familiar with monads and Eilenberg- Moorealgebras(seee.g.[29]foran introduction).Fora monadT onC wedenoteby CT thecategoryofEilenberg-Moorealgebras.Recallfrom[8,Corollary2.75]thatifC is lfp(in most of ourexamplesC is Set) andT is finitary thenCT is lfp, too,and for everyfpobjectX thefreeEilenberg-MoorealgebraTXisfpinCT.Inalltheexamples we consider below, the classes of fp and fg objects either provablydiffer or it is still unknownwhethertheseclassescoincide. Example4.1. InSections4.4and4.5wearegoingtomakeuseofMoggi’sexception monad transformer(see e.g. [15]). Let us recall that for a fixed object E, the finitary functor (−)+E togetherwith the unit η = inl : X → X +E and multiplication X µ =id +[id ,id ]: X +E+E →X +E formafinitarymonad,theexception X X E E monad. Its algebras are E-pointed objects, i.e. objects X, together with a morphism E → X,andhomomorphismsaremorphismspreservingthepointing.Sotheinduced Eilenberg-MoorecategoryisjusttheslicecategoryC(−)+E ∼=E/C. Now,givenanymonadT weobtainanewmonadT(−+E)withobviousunitand multiplication. An Eilenberg-Moore algebra for T(−+ E) consists of an Eilenberg- MoorealgebraforT andanE-pointing,andhomomorphismsareT-algebrahomomor- phismspreservingthepointing[25]. Now an automaton with side-effects is modelled as an HT-coalgebra, where T is a finitarymonadonCprovidingthetypeofside-effect.Forexample,forHX =2×XΣ, where Σ is an input alphabet, 2 = {0,1} and T the finite powerset monad on Set, HT-coalgebras are non-deterministic automata. However, the coalgebraic semantics using the final HT-coalgebra does not yield the usual language semantics of non- deterministicautomata.To obtainthisoneconsidersthefinalcoalgebraofa liftingof H toCT.DenotebyU :CT →C thecanonicalforgetfulfunctor. Definition4.2. ForafunctorH : C → C andamonadT : C → C,aliftingofH isa functorHT :CT →CT suchthatH ·U =U ·HT. If such a (not necessarily unique) lifting exists, the generalized powerset construc- tion transforms an HT-coalgebra into a HT-coalgebra on CT: For a coalgebra x : 10 S.Milius,D.PattinsonandT.Wißmann X → HTX, HTX carries an Eilenberg-Moore algebra, and one uses freeness of theEilenberg-MoorealgebraTX toobtainacanonicalT-algebrahomomorphismx♯ : (TX,µT) → HT(TX,µT). The coalgebraic language semantics of (X,x) is then givenbyX −η−X→ TX−x−♯→† νHT, i.e.bycomposingtheuniquecoalgebramorphismin- ducedbyx♯ withη .ThisconstructionyieldsafunctorT′ :Coalg(HT)→CoalgHT X mapping coalgebras X −→x HTX to x♯ and homomorphisms f to Tf (see e.g. [12, ProofofLemma3.27]foraproof). NowouraimistoshowthattheLFFofHT characterizespreciselythecoalgebraic languagesemanticsofallfp-carriedHT-coalgebras.As therightadjointU preserves monosandisfaithful,weknowthatHT preservesmonos,andasT isfinitary,filtered colimitsinCT arecreatedbytheforgetfulfunctortoC,andwethereforeseethatHT is finitary.Thus,byTheorem3.8,ϑHT existsandisasubcoalgebraofνHT.By[37]and [10,Corollary3.4.19],weknowthatνHT iscarriedbyνH equippedwithacanonical algebrastructure. Nowlet usturnto the desiredcharacterizationofϑHT. Formally,the coalgebraic languagesemanticsofallfp-carriedHT-coalgebrasiscollectedbyformingthecolimit k : K → HK ofthediagramCoalg HT −T→′ CoalgHT −U→ CoalgH.Thiscoalgebra fg K is not yet a subcoalgebra of νH (for C = Set that means, not all behaviourally equivalentstatesareidentifiedinK),buttakingitsimageinνH weobtaintheLFF: Proposition4.3. Theimage(I,i)oftheuniquecoalgebramorphismk† : K → νHT ispreciselythelocallyfinitefixpointoftheliftingHT. Onecanalsodirectlytaketheunionofalldesiredbehaviours,forC =Set: Theorem4.4. The locally finite fixpointof the lifting HT comprises precisely the im- agesofdeterminizedHT-coalgebras: ϑHT = x♯†[TX]= x♯†·ηT[X]⊆νHT. (1) X x:X→HTX x:X→HTX X[finite X[finite Thisresultsuggeststhatthelocallyfinitefixpointistherightobjecttoconsiderinorder torepresentfinitebehaviour.Wenowinstantiatethegeneraltheorywithexamplesfrom theliteraturetocharacterizeseveralwell-knownnotionsasLFF. 4.2 TheLanguagesofNon-deterministicAutomata Let us start with a simple standard example.We alreadymentioned that non-determi- nisticautomataarecoalgebrasforthefunctorX 7→2×P(X)Σ.HencetheyareHT- f coalgebrasforH =2×(−)Σ andT =P thefinitepowersetmonadonSet.Theabove f generalizedpowersetconstructiontheninstantiatesastheusualpowersetconstruction thatassignstoagivennon-deterministicautomatonitsdeterminization. Now note that the final coalgebra for H is carried by the set L = P(Σ∗) of all formallanguagesoverΣwiththecoalgebrastructuregivenbyo:L→2witho(L)=1 iffLcontainstheemptywordandt : L → LΣ witht(L)(s) = {w | sw ∈ L}theleft languagederivative.ThefunctorH hasacanonicalliftingHT ontheEilenberg-Moore categoryofP,viz.thecategoryofjoinsemi-lattices.ThefinalcoalgebraνHT iscarried f by all formallanguageswith the join semi-lattice structure given by union and ∅ and

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.