ebook img

A new estimate for the constants of an inequality due to Hardy and Littlewood PDF

0.11 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A new estimate for the constants of an inequality due to Hardy and Littlewood

A NEW ESTIMATE FOR THE CONSTANTS OF AN INEQUALITY DUE TO HARDY AND LITTLEWOOD ANTONIOGOMESNUNES Abstract. Inthispaperweprovideafamilyofinequalities,extendingarecentresultdueto Albuquerqueet al. 7 1 0 2 1. Introduction b The Hardy–Littlewoodinequalities [12] for m–linear forms and polynomials(see [2, 3, 4, 5, 9, e 15, 17]) are perfect extensions of the Bohnenblust–Hille inequality [6] when the sequence space F c is replaced by the sequence space ℓ . These inequalities assert that for any integer m 2 2 th0ere exist constants CK ,DK 1 supch that ≥ m,p m,p ≥ ] mp+2mp−p2m A ∞ 2mp K F (1.1)  |T(ej1,··· ,ejm)|mp+p−2m ≤Cm,pkTk, . j1,··X·,jm=1 h when 2m p , and  t ≤ ≤∞ a p−m m p ∞ p K [  |T(ej1,··· ,ejm)|p−m ≤Dm,pkTk, 2 j1,··X·,jm=1 v whenm<p 2m,forallcontinuousm–linearformsT:ℓp ℓp K(here,andhenceforth, 0 K=R or C).≤Both exponents are optimal, i.e., cannot be s×m·a·l·l×er wi→thout paying the price of a 5 dependence on n arising on the respective constants. Following usual convention in the field, c 0 9 is understood as the substitute of ℓ when the exponent p goes to infinity. 1 ∞ The investigation of the optimal constants of the Hardy–Littlewood inequalities is closely 0 . related to the fashionable, mysterious and puzzling investigation of the optimal Bohnenblust– 1 Hille inequality constants (see, for instance [15] and the references therein). 0 In this note we extend the following result of [1, Theorem 3]: 7 1 Theorem 1 (Albuquerque et al.). Let m 2 be a positive integer and m<p 2m 2. Then, v: for all continuous m-linear forms T :ℓ ≥ ℓ K, we have ≤ − p p i ×···× → X p−m p−(m−1) p p r n n p p ·p−m (m−1)(p−m+1) a   |T (ej1,...,ejm)|p−(m−1)  ≤2 p kTk. jXi=1 jbXi=1       Moreprecisely,usingadifferenttechniquewefindafamilyofinequalitiesextendingtheabove result. Our resultreadsasfollows,where A is the optimalconstantofthe Khinchininequality λ0 (defined in Section 2): Key words and phrases. Optimalconstants, Hardy–Littlewoodinequality. PartiallysupportedbyCapes. MSC2010: 46G25. 1 2 ANTONIOGOMESNUNES Theorem 2. If λ [1,2] and 0 ∈ 2λ (m 1) 0 λ m<p − , 0 ≤ 2 λ 0 − then 1 n n s1η1 η1 T (e ,...,e )s A−2(ms−1) T   | j1 jm |   ≤ λ0 k k jXi=1 jXbi=1   for     λ p 0 η = , 1 p λ m 0 − λ p 0 s = , p λ m+λ 0 0 − all m-linear forms T :ℓn ℓn K, and all positive integers n. p ×···× p → Our main technique is based on an original argument developed in [1], with some slight technical changes. 2. The proof of Theorem 2 Letm 2beapositiveinteger,F beaBanachspace,A I := 1,...,m ,p ,...,p ,s,α m 1 m ≥ ⊂ { } ≥ 1 and 1 1α α n n s BA,s,α,F,n :=infC(n) : T (e ,...,e ) s C(n), for all i A, p1,...,pm  jXi=1jbXi=1k j1 jm k   ≤ ∈        in which ji means that the sum runs over all indexes but ji, and the infimum is taken over all norm-onem-linearoperatorsT :ℓn ℓn F. We beginbyrecallingthefollowinglemma p1×···× pm → proved inb[1]: Lemma 1. Let 1 p <q , k =1,...,m and λ ,s 1. If k k 0 ≤ ≤∞ ≥ 1 m m 1 − 1 1 1 1 − 1 1 (2.1) < and s =:η 2 p − q λ ≥λ − p − q  j=1(cid:18) j j(cid:19) 0 0 j=1 (cid:18) j j(cid:19) X X then   Bp{1m,.}..,,sp,mη1,F,n ≤BqI1m,.,.s.,,λqm0,F,n, where 1 m − 1 1 1 η := 1 λ − p − q  0 j=1(cid:18) j j(cid:19) X   WealsoneedtorecalltheKhinchininequality: forany0<q < ,therearepositiveconstants ∞ A , B such that regardless of the positive integer n and of the scalar sequence (a )n we have q q j j=1 1 q 1 1 n 2 n q n 2 A a 2 a r (t) dt B a 2 , q | j|  ≤ (cid:12) j j (cid:12)  ≤ q | j|  j=1 Z[0,1](cid:12)j=1 (cid:12) j=1 X (cid:12)X (cid:12) X    (cid:12) (cid:12)    where rj are the classical Rademacher fun(cid:12)ctions (ran(cid:12)dom variables). (cid:12) (cid:12) The best constants A are the following ones (see [11]): q HARDY–LITTLEWOOD CONSTANTS 3 1 Γ 1+q q A =√2 2 if q >q =1.85; • q (cid:0)√π (cid:1)! 0 ∼ 1 1 Aq =22−q if q <q0, • whereq (1,2)istheonlyrealnumbersuchthatΓ p0+1 = √π. Forcomplexscalars,using 0 ∈ 2 2 Steinhaus variables instead of Rademacher functions it is well known that a similar inequality (cid:0) (cid:1) holds, but with better constants. In this case the optimal constant is 1 q+2 q A =Γ if q [1,2]. q • 2 ∈ (cid:18) (cid:19) The notation of the constants A above will be used in all this paper. The following result is q a variantof [1], andis basedonthe ContractionPrinciple (see [8, Theorem12.2]). Fromnow on r (t) are the Rademacher functions. i Lemma 2. Regardless of the choice of the positive integers m,N and the scalars a , i1,...,im i ,...,i =1,...,N, 1 m t 1/t N max a r (t ) r (t )a dt dt ikk==11,,......,,mN| i1,...,im|≤Z[0,1]m(cid:12)(cid:12)(cid:12)i1,..X.,im=1 i1 1 ··· im m i1,...,im(cid:12)(cid:12)(cid:12) 1··· m  (cid:12) (cid:12)  for all t 1. (cid:12) (cid:12) ≥ (cid:12) (cid:12) Proof. The proof is an adaptation of an argument used in [1]. Essentially, we have to use the Contraction Principle inductively. The case m = 1 is nothing else than the standard version of Contraction Principle (see [8, Theorem 12.2]). For all positive integers i ,...,i , 1 m t 1/t N r (t ) r (t )a dt dt  (cid:12) i1 1 ··· im m i1,...,im(cid:12) 1··· m Z[0,1]m(cid:12)(cid:12)i1,..X.,im=1 (cid:12)(cid:12)  (cid:12)(cid:12)(cid:12) 1 N N (cid:12)(cid:12)(cid:12)  t 1t t 1/t =Z[0,1]m−1Z0 (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)iX1=1ri1(t1)i2,..X.,im=1ri2(t2)t···rim(tm)ai11,/..t.,im(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) dt1  dt2···dtm N r (t ) r (t )a dt dt ≥Z[0,1]m−1(cid:12)(cid:12)(cid:12)i2,..X.,im=1 i2 2 ··· im m i1,...,im(cid:12)(cid:12)(cid:12) 2··· m a , (cid:12) (cid:12)  ≥| i1,...,im| (cid:12)(cid:12) (cid:12)(cid:12) where we used the Contraction Principle and the induction hypothesis on the first and second inequalities, respectively. This concludes the proof of the lemma. (cid:3) Now we are able to complete the proof. Let S :ℓn ℓn K be an m-linear form and consider ∞×···× ∞ → 1 m 1 − 1 − 1 1 s= 2 λ − p − q  ≥ 0 j=1 (cid:18) j j(cid:19) X   and λ [1,2]. 0 ∈ 4 ANTONIOGOMESNUNES Since s 2, from Lemma 2, Ho¨lder’s inequality and Khinchin’s inequality for multiple sums ≥ ([16]), choosing θ =2/s we obtain 1 n n s1λ0 λ0 S(e ,...,e )s   | j1 jm |   jX1=1 jbX1=1       1 1 θ λ0 λ0 n n 2 1 θ ≤  |S(ej1,...,ejm)|2  mbax|S(ej1,...,ejm)| −   jX1=1 jbX1=1  (cid:18) j1 (cid:19)     1   ≤ n Aλ−0(m−1)Rn s2 Rn1−2s λ0λ0 jX1=1(cid:18)(cid:16) (cid:17) (cid:19)   λ0 1/λ0 n n −2(m−1) =A s r (t ) r (t )S(e ,...,e ) dt dt λ0 jX1=1Z[0,1]m−1(cid:12)(cid:12)(cid:12)(cid:12)jXb1=1 j2 2 ··· jm m j1 jm (cid:12)(cid:12)(cid:12)(cid:12) 2··· m  n (cid:12)(cid:12) n n (cid:12)(cid:12) λ0  1/λ0 −2(m−1) =A s S e , r (t )e ,..., r (t )e dt dt λ0 Z[0,1]m−1jX1=1n(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)  j1 jX2=1nj2 2 j2 jXm=1njm m jm(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) λ02·1·/·λ0m −2(m−1) A s sup S e , r (t )e ,..., r (t )e ≤ λ0  (cid:12)  j1 j2 2 j2 jm m jm(cid:12)  −2(m−1) t2,...,tm∈[0,1]jX1=1(cid:12)(cid:12)(cid:12)(cid:12)  jX2=1 jXm=1 (cid:12)(cid:12)(cid:12)(cid:12)  A s S , (cid:12) (cid:12) ≤ λ0 k k where 1 λ0 λ0 n R := r (t ) r (t )S(e ,...,e ) dt dt . n Z[0,1]m−1(cid:12)(cid:12)(cid:12)(cid:12)jbX1=1 j2 2 ··· jm m j1 jm (cid:12)(cid:12)(cid:12)(cid:12) 2··· m Repeating the same procedu(cid:12)re for the other indexes we have (cid:12)  (cid:12) (cid:12) 1 n n 1sλ0 λ0 S(e ,...,e )s A−2(ms−1) S   | j1 jm |   ≤ λ0 k k jXi=1 jbXi=1       for all i=1,...,m. Hence, from Lemma 1, we conclude that 1 n n 1sη1 η1 T (e ,...,e )s A−2(ms−1) T   | j1 jm |   ≤ λ0 k k jXi=1 jXbi=1   for all m-linear forms T :ℓn ℓn K and all positive integers n, where p ×···× p → 1 m − 1 1 1 η := . 1 λ − p − q  0 j=1(cid:18) j j(cid:19) X   HARDY–LITTLEWOOD CONSTANTS 5 We thus conclude that if 1 m 1 −1 s= − 2 λ − p ≥ (cid:20) 0 (cid:21) and λ [1,2] 0 ∈ with p>λ m 0 and λ p 0 η = , 1 p λ m 0 − then 1 n n 1sη1 η1 T(e ,...,e )s A−2(ms−1) T   | j1 jm |   ≤ λ0 k k jXi=1 jbXi=1   for all m-linear forms T :ℓn ℓn K and all positive integers n. In other words, if p ×···× p → λ [1,2] 0 ∈ with 2λ (m 1) 0 λ m<p − 0 ≤ 2 λ 0 − and λ p 0 η = , 1 p λ m 0 − λ p 0 s = , p λ m+λ 0 0 − then 1 n n s1η1 η1 T(e ,...,e )s A−2(ms−1) T   | j1 jm |   ≤ λ0 k k jXi=1 jbXi=1   for all m-linear forms T :ℓn ℓn K and all positive integers n. p ×···× p → Remark 1. If λ =1 then we get 0 1 n n 1sη1 η1 T(e ,...,e )s A−2(ms−1) T   | j1 jm |   ≤ 1 k k jXi=1 jbXi=1       with m<p 2m 2 and ≤ − p s = , p m+1 − p η = 1 p m − and we recover [1, Theorem 3]. 6 ANTONIOGOMESNUNES References [1] N. Albuquerque, G. Arau´jo, M. Maia, T. Nogueira, D. Pellegrino, J. Santos, Optimal Hardy–Littlewood inequalitiesuniformlybounded byauniversalconstant, arXiv:1609.03081 [2] G.Arau´jo,D.Pellegrino,LowerboundsfortheconstantsoftheHardy-Littlewoodinequalities.LinearAlgebra Appl.463(2014), 10–15. [3] G. Arau´jo, D. Pellegrino, D. D. P. Silva e Silva, On the upper bounds for the constants of the Hardy– Littlewoodinequality.J.Funct. Anal.267(6)(2014), 1878-1888. [4] G. Arau´jo, D. Pellegrino, Lower bounds for the complex polynomial Hardy-Littlewood inequality. Linear AlgebraAppl.474(2015), 184–191. [5] G. Arau´jo, D. Pellegrino, Optimal Hardy-Littlewood type inequalities form-linear formson ℓp spaces with 1≤p≤m.Arch.Math.(Basel)105(2015), no.3,285–295. [6] H. F. Bohnenblust, E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. 32 (1931), 600-622. [7] W. Cavalcante and D. Nu´n˜ez-Alarco´n, Remarks on an inequality of Hardy and Littlewood, to appear in Quaest.Math.(2016). [8] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge University Press, Cambridge, 1995. [9] V. Dimant, P. Sevilla–Peris, Summation of coefficients of polynomials on ℓp spaces, Publ. Mat. 60 (2016), no.2,289–310. [10] D.J.H.Garling,Inequalites: AJourneyintoLinearAnalysis,CambridgeUniversityPress. [11] U.Haagerup,Thebestconstants intheKhinchineinequality,StudiaMath.70(1982) 231–283. [12] G.Hardy,J.E.Littlewood, Bilinearformsboundedinspace[p,q],Quart.J.Math.5(1934), 241-254. [13] D. Pellegrino, The optimal constants of the mixed (ℓ1,ℓ2)-Littlewood inequality. J. Number Theory 160 (2016), 11–18. [14] D. Pellegrino, J. Santos, D. Serrano-Rodr´ıguez, E.V. Teixeira, Regularity principle in sequence spaces and applications,arXiv:1608.03423[math.CA]. [15] D.Pellegrino,E.V.Teixeira,Towards sharpBohnenblust–Hilleconstants, arXiv:1604.07595v2, toappear in Comm.Contemp.Math. [16] D.Popa,MultipleRademacher meansandtheirapplications.J.Math.Anal.Appl.386(2)(2012), 699-708. [17] T.Praciano-Pereira,Onboundedmultilinearformsonaclassofℓpspaces.J.Math.Anal.Appl.81(2)(1981), 561-568. (A.G.Nunes)Departmentof Mathematics-CCEN, UFERSA, Mossoro´, RN,Brazil. E-mail address: [email protected] and [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.