A new class of generalized Bernoulli polynomials and Euler polynomials N. I. Mahmudov Eastern Mediterranean University Gazimagusa, TRNC, Mersiin 10, Turkey 2 1 Email: [email protected] 0 2 February 1, 2012 n a J Abstract 1 3 The main purpose of this paper is to introduce and investigate a new class of generalized Bernoulli polynomialsandEulerpolynomialsbasedontheq-integers. Theq-analoguesofwell-knownformulasare ] derived. The q-analogue of the Srivastava–Pint´er addition theorem is obtained. We give new identities A involvingq-Bernstein polynomials. C . h 1 Introduction t a m Throughoutthispaper,wealwaysmakeuseofthe followingnotation: Ndenotesthesetofnaturalnumbers, [ N denotes the set of nonnegative integers, R denotes the set of real numbers, C denotes the set of complex 0 numbers. 1 v The q-shifted factorial is defined by 3 3 n−1 ∞ 6 (a;q) =1, (a;q) = 1−qja , n∈N, (a;q) = 1−qja , |q|<1, a∈C. 0 n ∞ 6 j=0 j=0 . Y(cid:0) (cid:1) Y(cid:0) (cid:1) 1 0 The q-numbers and q-numbers factorial is defined by 2 1 [a] = 1−qa (q 6=1); [0] !=1; [n] !=[1] [2] ...[n] n∈N, a∈C : q 1−q q q q q q v i X respectively. The q-polynomial coefficient is defined by r a n (q;q) = n . k (q;q) (q;q) (cid:20) (cid:21)q n−k k The q-analogue of the function (x+y)n is defined by n (x+y)nq := nk q12k(k−1)xn−kyk, n∈N0. k=0(cid:20) (cid:21)q X The q-binomial formula is known as n−1 n (1−a)n =(a;q) = 1−qja = n q21k(k−1)(−1)kak. q n k j=0 k=0(cid:20) (cid:21)q Y(cid:0) (cid:1) X 1 In the standard approach to the q-calculus two exponential functions are used: ∞ zn ∞ 1 1 e (z)= = , 0<|q|<1, |z|< , q [n] ! (1−(1−q)qkz) |1−q| n=0 q k=0 X Y ∞ q21n(n−1)zn ∞ E (z)= = 1+(1−q)qkz , 0<|q|<1, z ∈C. q [n] ! n=0 q k=0 X Y(cid:0) (cid:1) From this form we easily see that e (z)E (−z)=1. Moreover, q q D e (z)=e (z), D E (z)=E (qz), q q q q q q where D is defined by q f(qz)−f(z) D f(z):= , 0<|q|<1, 06=z ∈C. q qz−z The above q-standard notation can be found in [1]. Over 70 years ago, Carlitz extended the classical Bernoulli and Euler numbes and polynomials and introduced the q-Bernoulli and the q-Euler numbers and polynomials (see [2], [3] and [4] ). There are numerous recent investigations on this subject by, among many other authors, Cenki et al. ([12], [13], [14]), Choi et al. ([15] and [16]), Kim et al. ([17]-[24]), Ozden and Simsek [25], Ryoo et al. [28], Simsek ([29], [30] and [31]), and Luo and Srivastava [11], Srivastava et al. [32]. Wefirstgiveherethedefinitionsoftheq-Bernoulliandtheq-Eulerpolynomialsofhigherorderasfollows. Definition 1 Let q,α∈ C, 0 <|q| < 1. The q-Bernoulli numbers B(α) and polynomials B(α)(x,y) in x,y n,q n,q of order α are defined by means of the generating function functions: t α ∞ tn = B(α) , |t|<2π, e (t)−1 n,q[n] ! (cid:18) q (cid:19) n=0 q X t α ∞ tn e (tx)E (ty)= B(α)(x,y) , |t|<2π. e (t)−1 q q n,q [n] ! (cid:18) q (cid:19) n=0 q X Definition 2 Let q,α ∈ C, 0 < |q| < 1. The q-Euler numbers E(α) and polynomials E(α)(x,y) in x,y of n,q n,q order α are defined by means of the generating functions: 2 α ∞ tn = E(α) , |t|<π, e (t)+1 n,q[n] ! (cid:18) q (cid:19) n=0 q X 2 α ∞ tn e (tx)E (ty)= E(α)(x,y) , |t|<π. e (t)+1 q q n,q [n] ! (cid:18) q (cid:19) n=0 q X It is obvious that B(α) =B(α)(0,0), lim B(α)(x,y)=B(α)(x+y), lim B(α) =B(α), n,q n,q q→1− n,q n q→1− n,q n E(α) =E(α)(0,0), lim E(α)(x,y)=E(α)(x+y), lim E(α) =E(α), n,q n,q q→1− n,q n q→1− n,q n lim B(α)(x,0)=B(α)(x), lim B(α)(0,y)=B(α)(y), q→1− n,q n q→1− n,q n lim E(α)(x,0)=E(α)(x), lim E(α)(0,y)=E(α)(y). q→1− n,q n q→1− n,q n 2 HereB(α)(x)andE(α)(x)denotetheclassicalBernoulliandEulerpolynomialsoforderαwhicharedefined n n by t α ∞ tn 2 α ∞ tn etx = B(α)(x) and etx = E(α)(x) . et−1 n [n] ! et+1 n [n] ! (cid:18) (cid:19) n=0 q (cid:18) (cid:19) n=0 q X X InfactDefinitions1and2definetwodifferenttypeB(α)(x,0)andB(α)(0,y)oftheq-Bernoullipolynomials n,q n,q andtwodifferenttypeE(α)(x,0)andE(α)(0,y)oftheq-Eulerpolynomials. BothpolynomialsB(α)(x,0)and n,q n,q n,q B(α)(0,y) (E(α)(x,0) and E(α)(0,y)) coincide with the classical highe order Bernoulli polynomilas (Euler n,q n,q n,q polynomilas) in the limiting case q →1−. For the q-Bernoulli numbers B , the q-Euler numbers E of order n, we have n,q n,q B =B (0,0)=B(1) (0,0), E =E (0,0)=E(1) (0,0), n,q n,q n,q n,q n,q n,q respectively. Note that the q-Bernoulli numbers B are defined and studied in [26]. n,q The aim of the present paper is to obtain some results for the above defined q-Bernoulli and q-Euler polynomials. In this paper the q-analogues of well-known results, for example, Srivastava and Pint´er [10], Cheon [5], etc., will be given. Also the formulas involving the q-Stirling numbers of the second kind, q- Bernoulli polynomials and Phillips q-Bernstein polynomials are derived. 2 Preliminaries and Lemmas In this section we shall provide some basic formulas for the q-Bernoulli and q-Euler polynomials in order to obtain the main results of this paper in the next section. The following result is q-analogue of the addition theorem for the classical Bernoulli and Euler polynomials. Lemma 3 (Addition Theorems) For all x,y ∈C we have n n n n B(α)(x,y)= B(α)(x+y)n−k, E(α)(x,y)= E(α)(x+y)n−k, n,q k k,q q n,q k k,q q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X n n n n B(α)(x,y)= q(n−k)(n−k−1)/2B(α)(x,0)yn−k = B(α)(0,y)xn−k, (1) n,q k k,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X n n n n E(α)(x,y)= q(n−k)(n−k−1)/2E(α)(x,0)yn−k = E(α)(0,y)xn−k. (2) n,q k k,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X In particular, setting x = 0 and y = 0 in (1) and (2), we get the following formulas for q-Bernoulli and q-Euler polynomials, respectively. n n n n B(α)(x,0)= B(α)xn−k, B(α)(0,y)= q(n−k6 )(n−k−1)/2B(α)yn−k, (3) n,q k k,q n,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X n n n n E(α)(x,0)= E(α)xn−k, E(α)(0,y)= q(n−k6 )(n−k−1)/2E(α)yn−k. (4) n,q k k,q n,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X Setting y =1 and x=1 in (1) and (2), we get n n n n B(α)(x,1)= q(n−k)(n−k−1)/2B(α)(x,0), B(α)(1,y)= B(α)(0,y), (5) n,q k k,q n,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X n n n n E(α)(x,1)= q(n−k)(n−k−1)/2E(α)(x,0), E(α)(1,y)= E(α)(0,y). (6) n,q k k,q n,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X 3 Clearly (5) and (6) are q-analogues of n n n n B(α)(x+1)= B(α)(x), E(α)(x+1)= E(α)(x), n k k n k k k=0(cid:18) (cid:19) k=0(cid:18) (cid:19) X X respectively. Lemma 4 We have D B(α)(x,y)=[n] B(α) (x,y), D B(α)(x,y)=[n] B(α) (x,qy), q,x n,q q n−1,q q,y n,q q n−1,q D E(α)(x,y)=[n] E(α) (x,y), D E(α)(x,y)=[n] E(α) (x,qy). q,x n,q q n−1,q q,y n,q q n−1,q Lemma 5 (Difference Equations) We have B(α)(1,y)−B(α)(0,y)=[n] B(α−1)(0,y), (7) n,q n,q q n−1,q E(α)(1,y)+E(α)(0,y)=2E(α−1)(0,y), (8) n,q n,q n,q B(α)(x,0)−B(α)(x,−1)=[n] B(α−1)(x,−1), n,q n,q q n−1,q E(α)(x,0)+E(α)(x,−1)=2E(α−1)(x,−1). n,q n,q n,q From (7) and (3), (8) and (4) we obtain the following formulas. Lemma 6 We have n B(α−1)(0,y)= 1 n+1 B(α)(0,y), (9) n−1,q [n+1] k k,q q k=0(cid:20) (cid:21)q X n 1 n E(α−1)(0,y)= E(α)(0,y)+E(α)(0,y) . (10) n,q 2 k k,q n,q "k=0(cid:20) (cid:21)q # X Putting α=1 in (9) and (10), and noting that B(0) (0,y)=E(0) (0,y)=qn(n−1)/2yn, n,q n,q we arrive at the following expansions: n 1 n+1 yn = B (0,y), qn(n−1)/2[n+1] k k,q qk=0(cid:20) (cid:21)q X n 1 n yn = E (0,y)+E (0,y) , 2qn(n−1)/2 "k=0(cid:20) k (cid:21)q k,q n,q # X which are q-analoques of the following familiar expansions n n 1 n+1 1 n yn = B (y), yn = E (y)+E (y) , (11) n+1 k k 2 k k n k=0(cid:18) (cid:19) "k=0(cid:18) (cid:19) # X X respectively. 4 Lemma 7 (Recurrence Relationships) The polynomials B(α)(x,0) and E(α)(x,0) satisfy the following dif- n,q n,q ference relationships: k k k−1 k mjB(α)(x,0)− k mjB(α)(x,−1)=[k] k−1 mj+1B(α−1)(x,−1), (12) j j,q j j,q q j j,q j=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q X X X B(α) 1 ,y − k k 1 −1 k−jB(α)(0,y)=[k] k−1 k−1 1 −1 k−j−1B(α−1)(0,y), k,q m j m j,q q j m j,q (cid:18) (cid:19) j=0(cid:20) (cid:21)q(cid:18) (cid:19)q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X X (13) k k k k k k mjE(α)(x,0)+ mjE(α)(x,−1)=2 mjE(α−1)(x,−1), (14) j j,q j j,q j j,q j=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q X X X k k−j k k−j 1 k 1 k 1 E(α) ,y + −1 E(α)(0,y)=2 −1 E(α−1)(0,y). (15) k,q m j m j,q j m j,q (cid:18) (cid:19) j=0(cid:20) (cid:21)q(cid:18) (cid:19)q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X X 3 Explicit relationship between the q-Bernoulli and q-Euler poly- nomials In this section we shall investigate some explicit relationships between the q-Bernoulli and q-Euler polyno- mials. Here some q-analogues of known results will be given. We also obtain new formulas and their some special cases below. These formulas are some extensions of the formulas of Srivastava and A´. Pint´er,Cheon and others. We present natural q-extensions of th main results of the papers [10], [8], see Theorems 8 and 13. Theorem 8 For n∈N , the following relationship 0 n k 1 n k B(α)(x,y)= mkB(α)(x,0)+ mjB(α)(x,−1) n,q 2mn k k,q j j,q k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q X X k−1 +[k] k−1 mj+1B(α−1)(x,−1) E (0,my), q j j,q n−k,q j=0(cid:20) (cid:21)q X n k k−j 1 n k 1 B(α)(x,y)= mk B(α)(0,y)+ −1 B(α)(0,y) n,q 2mn j k,q j m j,q k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X X k−1 k−1−j +[k] k−1 1 −1 B(α−1)(0,y) E (mx,0) q j m j,q n−k,q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X holds true between the q-Bernoulli polynomials and q-Euler polynomials. Proof. Using the following identity t α 2 t e t +1 t α e (tx)E (ty)= ·E my · q m · e (tx) e (t)−1 q q e t +1 q m 2 e (t)−1 q (cid:18) q (cid:19) q m (cid:18) (cid:19) (cid:0) (cid:1) (cid:18) q (cid:19) (cid:0) (cid:1) 5 we have ∞ tn 1 ∞ tn ∞ tn ∞ tn B(α)(x,y) = E (0,my) B(α)(x,0) n,q [n] ! 2 n,q mn[n] ! mn[n] ! n,q [n] ! n=0 q n=0 q n=0 q n=0 q X X X X 1 ∞ tn ∞ tn + E (0,my) B(α)(x,0) 2 n,q mn[n] ! n,q [n] ! n=0 q n=0 q X X =:I +I . 1 2 It is clear that 1 ∞ tn ∞ tn 1 ∞ n n tn I = E (0,my) B(α)(x,0) = mk−nB(α)(x,0)E (0,my) . 2 2 n,q mn[n] ! n,q [n] ! 2 j k,q n−k,q [n] ! n=0 q n=0 q n=0k=0(cid:20) (cid:21)q q X X XX On the other hand 1 ∞ tn ∞ n n tn I = B(α)(x,0) m−nE (0,my) 1 2 n,q [n] ! j j,q [n] ! n=0 q n=0j=0(cid:20) (cid:21)q q X XX 1 ∞ n n n−k n−k tn = B(α)(x,0) mk−nE (0,my) 2 k k,q j j,q [n] ! n=0k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q q XX X 1 ∞ n n n−j n−j tn = m−n E (0,my) mkB(α)(x,0) . 2 j j,q k k,q [n] ! n=0 j=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q q X X X Therefore ∞ tn 1 ∞ n n k k tn B(α)(x,y) = mk−n B(α)(x,0)+m−k mjB(α)(x,0) E (0,my) . n,q [n] ! 2 j k,q j j,q n−k,q [n] ! n=0 q n=0k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q q X XX X It remains to use the formula (12). Next we discuss some special cases of Theorem 8. Corollary 9 For n∈N , m∈N the following relationship 0 n k 1 n k B (x,y)= mkB (x,0)+ mjB (x,−1) n,q 2mn k k,q j j,q k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q X X k−1 k−1 + [k] mj+1(x−1)j E (0,my), q j q n−k,q j=0(cid:20) (cid:21)q X n k k−j 1 n k 1 B (x,y)= mk mkB (0,y)+ −1 B (0,y) n,q 2mn j k,q j m j,q k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X X k−1 k−1−j +[k]q k−j 1 q21j(j−1) m1 −1 yjEn−k,q(mx,0) j=0(cid:20) (cid:21)q (cid:18) (cid:19)q X holds true between the q-Bernoulli polynomials and q-Euler polynomials. 6 Corollary 10 [8] For n∈N , m∈N the following relationship holds true. 0 n n k B (x+y)= B (y)+ yk−1 E (x), n k k 2 n−k k=0(cid:18) (cid:19)(cid:18) (cid:19) X n 1 n 1 B (x+y)= mkB (x)+mkB x−1+ +km(1+m(x−1))k−1 E (my). n 2mn k k k m n−k,q k=0(cid:18) (cid:19)(cid:20) (cid:18) (cid:19) (cid:21) X Corollary 11 For n∈N the following relationship holds true. 0 Bn,q(x,y)= n nk Bk,q(0,y)+q12(k−1)(k−2)[k2]qyk−1 En−k,q(x,0). (16) k=0(cid:20) (cid:21)q(cid:18) (cid:19) X Corollary 12 For n∈N the following relationship holds true. 0 n n 1 B (x,0)= B E (x,0)+ B + E (x,0), (17) n,q k k,q n−k,q 1,q 2 n−1,q k=0 (cid:20) (cid:21) (cid:18) (cid:19) (kX6=1) n n 1 B (0,y)= B E (0,y)+ B + E (0,y). (18) n,q k k,q n−k,q 1,q 2 n−1,q k=0 (cid:20) (cid:21)q (cid:18) (cid:19) (kX6=1) The formulas(16)-(18) areq-extensionofthe Cheon’s mainresult[5]. Notice thatB =− 1 , see [26], 1,q [2] q and the extra term becomes zeo for q →1−. Theorem 13 For n∈N , the following relationship 0 n k+1 k+1−j E(α)(x,y)= 1 2 k+1 1 −1 E(α−1)(0,y) n,q mn−1[k+1] j m j,q k=0 q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X X k+1 k+1−j k+1 1 − −1 E(α)(0,y)−E(α) (0,y) B (mx,0), j m j,q k+1,q n−k,q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X n k+1 E(α)(x,y)= n 1 2 k+1 mjE(α−1)(x,−1) n,q k mn[k+1] j j,q k=0(cid:20) (cid:21)q q j=0(cid:20) (cid:21)q X X k+1 k+1 − mjE(α)(x,−1)−mk+1E(α) (x,0) B (0,my) j j,q k+1,q n−k,q j=0(cid:20) (cid:21)q X holds true between the q-Bernoulli polynomials and q-Euler polynomials. Proof. The proof is based on the following identities 2 αe (tx)E (ty)= 2 αE (ty)· eq mt −1 · t e t mx , e (t)+1 q q e (t)+1 q t e t −1 q m (cid:18) q (cid:19) (cid:18) q (cid:19) (cid:0) (cid:1) q m (cid:18) (cid:19) 2 α 2 α e t −1 (cid:0) t(cid:1) t e (tx)E (ty)= e (tx)· q m · E my e (t)+1 q q e (t)+1 q t e t −1 q m (cid:18) q (cid:19) (cid:18) q (cid:19) (cid:0) (cid:1) q m (cid:18) (cid:19) and similar to that of Theorem 8. (cid:0) (cid:1) Next we discuss some special cases of Theorem 13. 7 Corollary 14 For n∈N , m∈N the following relationship 0 n n m−n k+1 k+1 E (x,y)= 2 mj(x−1)j n,q k [k+1] j q k=0(cid:20) (cid:21)q q j=0(cid:20) (cid:21)q X X k+1 k+1 − mjE (x,−1)−mk+1E (x,0) B (0,my) j j,q k+1,q n−k,q j=0(cid:20) (cid:21)q X holds true between the q-Bernoulli polynomials and q-Euler polynomials. Corollary 15 [8] For n∈N , m∈N the following relationship holds true. 0 n 2 n E (x+y)= yk+1−E (y) B (x), n k+1 k k+1 n−k k=0 (cid:18) (cid:19) X (cid:0) (cid:1) n n mk−n+1 1−m k+1 1−m E (x+y)= 2 x+ −E x+ −E (x) B (my). n k k+1 m k+1 m k+1 n−k k=0(cid:18) (cid:19) " (cid:18) (cid:19) (cid:18) (cid:19) # X Corollary 16 For n∈N the following relationship holds true. 0 n En,q(x,y)= nk [k+21] q21k(k+1)yk+1−Ek+1,q(0,y) Bn−k,q(x,0). kX=0(cid:20) (cid:21)q q (cid:16) (cid:17) Corollary 17 For n∈N the following relationship holds true. 0 n n 2 E (x,0)=− E B (x,0), n,q k [k+1] k+1,q n−k,q k=0(cid:20) (cid:21) q X n n 2 E (0,y)=− E B (0,y). n,q k [k+1] k+1,q n−k,q k=0(cid:20) (cid:21)q q X These formulas are q-analogues of the formula of Srivastava and A´. Pint´er [10]. 4 q-Stirling Numbers and q-Bernoulli Polynomials In this section, we aim to derive severalformulas involving the q-Bernoullipolynomials,the q-Euler polyno- mials of order α, the q-Stirling numbers of the second kind and q-Bernstein polynomials. Theorem 18 Each of the following relationships holds true for the Stirling numbers S (n,k) of the second 2 kind: n n−j mx n B(α)(x,y)= j! mj−nB(α)(0,y)S (n−k,j), n,q j k k,q 2 j=0(cid:18) (cid:19) k=0(cid:20) (cid:21)q X X n n−j mx n E(α)(x,y)= j! mj−nE(α)(0,y)S (n−k,j). n,q j k k,q 2 j=0(cid:18) (cid:19) k=0(cid:20) (cid:21)q X X The familiar q-Stirling numbers S(n,k) of the second kind are defined by (e (t)−1)k ∞ tm q = S (m,k) , [k] ! 2,q [m] ! q m=0 q X 8 where k ∈ N. Next we give relationship between q-Bernstein basis defined by Phillips [27] and q-Bernoulli polynomials b (q;x):=xk(1−x)n−k. n,k q Theorem 19 We have n n b (q;x)=xk S (m,k)B(k) (1,−x). (19) n,k m 2,q n−m,q m=0(cid:20) (cid:21)q X Proof. The proof follows from the following identities. xktk xktk ∞ (1−x)ntn ∞ n xk(1−x)n−ktn e (t)E (−xt)= q = q [k] ! q q [k] ! [n] ! k [n] ! q q n=0 q n=k(cid:20) (cid:21)q q X X ∞ tn = b (q;x) . n,k [n] ! n=k q X and xktk xk(e (t)−1)k tk e (t)E (−xt)= q e (t)E (−xt) [k] ! q q [k] ! (e (t)−1)k q q q q q ∞ tm ∞ tn =xk S (m,k) B(k)(1,−x) 2,q [m] ! n,q [n] ! m=0 q n=0 q X X ∞ n n tn =xk S (m,k)B(k) (1,−x) . m 2,q n−m,q [n] ! n=0 m=0(cid:20) (cid:21)q ! q X X Finally, in their limit case when q →1−, these last result (19) would reduce to the following formula for the classical Bernoulli polynomials B(k)(x) and the Bernstein basis b (x)=xk(1−x)n−k : n n,k n n b (x)=xk S (m,k)B(k) (1−x). n,k m 2 n−m m=0(cid:20) (cid:21)q X References [1] G.E.Andrews,R.AskeyandR.RoySpecialfunctions,volume71ofEncyclopediaofMathematicsand its Applications, Cambridge University Press, Cambridge, 1999. [2] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987–1000. [3] L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954) 332–350. [4] L. Carlitz, Expansions of q-Bernoulli numbers, Duke Math. J. 25 (1958) 355–364. [5] G.-S. Cheon, A note onthe Bernoulliand Euler polynomials,Appl. Math. Lett. 16 (3) (2003)365–368. [6] L.Comtet,AdvancedCombinatorics: TheArtofFiniteandInfiniteExpansions(translatedfromFrench by J.W. Nienhuys), Reidel, Dordrecht, Boston, 1974. 9 [7] Q.-M. Luo, H.M. Srivastava, Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials, Comput. Math. Appl. 51 (2006) 631–642. [8] Q.-M. Luo, Some results for the q-Bernoulli and q-Euler polynomials, J. Math. Anal. Appl. 363 (2010) 7–18. [9] H.M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001. [10] H.M.Srivastava,A´.Pint´er,RemarksonsomerelationshipsbetweentheBernoulliandEulerpolynomials, Appl. Math. Lett. 17 (2004) 375–380. [11] Q.-M. Luo, H.M. Srivastava, q-extensions of some relationships between the Bernoulli and Euler poly- nomials, Taiwanese Journal Math., 15, No. 1, pp. 241-257,2011. [12] M. Cenkci and M. Can, Some results on q-analogue of the Lerch Zeta function, Adv. Stud. Contemp. Math., 12 (2006), 213-223. [13] M. Cenkci, M. Can and V. Kurt, q-extensions of Genocchi numbers, J. Korean Math. Soc., 43 (2006), 183-198. [14] M. Cenkci, V. Kurt, S. H. Rim and Y. Simsek, On (i,q)-Bernoulli and Euler numbers, Appl. Math. Lett., 21 (2008), 706-711. [15] J. Choi, P. J. Anderson and H. M. Srivastava, Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz Zeta function, Appl. Math. Comput., 199 (2008), 723-737. [16] J.Choi,P.J.AndersonandH.M.Srivastava,Carlitz’sq-Bernoulliandq-Eulernumbersandpolynomials and a class of q-Hurwitz zeta functions, Appl. Math. Comput., 215 (2009), 1185-1208. [17] T.Kim,Some formulaefor the q-BernoulliandEulerpolynomialofhigher order,J.Math.Anal.Appl., 273 (2002), 236-242. [18] T. Kim, q-Generalized Euler numbers and polynomials, Russian J. Math. Phys. 13 (2006), 293-298. [19] T.Kim,Ontheq-ExtensionofEulernumbersandGenocchinumbers,J.Math.Anal.Appl.,326(2007), 1458-1465. [20] T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russian J. Math. Phys., 15 (2008), 51-57. [21] T. Kim, The modified q-Euler numbers and polynomials, Adv. Stud. Contemp. Math., 16 (2008), 161- 170. [22] T. Kim, L. C. Jang and H. K. Pak, A note on q-Euler numbers and Genocchi numbers, Proc. Japan Acad. Ser. A Math. Sci., 77 (2001), 139-141. [23] T.Kim,Y.-H.KimandK.-W.Hwang,Onthe q-extensionsoftheBernoulliandEulernumbers.related identities and Lerch zeta function, Proc. Jangjeon Math. Soc., 12 (2009), 77-92. [24] T. Kim, S.-H. Rim, Y. Simsek and D. Kim, On the analogs of Bernoulli and Euler numbers, related identities and zeta and L-functions, J. Korean Math. Soc., 45 (2008), 435-453. [25] H. Ozden and Y. Simsek, A new extension of q-Euler numbers and polynomials related to their inter- polation functions, Appl. Math. Lett., 21 (2008), 934-939. [26] O-Yeat Chan, D. Manna, A new q-analogue for bernoulli numbers, Preprint, oyeat.com/papers/qBernoulli-20110825.pdf 10