ebook img

A new class of generalized Bernoulli polynomials and Euler polynomials PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A new class of generalized Bernoulli polynomials and Euler polynomials

A new class of generalized Bernoulli polynomials and Euler polynomials N. I. Mahmudov Eastern Mediterranean University Gazimagusa, TRNC, Mersiin 10, Turkey 2 1 Email: [email protected] 0 2 February 1, 2012 n a J Abstract 1 3 The main purpose of this paper is to introduce and investigate a new class of generalized Bernoulli polynomialsandEulerpolynomialsbasedontheq-integers. Theq-analoguesofwell-knownformulasare ] derived. The q-analogue of the Srivastava–Pint´er addition theorem is obtained. We give new identities A involvingq-Bernstein polynomials. C . h 1 Introduction t a m Throughoutthispaper,wealwaysmakeuseofthe followingnotation: Ndenotesthesetofnaturalnumbers, [ N denotes the set of nonnegative integers, R denotes the set of real numbers, C denotes the set of complex 0 numbers. 1 v The q-shifted factorial is defined by 3 3 n−1 ∞ 6 (a;q) =1, (a;q) = 1−qja , n∈N, (a;q) = 1−qja , |q|<1, a∈C. 0 n ∞ 6 j=0 j=0 . Y(cid:0) (cid:1) Y(cid:0) (cid:1) 1 0 The q-numbers and q-numbers factorial is defined by 2 1 [a] = 1−qa (q 6=1); [0] !=1; [n] !=[1] [2] ...[n] n∈N, a∈C : q 1−q q q q q q v i X respectively. The q-polynomial coefficient is defined by r a n (q;q) = n . k (q;q) (q;q) (cid:20) (cid:21)q n−k k The q-analogue of the function (x+y)n is defined by n (x+y)nq := nk q12k(k−1)xn−kyk, n∈N0. k=0(cid:20) (cid:21)q X The q-binomial formula is known as n−1 n (1−a)n =(a;q) = 1−qja = n q21k(k−1)(−1)kak. q n k j=0 k=0(cid:20) (cid:21)q Y(cid:0) (cid:1) X 1 In the standard approach to the q-calculus two exponential functions are used: ∞ zn ∞ 1 1 e (z)= = , 0<|q|<1, |z|< , q [n] ! (1−(1−q)qkz) |1−q| n=0 q k=0 X Y ∞ q21n(n−1)zn ∞ E (z)= = 1+(1−q)qkz , 0<|q|<1, z ∈C. q [n] ! n=0 q k=0 X Y(cid:0) (cid:1) From this form we easily see that e (z)E (−z)=1. Moreover, q q D e (z)=e (z), D E (z)=E (qz), q q q q q q where D is defined by q f(qz)−f(z) D f(z):= , 0<|q|<1, 06=z ∈C. q qz−z The above q-standard notation can be found in [1]. Over 70 years ago, Carlitz extended the classical Bernoulli and Euler numbes and polynomials and introduced the q-Bernoulli and the q-Euler numbers and polynomials (see [2], [3] and [4] ). There are numerous recent investigations on this subject by, among many other authors, Cenki et al. ([12], [13], [14]), Choi et al. ([15] and [16]), Kim et al. ([17]-[24]), Ozden and Simsek [25], Ryoo et al. [28], Simsek ([29], [30] and [31]), and Luo and Srivastava [11], Srivastava et al. [32]. Wefirstgiveherethedefinitionsoftheq-Bernoulliandtheq-Eulerpolynomialsofhigherorderasfollows. Definition 1 Let q,α∈ C, 0 <|q| < 1. The q-Bernoulli numbers B(α) and polynomials B(α)(x,y) in x,y n,q n,q of order α are defined by means of the generating function functions: t α ∞ tn = B(α) , |t|<2π, e (t)−1 n,q[n] ! (cid:18) q (cid:19) n=0 q X t α ∞ tn e (tx)E (ty)= B(α)(x,y) , |t|<2π. e (t)−1 q q n,q [n] ! (cid:18) q (cid:19) n=0 q X Definition 2 Let q,α ∈ C, 0 < |q| < 1. The q-Euler numbers E(α) and polynomials E(α)(x,y) in x,y of n,q n,q order α are defined by means of the generating functions: 2 α ∞ tn = E(α) , |t|<π, e (t)+1 n,q[n] ! (cid:18) q (cid:19) n=0 q X 2 α ∞ tn e (tx)E (ty)= E(α)(x,y) , |t|<π. e (t)+1 q q n,q [n] ! (cid:18) q (cid:19) n=0 q X It is obvious that B(α) =B(α)(0,0), lim B(α)(x,y)=B(α)(x+y), lim B(α) =B(α), n,q n,q q→1− n,q n q→1− n,q n E(α) =E(α)(0,0), lim E(α)(x,y)=E(α)(x+y), lim E(α) =E(α), n,q n,q q→1− n,q n q→1− n,q n lim B(α)(x,0)=B(α)(x), lim B(α)(0,y)=B(α)(y), q→1− n,q n q→1− n,q n lim E(α)(x,0)=E(α)(x), lim E(α)(0,y)=E(α)(y). q→1− n,q n q→1− n,q n 2 HereB(α)(x)andE(α)(x)denotetheclassicalBernoulliandEulerpolynomialsoforderαwhicharedefined n n by t α ∞ tn 2 α ∞ tn etx = B(α)(x) and etx = E(α)(x) . et−1 n [n] ! et+1 n [n] ! (cid:18) (cid:19) n=0 q (cid:18) (cid:19) n=0 q X X InfactDefinitions1and2definetwodifferenttypeB(α)(x,0)andB(α)(0,y)oftheq-Bernoullipolynomials n,q n,q andtwodifferenttypeE(α)(x,0)andE(α)(0,y)oftheq-Eulerpolynomials. BothpolynomialsB(α)(x,0)and n,q n,q n,q B(α)(0,y) (E(α)(x,0) and E(α)(0,y)) coincide with the classical highe order Bernoulli polynomilas (Euler n,q n,q n,q polynomilas) in the limiting case q →1−. For the q-Bernoulli numbers B , the q-Euler numbers E of order n, we have n,q n,q B =B (0,0)=B(1) (0,0), E =E (0,0)=E(1) (0,0), n,q n,q n,q n,q n,q n,q respectively. Note that the q-Bernoulli numbers B are defined and studied in [26]. n,q The aim of the present paper is to obtain some results for the above defined q-Bernoulli and q-Euler polynomials. In this paper the q-analogues of well-known results, for example, Srivastava and Pint´er [10], Cheon [5], etc., will be given. Also the formulas involving the q-Stirling numbers of the second kind, q- Bernoulli polynomials and Phillips q-Bernstein polynomials are derived. 2 Preliminaries and Lemmas In this section we shall provide some basic formulas for the q-Bernoulli and q-Euler polynomials in order to obtain the main results of this paper in the next section. The following result is q-analogue of the addition theorem for the classical Bernoulli and Euler polynomials. Lemma 3 (Addition Theorems) For all x,y ∈C we have n n n n B(α)(x,y)= B(α)(x+y)n−k, E(α)(x,y)= E(α)(x+y)n−k, n,q k k,q q n,q k k,q q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X n n n n B(α)(x,y)= q(n−k)(n−k−1)/2B(α)(x,0)yn−k = B(α)(0,y)xn−k, (1) n,q k k,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X n n n n E(α)(x,y)= q(n−k)(n−k−1)/2E(α)(x,0)yn−k = E(α)(0,y)xn−k. (2) n,q k k,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X In particular, setting x = 0 and y = 0 in (1) and (2), we get the following formulas for q-Bernoulli and q-Euler polynomials, respectively. n n n n B(α)(x,0)= B(α)xn−k, B(α)(0,y)= q(n−k6 )(n−k−1)/2B(α)yn−k, (3) n,q k k,q n,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X n n n n E(α)(x,0)= E(α)xn−k, E(α)(0,y)= q(n−k6 )(n−k−1)/2E(α)yn−k. (4) n,q k k,q n,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X Setting y =1 and x=1 in (1) and (2), we get n n n n B(α)(x,1)= q(n−k)(n−k−1)/2B(α)(x,0), B(α)(1,y)= B(α)(0,y), (5) n,q k k,q n,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X n n n n E(α)(x,1)= q(n−k)(n−k−1)/2E(α)(x,0), E(α)(1,y)= E(α)(0,y). (6) n,q k k,q n,q k k,q k=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q X X 3 Clearly (5) and (6) are q-analogues of n n n n B(α)(x+1)= B(α)(x), E(α)(x+1)= E(α)(x), n k k n k k k=0(cid:18) (cid:19) k=0(cid:18) (cid:19) X X respectively. Lemma 4 We have D B(α)(x,y)=[n] B(α) (x,y), D B(α)(x,y)=[n] B(α) (x,qy), q,x n,q q n−1,q q,y n,q q n−1,q D E(α)(x,y)=[n] E(α) (x,y), D E(α)(x,y)=[n] E(α) (x,qy). q,x n,q q n−1,q q,y n,q q n−1,q Lemma 5 (Difference Equations) We have B(α)(1,y)−B(α)(0,y)=[n] B(α−1)(0,y), (7) n,q n,q q n−1,q E(α)(1,y)+E(α)(0,y)=2E(α−1)(0,y), (8) n,q n,q n,q B(α)(x,0)−B(α)(x,−1)=[n] B(α−1)(x,−1), n,q n,q q n−1,q E(α)(x,0)+E(α)(x,−1)=2E(α−1)(x,−1). n,q n,q n,q From (7) and (3), (8) and (4) we obtain the following formulas. Lemma 6 We have n B(α−1)(0,y)= 1 n+1 B(α)(0,y), (9) n−1,q [n+1] k k,q q k=0(cid:20) (cid:21)q X n 1 n E(α−1)(0,y)= E(α)(0,y)+E(α)(0,y) . (10) n,q 2 k k,q n,q "k=0(cid:20) (cid:21)q # X Putting α=1 in (9) and (10), and noting that B(0) (0,y)=E(0) (0,y)=qn(n−1)/2yn, n,q n,q we arrive at the following expansions: n 1 n+1 yn = B (0,y), qn(n−1)/2[n+1] k k,q qk=0(cid:20) (cid:21)q X n 1 n yn = E (0,y)+E (0,y) , 2qn(n−1)/2 "k=0(cid:20) k (cid:21)q k,q n,q # X which are q-analoques of the following familiar expansions n n 1 n+1 1 n yn = B (y), yn = E (y)+E (y) , (11) n+1 k k 2 k k n k=0(cid:18) (cid:19) "k=0(cid:18) (cid:19) # X X respectively. 4 Lemma 7 (Recurrence Relationships) The polynomials B(α)(x,0) and E(α)(x,0) satisfy the following dif- n,q n,q ference relationships: k k k−1 k mjB(α)(x,0)− k mjB(α)(x,−1)=[k] k−1 mj+1B(α−1)(x,−1), (12) j j,q j j,q q j j,q j=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q X X X B(α) 1 ,y − k k 1 −1 k−jB(α)(0,y)=[k] k−1 k−1 1 −1 k−j−1B(α−1)(0,y), k,q m j m j,q q j m j,q (cid:18) (cid:19) j=0(cid:20) (cid:21)q(cid:18) (cid:19)q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X X (13) k k k k k k mjE(α)(x,0)+ mjE(α)(x,−1)=2 mjE(α−1)(x,−1), (14) j j,q j j,q j j,q j=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q X X X k k−j k k−j 1 k 1 k 1 E(α) ,y + −1 E(α)(0,y)=2 −1 E(α−1)(0,y). (15) k,q m j m j,q j m j,q (cid:18) (cid:19) j=0(cid:20) (cid:21)q(cid:18) (cid:19)q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X X 3 Explicit relationship between the q-Bernoulli and q-Euler poly- nomials In this section we shall investigate some explicit relationships between the q-Bernoulli and q-Euler polyno- mials. Here some q-analogues of known results will be given. We also obtain new formulas and their some special cases below. These formulas are some extensions of the formulas of Srivastava and A´. Pint´er,Cheon and others. We present natural q-extensions of th main results of the papers [10], [8], see Theorems 8 and 13. Theorem 8 For n∈N , the following relationship 0 n k 1 n k B(α)(x,y)= mkB(α)(x,0)+ mjB(α)(x,−1) n,q 2mn k  k,q j j,q k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q X X  k−1 +[k] k−1 mj+1B(α−1)(x,−1) E (0,my), q j j,q  n−k,q j=0(cid:20) (cid:21)q X  n k k−j 1 n k 1 B(α)(x,y)= mk B(α)(0,y)+ −1 B(α)(0,y) n,q 2mn j  k,q j m j,q k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X X  k−1 k−1−j +[k] k−1 1 −1 B(α−1)(0,y) E (mx,0) q j m j,q  n−k,q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X  holds true between the q-Bernoulli polynomials and q-Euler polynomials. Proof. Using the following identity t α 2 t e t +1 t α e (tx)E (ty)= ·E my · q m · e (tx) e (t)−1 q q e t +1 q m 2 e (t)−1 q (cid:18) q (cid:19) q m (cid:18) (cid:19) (cid:0) (cid:1) (cid:18) q (cid:19) (cid:0) (cid:1) 5 we have ∞ tn 1 ∞ tn ∞ tn ∞ tn B(α)(x,y) = E (0,my) B(α)(x,0) n,q [n] ! 2 n,q mn[n] ! mn[n] ! n,q [n] ! n=0 q n=0 q n=0 q n=0 q X X X X 1 ∞ tn ∞ tn + E (0,my) B(α)(x,0) 2 n,q mn[n] ! n,q [n] ! n=0 q n=0 q X X =:I +I . 1 2 It is clear that 1 ∞ tn ∞ tn 1 ∞ n n tn I = E (0,my) B(α)(x,0) = mk−nB(α)(x,0)E (0,my) . 2 2 n,q mn[n] ! n,q [n] ! 2 j k,q n−k,q [n] ! n=0 q n=0 q n=0k=0(cid:20) (cid:21)q q X X XX On the other hand 1 ∞ tn ∞ n n tn I = B(α)(x,0) m−nE (0,my) 1 2 n,q [n] ! j j,q [n] ! n=0 q n=0j=0(cid:20) (cid:21)q q X XX 1 ∞ n n n−k n−k tn = B(α)(x,0) mk−nE (0,my) 2 k k,q j j,q [n] ! n=0k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q q XX X 1 ∞ n n n−j n−j tn = m−n E (0,my) mkB(α)(x,0) . 2 j j,q k k,q [n] ! n=0 j=0(cid:20) (cid:21)q k=0(cid:20) (cid:21)q q X X X Therefore ∞ tn 1 ∞ n n k k tn B(α)(x,y) = mk−n B(α)(x,0)+m−k mjB(α)(x,0) E (0,my) . n,q [n] ! 2 j  k,q j j,q  n−k,q [n] ! n=0 q n=0k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q q X XX X   It remains to use the formula (12). Next we discuss some special cases of Theorem 8. Corollary 9 For n∈N , m∈N the following relationship 0 n k 1 n k B (x,y)= mkB (x,0)+ mjB (x,−1) n,q 2mn k  k,q j j,q k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q X X  k−1 k−1 + [k] mj+1(x−1)j E (0,my), q j q n−k,q j=0(cid:20) (cid:21)q X  n k k−j 1 n k 1 B (x,y)= mk mkB (0,y)+ −1 B (0,y) n,q 2mn j  k,q j m j,q k=0(cid:20) (cid:21)q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X X  k−1 k−1−j +[k]q k−j 1 q21j(j−1) m1 −1 yjEn−k,q(mx,0) j=0(cid:20) (cid:21)q (cid:18) (cid:19)q X  holds true between the q-Bernoulli polynomials and q-Euler polynomials. 6 Corollary 10 [8] For n∈N , m∈N the following relationship holds true. 0 n n k B (x+y)= B (y)+ yk−1 E (x), n k k 2 n−k k=0(cid:18) (cid:19)(cid:18) (cid:19) X n 1 n 1 B (x+y)= mkB (x)+mkB x−1+ +km(1+m(x−1))k−1 E (my). n 2mn k k k m n−k,q k=0(cid:18) (cid:19)(cid:20) (cid:18) (cid:19) (cid:21) X Corollary 11 For n∈N the following relationship holds true. 0 Bn,q(x,y)= n nk Bk,q(0,y)+q12(k−1)(k−2)[k2]qyk−1 En−k,q(x,0). (16) k=0(cid:20) (cid:21)q(cid:18) (cid:19) X Corollary 12 For n∈N the following relationship holds true. 0 n n 1 B (x,0)= B E (x,0)+ B + E (x,0), (17) n,q k k,q n−k,q 1,q 2 n−1,q k=0 (cid:20) (cid:21) (cid:18) (cid:19) (kX6=1) n n 1 B (0,y)= B E (0,y)+ B + E (0,y). (18) n,q k k,q n−k,q 1,q 2 n−1,q k=0 (cid:20) (cid:21)q (cid:18) (cid:19) (kX6=1) The formulas(16)-(18) areq-extensionofthe Cheon’s mainresult[5]. Notice thatB =− 1 , see [26], 1,q [2] q and the extra term becomes zeo for q →1−. Theorem 13 For n∈N , the following relationship 0 n k+1 k+1−j E(α)(x,y)= 1 2 k+1 1 −1 E(α−1)(0,y) n,q mn−1[k+1]  j m j,q k=0 q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X X  k+1 k+1−j k+1 1 − −1 E(α)(0,y)−E(α) (0,y) B (mx,0), j m j,q k+1,q  n−k,q j=0(cid:20) (cid:21)q(cid:18) (cid:19)q X  n k+1 E(α)(x,y)= n 1 2 k+1 mjE(α−1)(x,−1) n,q k mn[k+1]  j j,q k=0(cid:20) (cid:21)q q j=0(cid:20) (cid:21)q X X  k+1 k+1 − mjE(α)(x,−1)−mk+1E(α) (x,0) B (0,my) j j,q k+1,q  n−k,q j=0(cid:20) (cid:21)q X  holds true between the q-Bernoulli polynomials and q-Euler polynomials. Proof. The proof is based on the following identities 2 αe (tx)E (ty)= 2 αE (ty)· eq mt −1 · t e t mx , e (t)+1 q q e (t)+1 q t e t −1 q m (cid:18) q (cid:19) (cid:18) q (cid:19) (cid:0) (cid:1) q m (cid:18) (cid:19) 2 α 2 α e t −1 (cid:0) t(cid:1) t e (tx)E (ty)= e (tx)· q m · E my e (t)+1 q q e (t)+1 q t e t −1 q m (cid:18) q (cid:19) (cid:18) q (cid:19) (cid:0) (cid:1) q m (cid:18) (cid:19) and similar to that of Theorem 8. (cid:0) (cid:1) Next we discuss some special cases of Theorem 13. 7 Corollary 14 For n∈N , m∈N the following relationship 0 n n m−n k+1 k+1 E (x,y)= 2 mj(x−1)j n,q k [k+1]  j q k=0(cid:20) (cid:21)q q j=0(cid:20) (cid:21)q X X  k+1 k+1 − mjE (x,−1)−mk+1E (x,0) B (0,my) j j,q k+1,q  n−k,q j=0(cid:20) (cid:21)q X  holds true between the q-Bernoulli polynomials and q-Euler polynomials. Corollary 15 [8] For n∈N , m∈N the following relationship holds true. 0 n 2 n E (x+y)= yk+1−E (y) B (x), n k+1 k k+1 n−k k=0 (cid:18) (cid:19) X (cid:0) (cid:1) n n mk−n+1 1−m k+1 1−m E (x+y)= 2 x+ −E x+ −E (x) B (my). n k k+1 m k+1 m k+1 n−k k=0(cid:18) (cid:19) " (cid:18) (cid:19) (cid:18) (cid:19) # X Corollary 16 For n∈N the following relationship holds true. 0 n En,q(x,y)= nk [k+21] q21k(k+1)yk+1−Ek+1,q(0,y) Bn−k,q(x,0). kX=0(cid:20) (cid:21)q q (cid:16) (cid:17) Corollary 17 For n∈N the following relationship holds true. 0 n n 2 E (x,0)=− E B (x,0), n,q k [k+1] k+1,q n−k,q k=0(cid:20) (cid:21) q X n n 2 E (0,y)=− E B (0,y). n,q k [k+1] k+1,q n−k,q k=0(cid:20) (cid:21)q q X These formulas are q-analogues of the formula of Srivastava and A´. Pint´er [10]. 4 q-Stirling Numbers and q-Bernoulli Polynomials In this section, we aim to derive severalformulas involving the q-Bernoullipolynomials,the q-Euler polyno- mials of order α, the q-Stirling numbers of the second kind and q-Bernstein polynomials. Theorem 18 Each of the following relationships holds true for the Stirling numbers S (n,k) of the second 2 kind: n n−j mx n B(α)(x,y)= j! mj−nB(α)(0,y)S (n−k,j), n,q j k k,q 2 j=0(cid:18) (cid:19) k=0(cid:20) (cid:21)q X X n n−j mx n E(α)(x,y)= j! mj−nE(α)(0,y)S (n−k,j). n,q j k k,q 2 j=0(cid:18) (cid:19) k=0(cid:20) (cid:21)q X X The familiar q-Stirling numbers S(n,k) of the second kind are defined by (e (t)−1)k ∞ tm q = S (m,k) , [k] ! 2,q [m] ! q m=0 q X 8 where k ∈ N. Next we give relationship between q-Bernstein basis defined by Phillips [27] and q-Bernoulli polynomials b (q;x):=xk(1−x)n−k. n,k q Theorem 19 We have n n b (q;x)=xk S (m,k)B(k) (1,−x). (19) n,k m 2,q n−m,q m=0(cid:20) (cid:21)q X Proof. The proof follows from the following identities. xktk xktk ∞ (1−x)ntn ∞ n xk(1−x)n−ktn e (t)E (−xt)= q = q [k] ! q q [k] ! [n] ! k [n] ! q q n=0 q n=k(cid:20) (cid:21)q q X X ∞ tn = b (q;x) . n,k [n] ! n=k q X and xktk xk(e (t)−1)k tk e (t)E (−xt)= q e (t)E (−xt) [k] ! q q [k] ! (e (t)−1)k q q q q q ∞ tm ∞ tn =xk S (m,k) B(k)(1,−x) 2,q [m] ! n,q [n] ! m=0 q n=0 q X X ∞ n n tn =xk S (m,k)B(k) (1,−x) . m 2,q n−m,q [n] ! n=0 m=0(cid:20) (cid:21)q ! q X X Finally, in their limit case when q →1−, these last result (19) would reduce to the following formula for the classical Bernoulli polynomials B(k)(x) and the Bernstein basis b (x)=xk(1−x)n−k : n n,k n n b (x)=xk S (m,k)B(k) (1−x). n,k m 2 n−m m=0(cid:20) (cid:21)q X References [1] G.E.Andrews,R.AskeyandR.RoySpecialfunctions,volume71ofEncyclopediaofMathematicsand its Applications, Cambridge University Press, Cambridge, 1999. [2] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987–1000. [3] L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954) 332–350. [4] L. Carlitz, Expansions of q-Bernoulli numbers, Duke Math. J. 25 (1958) 355–364. [5] G.-S. Cheon, A note onthe Bernoulliand Euler polynomials,Appl. Math. Lett. 16 (3) (2003)365–368. [6] L.Comtet,AdvancedCombinatorics: TheArtofFiniteandInfiniteExpansions(translatedfromFrench by J.W. Nienhuys), Reidel, Dordrecht, Boston, 1974. 9 [7] Q.-M. Luo, H.M. Srivastava, Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials, Comput. Math. Appl. 51 (2006) 631–642. [8] Q.-M. Luo, Some results for the q-Bernoulli and q-Euler polynomials, J. Math. Anal. Appl. 363 (2010) 7–18. [9] H.M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001. [10] H.M.Srivastava,A´.Pint´er,RemarksonsomerelationshipsbetweentheBernoulliandEulerpolynomials, Appl. Math. Lett. 17 (2004) 375–380. [11] Q.-M. Luo, H.M. Srivastava, q-extensions of some relationships between the Bernoulli and Euler poly- nomials, Taiwanese Journal Math., 15, No. 1, pp. 241-257,2011. [12] M. Cenkci and M. Can, Some results on q-analogue of the Lerch Zeta function, Adv. Stud. Contemp. Math., 12 (2006), 213-223. [13] M. Cenkci, M. Can and V. Kurt, q-extensions of Genocchi numbers, J. Korean Math. Soc., 43 (2006), 183-198. [14] M. Cenkci, V. Kurt, S. H. Rim and Y. Simsek, On (i,q)-Bernoulli and Euler numbers, Appl. Math. Lett., 21 (2008), 706-711. [15] J. Choi, P. J. Anderson and H. M. Srivastava, Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz Zeta function, Appl. Math. Comput., 199 (2008), 723-737. [16] J.Choi,P.J.AndersonandH.M.Srivastava,Carlitz’sq-Bernoulliandq-Eulernumbersandpolynomials and a class of q-Hurwitz zeta functions, Appl. Math. Comput., 215 (2009), 1185-1208. [17] T.Kim,Some formulaefor the q-BernoulliandEulerpolynomialofhigher order,J.Math.Anal.Appl., 273 (2002), 236-242. [18] T. Kim, q-Generalized Euler numbers and polynomials, Russian J. Math. Phys. 13 (2006), 293-298. [19] T.Kim,Ontheq-ExtensionofEulernumbersandGenocchinumbers,J.Math.Anal.Appl.,326(2007), 1458-1465. [20] T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russian J. Math. Phys., 15 (2008), 51-57. [21] T. Kim, The modified q-Euler numbers and polynomials, Adv. Stud. Contemp. Math., 16 (2008), 161- 170. [22] T. Kim, L. C. Jang and H. K. Pak, A note on q-Euler numbers and Genocchi numbers, Proc. Japan Acad. Ser. A Math. Sci., 77 (2001), 139-141. [23] T.Kim,Y.-H.KimandK.-W.Hwang,Onthe q-extensionsoftheBernoulliandEulernumbers.related identities and Lerch zeta function, Proc. Jangjeon Math. Soc., 12 (2009), 77-92. [24] T. Kim, S.-H. Rim, Y. Simsek and D. Kim, On the analogs of Bernoulli and Euler numbers, related identities and zeta and L-functions, J. Korean Math. Soc., 45 (2008), 435-453. [25] H. Ozden and Y. Simsek, A new extension of q-Euler numbers and polynomials related to their inter- polation functions, Appl. Math. Lett., 21 (2008), 934-939. [26] O-Yeat Chan, D. Manna, A new q-analogue for bernoulli numbers, Preprint, oyeat.com/papers/qBernoulli-20110825.pdf 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.