ebook img

A Multiphase First Order Model for Non-Equilibrium Sand Erosion, Transport and Sedimentation PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Multiphase First Order Model for Non-Equilibrium Sand Erosion, Transport and Sedimentation

A Multiphase First Order Model for Non-Equilibrium Sand Erosion, Transport and Sedimentation L.Preziosi DepartmentofMathematicalSciences–PolitecnicodiTorino CorsodegliAbruzzi24,10129,Torino,Italy. D.Fransos OptiflowCompany 5 27BoulevardCharlesMoretti,F-13014Marseille,France 1 L.Bruno 0 2 DepartmentofArchitectureandDesign–PolitecnicodiTorino n CorsodegliAbruzzi24,10129,Torino,Italy. a J 5 1 ] Abstract n y Threephenomenaareinvolvedinsandmovement: erosion,windtransport,andsedimentation. Thispaperpresentsa d comprehensiveeasy-to-usemultiphasemodelthatincludeallthreeaspectswithaparticularattentiontosituationsin - u whicherosionduetowindshearandsedimentationduetogravityarenotinequilibrium. Theinterestisrelatedtothe l factthatthesearethesituationsleadingtoachangeofprofileofthesandbed. f . s Keywords: multiphasemodel,sandtransport,erosion,sedimentation c PACS:81.05.Rm i s 2000MSC:76T15,76T25 y h p [ 1. Introduction 1 When the shear stress exerted by wind on a sandy surface is sufficietly strong, sand grains are lifted from the v sandbedandaretransportedbywindtosedimentdownstream. Theraisingsandgrainsfollowaballistictrajectory 7 influencedbydragandgravity,eventuallyimpactingagainonthesurfaceandinducingnewparticlestodetachfrom 7 3 the surface. This phenomenon, knows as saltation, generates a layer close to the sand bed with a typical maximum 5 height of 10-20 cm. Saltation is the main reason of erosion of sandy surfaces and together with the consequent 0 sedimentation of sand particles it is the main reason of dune motion and accumulation of sand in specific regions . 2 whererecirculationoccurs. 0 The engineering interest in understanding and simulating the dynamics of windblown sand, e.g. dune fields of 5 loosesand,isdictatedbytheirinteractionwithanumberofhumaninfrastructuresinaridenvironments,suchasroads 1 andrailways,pipelines,industrialfacilities,farmlands,townsandbuildingsasshowninFig. 1[1]. : v Moving intruder sand dunes, soil erosion and/or sand contamination can be comprehensively ascribed, from a i X phenomenologicalpointofview,tonon-equilibriumconditions,wherethetwoprocesses,erosionandsedimentation, donotbalance,leadingtotheerosionordepositionofsandonthesoilandeventuallytotheevolutionofthatinterface. r a Inotherterms,suchnon-equilibriumsituationsarethemostinterestingcasesfromtheapplicativepointofview. Bagnold [8] was the first who studied sand erosion and postulated a relation for the sand flux, determining the importanceofwindspeedandoftherelatedshearstressonthesandsurface.Laterauthors[5,12,17,21,26,28,30,31] introducedseveralcorrectionstoBagnold’srule,butallthemodelshaveincommontheobservationthatasandgrain isejectedfromasandbedifandonlyiftheshearstressatthesurfaceislargerthanathresholdvalue. Sauermann et al. [30] observed that saltation reaches a steady state after a transitory phase of 2 seconds. After thisperiodthetrajectoriesarestatisticallyequivalentfortheensembleofgrains. Thisphenomenonhappensbecause PreprintsubmittedtoAppliedMathematicsLetters February19,2015 Figure1:Windblownsandinteractionwithanthropicactivities:farmlands(a),towns(b),railways(c) thenewejectedparticlesincreasethesandconcentrationinthesaltationlayerandthisreducesthespeedofsaltating grains. So, asteadystateisreachedwhenallparticlesareejectedwiththesamevelocity(seealso[2,3,6,31]). A nice mathematical models of the saltation phenomenon is proposed by Herrmann and Sauermann [13] who studied the dynamics of the surface of a dry granular bed dividing the sand bed into a non-moving time-dependent region providingsandmassandanothertime-dependentregionaboveitinwhichsandparticlescanmovetransportedbythe wind. Theyproposeamodelaveragedovertheverticalcoordinate,presentingafreeboundary. Jietal. [17]coupledak−(cid:15)modelwithamultiphaseapproachinwhichtheslipofthedispersedphaseismodeled byanalgebraicmodel. Similarturbulentone-dimensionalmodelsareproposedin[24,27,29,30],howeverwithout amultiphasecoupling. Kangandcoworkers[18,19,20]insteadcoupleamultiphasemodelforthefluidflowwitha particlemethodforthesandgrains. Asimilarcouplingwasalsousedin[2,4,23]wherehoweverthewindflowwas computedindipendentlyfromthepresenceofsandparticlesviaasuitableturbulencemodel,typicallythek-(cid:15) model. Sedimentation has also been widely studied in the literature starting from several applications mainly in envi- ronmental and chemical engineering. One of the most important component in this phenomenon is the drag force experiencedbythesedimentingparticlesthathasdrivenalotofattentionbymanyauthorsaswellreviewedin[9]. Differentlyfrompreviouspapers,herewewillproposeacomprehensivemultiphasemodelfortheentireprocess includingsanderosion,windtransport,andsedimentation,thatworkingalsoinnon-equilibriumconditionsisableto dealwiththedevelopmentofthestationarysaltationlayerstartingfromgenericinitialandboundaryconditionsandin particularfromclearairandoversaturatedsituations. Inordertodothatwedevelopaso-calledfirstordermodel(in time)ofsanderosion,transportanddeposition,thatcanbeeasilytunedusingexperimentaltestcases. Theresulting advection-diffusionequationforthesuspendedphasecanthenbecoupledwithak−ωmodeldescribingtheturbulent fluidflow. Themathematicalmodelcanthenbesolvedwiththeaidofthefundamentalerosion/depositionboundary conditionatthesandbed,thatdependsontheshearstress. The plan of the paper is then the following. After this introduction, Section 2 presents the mathematical model mainly focusing on the advective phenomena, on the microscopic dynamics related to the collision between sand grains,andontheerosionboundarycondition. Theresultofsomenumericalsimulationsfocusingonhowthestation- aryconditionisreachedwhenwindblowsoveraheterogeneoussandbedarereportedinSection3. 2. TheErosion/Transport/DepositionModel We considerthe flow ofsand asa multiphase systemcomposed of sandgrains in air. Singlesand grainshave a densityρˆ andfloatinairwithavolumeratioφ (typicallywellbelow1%),sothatthepartialdensityofsandinairis s s ρ = ρˆ φ . Saturationobviouslyimpliesthatφ = 1−φ whereφ isthevolumeratioofair. Themixtureofairand s s s f s f sandgrainsisflowingonasandysurfacehavingaclosepackingvolumeratioφ¯ . s BecausewindflowisinaturbulentregimethefluidphaseismodelledbytheReynolds-averagedNavier-Stokes 2 equations(RANS)equations. Moreprecisely,ak−ωturbulencemodelisselectedtoprovidetheclosure[25] ρ∇f·(cid:32)v∂∂fvt=f +0vf ·∇vf(cid:33)=−∇p+∇·[ρf(νa+νt)∇vf] (1) ∂∂∂∂ωktt ++∇∇··((kωvvf)f)==∇∇··[([ν(νaa++ννt)t∇)∇kω]+]+PkP−ω−γωCkωω2 withstandardboundaryconditions. In(1)kistheturbulentkineticenergy,ωisthespecificdissipationrate,ν andν a t are,respectively,airandturbulenceviscosities,P andP aretheproductiontermsforkandω,andγandC aretwo k ω ω empiricalcostants. Indescribingthetransportofsandwestartobservingthatwhilesandparticlesaretrasportedbythewindtheydrift downwithacharacteristicsedimentationvelocityduetotheactionofgravity[9]. Inaddition,particlecollidegiving risetoanextra-fluxtermq . Hence,onewecanwritethefollowingequationforthesandvolumeratio coll ∂φ s +∇·(φ v +q )=0, (2) ∂t s s coll where v =v −w k. (3) s f sed This closure can be actually deduced under suitable modelling assumptions from a more general multiphase model involvingmassandmomentumbalanceforthesuspendedphase. Thesedimentationvelocityw canbeevaluatedbythebalanceofdragandbuoyancyforcesandstronglydepends sed onthegrainsize.Forinstance,ifwedefinetheparticleReynoldsnumberastheonefeltbythesandgrainsofdiameter dduringtheirflowandthereforebasedontherelativevelocitybetweenairandsolidparticles,Re =φ |v −v |d/ν , s f f s f thenintheso-calledNewtonregime,correspondingtoparticleReynoldsnumbersabove500,thedragcoefficientC D isapproximatelyconstant(forinstance,C =3isusedin[27,30]),sothatonehastheclassicalrelation d (cid:115) 4(ρˆ −ρˆ )g w = s f d. (4) sed 3ρˆ C f d However, at the other extreme, i.e., for particle Reynolds number below few units, corresponding to the so-called Stokesregime,C ≈ 24,sothatonehastheclassicalStokessedimentationvelocity d Res (ρˆ −ρˆ )g w = s f d2. (5) sed 18ρˆ ν f f Consideringthatinaeoliansandtrasportthephenomenonislimitedtothefirstfewcentimetersfromthegroundand thattheretheparticleReynoldsnumberisbelow100(seeFig. 2a),abetterevaluationofthesedimentationvelocity withrespecttoEqs. (4,5)canbeobtainedfittingtheexperimentaldependenceofthedragcoefficientontheparticle Reynoldsnumberasreviewedin[9]andshowninFig. 2b. Comingtothecollisiontermq ,alreadyintroducedbyBatchelor[10],neclectingitwouldimplythatsandgrains coll are only transported under the action of drag and gravity. However, collisions among particles have the important non-negligibleeffectofgeneratingasortofdiffusionofsandparticlesfromhighertolowerdensityareas,thatresults fundamentalinthismodellingframeworkforthestationaryformationofthesaltationlayer. Forhighvolumeratiosnearclosepacking,Auzeraisetal. [7]suggestedthefollowingnonlinearlawonthebasis ofexperimentaldata φk q =−D ∇ s , with k∈[2,5]. (6) coll eff φ¯ −φ s s 3 Figure2:(a)ParticleReynoldsnumberasafunctionofthesandgraindiameterofasedimentingparticleinair.(b)Sedimentationvelocityofsand grainsinstillairintheStokeslimitofEq. (5)andaccordingtotheexperimentssummarizein[9]. (c)Qualitativedependenceofthediffusivity coefficientνeff fromthedistancefromthesandbed. Suchatermenforcestheneedofavoidingthattheclosepackingvolumeratioφ¯ isreachedforthesedimentingmass. s However,asφ (cid:28)φ¯ inwind-blownsandapplications,therelationcanbesimplifiedto s s q =−ν φ k−1∇φ . (7) coll eff s s Fromtheconstitutiveviewpoint,thecollisionterms(6)or(7)canbeconsideredasderivingfromtreatingtheensemble ofparticlesasagas,sothatthestresstermforthesolidconstituentisisotropicthroughacoefficientthatdependson theparticledensity. SubstitutingEqs. (7)and(3)into(2)givesthenonlineardegenerateadvection-diffusionequation ∂φ ∂ (cid:16) (cid:17) s +∇·(φ v )− (φ w )=∇· ν φk−1∇φ . (8) ∂t s f ∂z s sed eff s s Actually,ifthelimitvaluek=1isalsoallowed,onehasthelinearcasesometimesusedintheliterature. Thecoefficientν mightbeconsideredascomposedofthreecontributionsν =ν +ν +ν ,thattakeinto eff eff s turb mol accountofthepossibledependencefrom • theshearrate,orbetterthevelocitygradientν =ν (∇φ ); s s s • the turbulence of the flow, so that this term results from the integration of the CFD simulation in a turbulent regime; • themoleculardiffusion,butasreportedin[18],thistermcanbeneglectedwithrespecttootherquantities. Actually,startingfromtheobviousobservationthatthebehaviourofsandparticlesisisotropic. Objectivity,i.e., independence of the constitutive dependence from the reference frame, implies that ν is a scalar isotropic function s ofatensor. Bytherepresentationtheoremofisotropicfunctionν canthenonlydependontheinvariantsoftherate s of strain tensor D = 1(∇v+∇vT). However, since the flow can be considered as a perturbation of a shear flow in 2 (cid:104) (cid:105) theverticalplane,theleadingcontributionisthesecondinvariantII = 1 (trD)2−trD2 . Forthisreasonweassume D 2 thatν = ν (II ). Thisisanimportantgeneralizationbecauseallpapersreferstoadependenceonthewindvelocity s s D u∗, which is a well defined quantity only on horizontal surfaces, while more general surfaces like dunes require a dependencefromanobjectiveinvariantoftherateofstraintensor. Inordertounderstandthemeaningofthecollisiontermwecanlookforstationaryconfigurationsforwhichall quantitiesdependonlyonthequotezandvelocitiesaredirectedalongaflatplane(atz=0inthedirectionx). Inthis case,thestationaryprofileinthesaltationlayercanbeobtainedintegrating ∂φ ν φk−1 s +w φ =0, eff s ∂z sed s jointly with the boundary condition at the sand bed. In the simplest case in which ν is constant and k = 1, one eff immediatelyhasanexponentialprofilewithacharacteristiclengthrelatedtothethicknessofthesaltationlayergiven byδ =ν /w andanintegrationconstantrelatedtotheerosionboundarycondition. s eff sed Ingeneral,referringtoFig. 2cthedependenceofthecoefficientonthedistancefromthesandbedshowsastrong diffusionclosertothesurfaceandalowdiffusionatadistanceclosetotheheightofthesaltationlayer,whileparticles thatescapefromthesaltationlayerareagainstronglymixedduetotheincreasingdiffusionduetoturbulence. 4 Thegeneralfeaturesoftheerosionboundaryconditioncanbeinferredfromexperimentsknownforalongtime thatshowthat,generallyspeaking,erosiononlyoccursiftheshearstressatthesurfaceτexceedsathresholdlevelτ, (cid:112) (cid:112) t orequivalentlythatu∗ = τ/ρˆ exceedsathresholdlevelu∗ = τ/ρˆ (see[22]andreferenccestherein). f t t f Referring to the last notation, because it is the one classically used in the literature (though from the numerical pointofviewwhatiscomputedisτwhichisthencomparedtoτ)onehasthefluxboundarycondition t (cid:16) (cid:17) q =−ν φk−1∇φ ·n=β u∗2 −u∗2 , s eff s s t + (cid:113) where (f)+ = (f)2+|f| stands for the positive part of f. Bagnold’s formula [8] u∗t = ρˆsρˆ−fρˆfgd is quite successful in determiningthedependenceofu∗ fromthegraindiameter. Ontheotherhand, thequantificationoftheparameterβ t isnotstraightforwardbecausemostoftheexperimentsmeasuresthehorizontalsandfluxparalleltothesurfacewhile fortheboundaryconditiononewouldneedsomeknowledgeoftheverticalfluxperpendiculartothesurfacewhichis theonerelatedtotheejectionofsandgrainsfromthesandbed. Veryrecently,onthebasisoftheirexperimentsHoet (cid:112) al. [14,15,16]proposedβ= A ρˆ d/g,sothatthesandfluxduetoerosiontakestheform H f wαρˆ (cid:16) (cid:17) q = fβ u∗2 −u∗2 , (9) s gd t + wherew=0.5m/sisthesandgrainejectionverticalvelocityevaluatedexperimentally[11,14]andαisadimension- lessfreeparametertobefittedtoexperimentalsandfluxprofiles. 3. Simulations As domain of integration we focus on the flow over a horizontal heterogeneous lane. This is neither an artifi- cial situation, nor a case of limited importance. In fact, most of the landforms in arid regions and roads are well approximated by a horizontal flat plane. This geometrical setup is also retained in most of the wind tunnel experi- mental studies present in the literature that are however mainly addressed to the characterisation of the windblown sandconcentrationandfluxinuniform,in-equilibriumsteadystateconditions. Nevertheless,uniformandsteadystate conditionsareexcessivelyidealones. Inthesesituationstheincomingwindalreadytransportsthemaximumallow- ablesanddensity,sothaterosionanddepositionarebalanced,andhencethesandbedsurfaceisneitherscoured,nor accumulated.Conversely,inmanyengineeringapplications,attentionmustbepaidtonon-equilibriumconditionsthat Figure3: Consideredsetupwithalternationoferodibleandnon-erodiblesurfaces,ofequilibriumandnon-equilibriumregions,andasketchofthe heightofthesaltationlayerδs. willcauseerosionorsettlementofthesandbed. So,assketchedinFig. 3,ourhorizontalplaneischaracterizedbythe alternationoferodiblesandyregionsandnon-erodibleregions,correspondingforinstancetoastreet. Inthesimula- tiontheinflowwindiscleanandwithafullydevelopedlogarithmicallyshapedvelocityprofile,withz =10−5mand 0 u∗rangingbetween0.3and1m/s. Thethresholdvalueforerosionisu∗ =0.25m/sandthegrainsizeisd =0.25mm. t FromthesimulationshowninFigures4and5,assoonaswindovercomestheboundarybetweenthenon-erodible anderodiblesurface(thatisputatadistanceL =1mfromtheinflowboundary)thesaltationlayerstartstodevelop. w Figure 4a plots the profiles of the sand volume ratio φ at several points at the beginning of the erodible zone. The s 5 2e!1 x = !0.1 m x = 4.00 m 1e!1 x = 0.0 m x = 6.40 m x = 0.1 m x = 6.45 m x = 0.2 m x = 6.50 m m] x = 0.4 m x = 6.60 m z [ x = 0.8 m x = 6.90 m x = 4.0 m x = 8.00 m 1e!2 0 1 2 3 4 5 0 1 2 3 4 5 (a) !s x 10!5 (b) !s x 10!5 Figure4: Sanddensityprofilesinthesaturation(a)andinthesedimentation(b)regions modelcorrectlypredictstheprogressiveuptakeofsandandincreaseinthedepthofthesaltationlayer,tillsaturation is reached because of the equilibrium between erosion and sedimentation. The thickness of the saltation layer at equilibriumisabout10cminqualitativeagreementwithexperiments.Viceversa,asshowninFig.4b,atthebeginning ofthesecondnon-erodiblezone, thereisareductionofthewindblownsanddensityintheupperpartofthestream becauseofthesedimentationprocess,notbalancedbysaltation. Actually, due to diffusion, some sand also diffuses upstream, mainly very close to the surface where diffusion is dominant. Referring to Fig. 5c, in this region one can notice an exponential growth of the scaled total sand flux Q/Q where Q is the sand flux at equilibrium. After the first soil discontinuity at x = 0 convection dominates sat sat andQsaturatesinalengthclosetoL =3m(seeFig. 5b),thatisnearlyindependentfromthescaledwindvelocity sat u∗/u∗,inqualitativeagreementwith[6]. t Whentheerodiblesurfaceendsthetotalsandflux Qreadilydecreasesinacharacteristicdistancethatincreases withthewindvelocityasshowninFig. 5b. ItcanbenoticedfromFig. 5dthatthedecreaseislessthanexponentialin qualitativeagreementwith[16]. In conclusion, the model (1,8) jointly with the fundamental erosion boundary condition (9) and other standard initialandboundaryconditionsisablenotonlytodescribetheerosion/transport/sedimentationprocessinstationary situation, butalsotocaptureallfeaturescharacterizingthedevelopmentofthesaltationlayeruptoequilibriumand ofitsreduction,thatoccurinnaturewhenthesandysurfacesisheterogeneous. References [1] A.A.A.Alghamdi, N.S.Al-Kahtani, (2005).Sandcontrolmeasuresandsanddriftfences ASCEJournalofPerformanceofConstructed Facilities,19:4,295-299. [2] M.P.Almeida,J.S.Andrade,H.J.Herrmann,(2006).Aeoliantransportlayer,Phys.Rev.Lett.96,018001. [3] R.S.Anderson,P.K.Haff,(1991).Windmodificationandbedresponseduringsaltationofsandinair,ActaMech.Suppl.1,21-51, [4] B.Andreotti,(2004).Atwo-speciesmodelofaeoliansandtransport.J.FluidMech.510,47–70. [5] B.Andreotti,P.Claudin,S.Douady,(2002).Selectionofduneshapeandvelocities.Part1:Dynamicsofsand,windandbarchans,Eur.Phys. J.B,28,321-339. [6] B.Andreotti,P.Claudin,O.Pouliquen,(2010).Measurementsofaeoliansandtransportsaturationlength,Geomorphology,123,343-348. [7] F.M.Auzerais,R.Jackson,W.B.Russel,(1988).Theresolutionofshocksandtheeffectsofcompressiblesedimentsintransientsettling,J. FluidMech.195,437-462. [8] R.Bagnold,ThePhysicsofBlownSandonDesertDunes,Methuen,1941, [9] E.Barnea,J.Mizrahi,(1973).Ageneralizedapproachtothefluiddynamicsofparticulatesystems:Part1.Generalcorrelationforfluidization andsedimentationinsolidmultiparticlesystems,Chem.Engng.J.5,171–189. [10] G.K.Batchelor,(1983).Diffusioninadilutepolydispersesystemofinteractingspheres,J.FluidMech.131,155–175. [11] M.Creyssels,P.Dupont,A.OuldElMoctar,A.Valance,I.Cantat,J.T.Jenkins,J.M.Pasini,K.R.Rasmussen,(2009).Saltatingparticlesina turbulentboundarylayer:Experimentandtheory,J.FluidMech.625,47–74. [12] D.A.Gillette,I.H.Blifford,D.W.Fryrear,(1974).Influenceofwindvelocityonsizedistributionsofaerosolsgeneratedbywinderosion,J. Appl.Meteor.79,4068–4075. [13] H.J.Herrmann,G.Sauermann,(2000).Theshapeofdunes,PhysicaA283,24–30. [14] T.D.Ho,A.Valance,P.Dupont,A.OuldElMoctar,(2011).Scalinglawsinaeoliansandtransport,Phys.Rev.Lett.106,094501. [15] T.D.Ho,A.Valance,P.Dupont,A.OuldElMoctar,(2012).Particlevelocitydistributioninsaltationtransport,Phys.Rev.E85,052301. 6 Figure5: Scaledtotalsandfluxoverthesandbedatdifferentwindvelocities [16] T.D.Ho,A.Valance,P.Dupont,A.OuldElMoctar,(2014).Aeoliansandtransport:Lengthandheightdistributionsofsaltationtrajectories, AeolianResearch12,65–74. [17] S.B.Ji,A.G.Gerber,A.C.M.Sousa,(2004).Aconvection-diffusionCFDmodelforaeolianparticletransport,Int.J.Num.MethodsFluids 45,797–817. [18] L.Q.Kang,(2012).Discreteparticlemodelofaeoliansandtransport: Comparisonof2Dand2.5Dsimulations,Geomorphology139-140, 536–544. [19] L.Q.Kang,D.Y.Liu,(2010).Numericalinvestigationofparticlevelocitydistributionsinaeoliansandtransport,Geomorphology115,156– 171. [20] L.Q.Kang,X.Y.Zou,(2011).Verticaldistributionofwind-sandinteractionforcesinaeoliansandtransport,Geomorphology125,361–373. [21] R.C.Kerr,J.O.Nigra,(1952).Desertsandcontrol,Bull.Amer.Ass.Petr.Geol.36,1541-1573. [22] J.F.Kok,E.J.R.Parteli,T.J.Michaels,D.B.Karam,(2012).Thephysicsofwind-blownsandanddust.Rep.Prog.Phys.75,106901. [23] J.F.Kok,N.O.Renno,(2009).Acomprehensivenumericalmodelofsteadystatesaltation(COMSALT).J.Geophys.Res.114,D17204. [24] K.Kroy,G.Sauermann,H.J.Herrmann,(2002).Aminimalmodelforsanddunes.Phys.Rev.Lett.88,54301. [25] F.R.Menter,M.Kuntz,R.Langtry,(2003).TenyearsofindustrialexperiencewiththeSSTturbulencemodel”,Turb.HeatMassTrans.4, 625-632. [26] P.Nalpanis,J.C.R.Hunt,C.F.Barrett,(1993).Saltatingparticleoverflatbeds,J.FluidMech.251,661–685. [27] E.J.R.Parteli,V.Schwa¨mmle,H.J.Herrmann,L.H.U.Monteiro,andL.P.Maia,(2006).Profilemeasurementandsimulationofatransverse dunefieldintheLenc¸o´isMaranhenses,Geomorphology81,29-42. [28] K.Pye,H.Tsoar,(1990).AeolianSandandSandDunes,Springer. [29] G.Sauermann,J.S.AndradeJr.,L.P.Maia,U.M.S.Costa,A.D.Araujo,H.J.Herrmann,(2003).Windvelocityandsandtransportonabarchan dune,Geomorphology54,245–255. [30] G.Sauermann,K.Kroy,H.J.Herrmann,(2001).Acontinuumsaltationmodelforsanddunes,Phys.Rev.E64,31305. [31] Y.P.Shao,A.Li,(1999).Numericalmodellingofsaltationintheatmosphericsurfacelayer,Boundary-LayerMeteorology91,199-225, 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.