Bull.not. Hist. Mus. Lond. (Bot.)26(l): 1-73 Issued27June1996 A of Chaetoceros morphological study species NATURAL HISTORYMUSEUM (Bacillariophyta) from the plankton of the Pacific Ocean of Mexico 01 JUL 1993 DAVIDU. HERNANDEZ-BECERRIL ^ DepartmentofBotany, UniversityofBristol, WoodlandRoad, BristolBS81UG Presentaddress:LaboratoriodeInvertebrados, FacultaddeCiencias, UNAM, Apdo.postal70-371, Coyoacdn, Mexico, D.F. 04510Mexico CONTENTS Introduction 1 General 1 Historicalbackgroundandtaxonomicrelationships 2 Recentstudieswithelectronmicroscopy 2 Materialsandmethods 2 Sourceofmaterial 2 Methods 3 Terminology 3 Systematicaccount 4 Discussion 67 Morphology 67 Taxonomicrelationships 68 Classification 68 Biogeography 70 References 71 Index .. ..73 SYNOPSIS. An analysis of 65 preserved marine plankton samples from waters of the Pacific Ocean of Mexico was undertaken in order to investigate the morphology of species of the diatom genus Chaetoceros Ehrenb. Forty-six Chaetoceros taxa were recorded from the samples. Of these, 35 were studied using light, scanning and transmission electron microscopy; a further 11 species were also recorded as present in the material, but these have been treated elsewhere. Mostofthetaxastudiedarecharacteristicofwarm-waterregions.Theirmorphologyisdiscussed,especially whereitdiffersfromthatpreviouslydescribed.Mostofthetaxaareillustratedbylightandelectronmicrographs.Anew section, Peruviana Hern.-Bee., within subgenus Chaetoceros (Phaeoceros), is proposed. New observations by electron microscopyarecontributedforthefollowingtaxa: C.atlanticusvar.neapolitanus,C.atlanticusvar.skeleton,C.brevis,C. compressus, C. densus, C. denticulatus, C. distorts, C.pendulus, and C. vistulae. Phylogenetic relationships with other generaandaspectsofdistributionandbiogeographyarealsorevised. INTRODUCTION General identifying species. Hargraves (1979) considered that resting sporescanalso aid identification, although theseare limited to Chaetoceros species are an important and often abundant speciesbelongingtosubgenusHyalochaete. componentofthemarinephytoplanktoncommunity; however, Many Chaetoceros species from the plankton of temperate the great number of species makes positive identification andcoldwatershavebeendescribedand studiedusingelectron difficult. The major characters traditionally used for microscopy (EM). However, tropical and subtropical species identificationatthespecieslevelare:theformandrelativelength havebeenlessstudiedusingsuchmodemtechniques. ofthechain,thefrustuleshape(girdleandvalveviews)andsize, This work is a study of the morphology and taxonomy of the structure and size of the girdle and valve mantle, the somespeciesofthegenus Chaetoceroswhichwereencountered orientation and form of the setae, and the number of intropicalandsubtropicalareas,inordertopresentasystematic chloroplasts. Evensen & Hasle (1975) found that the structure accountofthespeciesfromthoseregionsandcontributetothe and size of the rimoportula is another important feature for taxonomyofthegenus. TheNaturalHistoryMuseum,1996 D.U.HERNANDEZ-BECERRIL Historicalbackgroundandtaxonomicrelationships proposed by Round & Crawford in Round et al., 1990); the presentstudyfollowsthislatterclassification. The genus Chaetoceros was erected by Ehrenberg (1844), who described the type species, C. dichaeta, as well as three allied Recentstudieswithelectronmicroscopy genera: Dicladia, Goniothecium, and Syndendrium; the last two were at spore stage and all three are now considered to be Studies of Chaetoceros using electron microscopy began with synonyms of Chaetoceros (VanLandingham, 1968). Later, Okuno (1951), when he published microphotographs of C. Brightwell (1856) provided an emended description of criophilusCastrac. Helmcke & Krieger (1953) also made TEM Chaetoceros,includingtwonewspecies. Schiitt(1895)described observationsofChaetocerosspecies,asdidHendeyetal.(1954). a new genus, Peragallia, which is also now considered to be a Desikachary & Bahadur (1954) provided a study of the genus, synonymofChaetoceros(probablyC.peruvianusBrightw.). although gave few details. Desikachary (1956) attempted to Gran (1897) divided Chaetoceros into two subgenera: summarizetheelectronmicroscopystudies(mainlyTEM)made Phaeoceros and Hyalochaete (Hendey, 1964, has correctly on diatoms up to that time. However, his list of 11 species of substituted Chaetoceros for Phaeoceros, as this subgenus Chaetoceros did not include C. densus Cleve, which had been contains the type species). Ostenfeld (1903) divided the studied previously by Hendey et al. (1954). Okuno (1956) subgenera into 16 sections (two in Chaetoceros and 14 in provided additional information on some partially described Hyalochaete); further additions were made by Gran (1905). species. Later, Hendey (1959) prepared another list, this time Recent additions to the classification include the proposal of including 19 species of Chaetoceros studied using TEM and section Coarctata within subgenus Chaetoceros especially with regard to thecell wall. Okuno (1970)continued (Hernandez-Becerril, 199la), section Conspicua within to provide more information on Chaetoceros, while Blasco subgenusHyalochaete(Hernandez-Becerriletal., 1993),andthe (1970) made a detailed study of C. didymus Ehrenb. Other proposal for a new subgenus, Bacteriastroidea observations combining LM and TEM were made during the (Heraandez-Becerril, 19930). The present infrageneric study of life cycles (Hargraves, 1972; Stosch et al., 1973) and classification includes three subgenera and 19 sections morphology(Dukeetal., 1973). (includingtheoneproposedhere):fourinsubgenusChaetoceros Themostimportantrecentcontributiontoourknowledgeof and 15insubgenusHyalochaete. the genus Chaetoceros was made by Evensen & Hasle (1975), AccordingtoVanLandingham(1968)thereare 177speciesof who studied 14 species (four in subgenus Chaetoceros Chaetoceros,includingonefossil,fourdescribedassporestages, (Phaeoceros), 10 in subgenus Hyalochaete) using SEM and and five from freshwater environments, together with 36 TEM. Later, Fryxell (1978) studied three species of infraspecifictaxa: 19varietiesand 17forms.However,Hargraves Chaetoceraceae, including two Chaetocerosspecies, with SEM. (1979) considered that this number was an overestimation and Hargraves (1979) provided an important contribution on the somespeciesshouldberegardedasformsorvarietiesofothers. resting spores of Chaetoceros by combining LM, SEM, and Chaetoceros exhibits little variation in its general structure. TEM.Fryxell&Medlin(1981)studiedthreeChaetocerosspecies Thesubgeneramaybedistinguishedbythefollowingfeatures: usingLM and SEM,especiallywith regard tochain formation. I.Chaetoceros(Phaeoceros)-robustspecies;onepairofsetaeper Navarro (1982) listed and figured 25 species and onevarietyof valve;setaethickandstrong,mostwithchloroplastsandspines; Chaetoceros using LM, but gave no new data on their cell restingsporesknownonlyinonespecies. structure. Takano(1983)describedanewspecies, C.salsugineus II. Hyalochaete - delicate species; one pair of setae per valve; Takano, accompaniedbyelectron micrographs. Koch&Rivera setaethinandfragile,usuallylackingchloroplasts;restingspores (1984) studied nine species of subgenus Chaetoceros inmostofthespecies. (Phaeoceros), two of them not previously studied with EM. III. Bacteriastroidea-fairly robust species; three pairs of setae Additional observations have been made recently on valve & per valve (two pairs reduced), lacking chloroplasts; resting development(Li Volcani, 1985),morphology(Rogersonetal., sporesunknown. 1986; Giuffre & Ragusa, 1988; Hernandez-Becerril, 199la, b, Evensen & Hasle (1975) noted that the rimoportulae in 19920, 19930; Moreno Ruiz et al., 1993), taxonomy (Rines & subgenusHyalochaeteareshorterandlessprominentthanthose Hargraves, 1986; Hernandez-Becerril et al., 1993), and resting insubgenusChaetoceros,andareconfinedtoterminalcells. spores(Stockwell&Hargraves, 1986). The genus Chaetoceroshas beenconsidered to belongto the Oneofthelatestcontributionstotheknowledgeofthegenus family Chaetoceraceae Smith, together with Bacteriastrum wasmadebyRines&Hargraves(1988),whogaveanaccountof Shadbolt and Acanthoceros Honigm. (Simonsen, 1979). speciesencounteredinRhodeIsland,U.S.A.,usingLM,butalso However, Round et al. (1990) placed Chaetoceros within the discussing important taxonomic points within the genus as a EM family Chaetocerotaceae Ralfs, with Bacteriastrum and whole. Other studies with involve the discovery of more GoniocerosH. Perag. &Perag., althoughCrawfordetal. (1994) than one rimoportula per valve (Rines & Hargraves, 1990; latertransferredthetwoGoniocerosspeciestothegenusAttheya Hernandez-Becerril, 1991a, c; Hernandez-Becerril et al., 1993) West, leavingthefamilywithonlytwogenera: Chaetocerosand and thedescriptionofnewspecies(Hernandez-Becerril, 1991c, Bacteriastrum.OtherworkershaveincludedonlyChaetocerosin 19926). Chaetoceraceae (e.g. Lebour, 1930; Hendey, 1964), but it is evident,however,thatChaetocerosandBacteriastrumareclosely related (Fryxell, 1978; Simonsen, 1979). Acanthoceros is now MATERIALSANDMETHODS placedwithinitsownfamily,AcanthocerataceaeR.M.Crawford (Roundetal., 1990). In Simonsen's (1979)classification, Chaetoceraceae isplaced Sourceofmaterial within thesuborderBiddulphiineae, orderCentrales. In Round et al. (1990) Chaetocerotaceae is placed within the order This study was carried out using preserved marine plankton Chaetocerotales, subclass Chaetocerotophycidae (both taxa samples,somecollectedbytheauthor,butthemajoritysupplied STUDYOFCHAETOCEROSSPECIES by the following colleagues: R. Cortes-Altamirano Table1 Planktonsamplesusedforthisstudy. (ICMyL-UNAM), S. Gomez-Aguirre (IB-UNAM), and institutions:CIBandCICIMAR(LaPaz,B.C.S.,Mexico). Sample Sixty-five samples were obtained from the no. tropical-subtropicalPacificOceanofMexico: 29fromtheGulf ofCalifornia,31 fromoffthecoastofBajaCalifornia,fivefrom offthePacificcoastofMexico(seeTable 1). Methods All material prepared for light and electron microscopy was rinsedatleastfivetimeswithdistilledwater.Permanentslidesfor light microscopy were made from the rinsed and cleaned material.Themethodforcleaningdiatomsfollowedthatusedby Simonsen (1974) and Hasle (1978), which is basically the oxidation of the organic material (using KMnO4) followed by acid treatment (HC1). Identification, preliminary observations, and measurements were made with an Olympus CH light microscope, phasecontrast, and an Olympus Bhwith attached camera,phasecontrast,brightfieldanddifferentialinterference contrast. RinsedandcleanedmaterialwasusedforSEM. Dropsofthe prepared material were put onto coverslips, air-dried, and then coated with gold in a coating unit. Some previously identified specimens were isolated with the aid of a micropipette, and afterwardstheabovemethodwasfollowed.Criticalpointdrying was used fora few samples, after rinsingand dehydration. The scanning electron microscope used was a Phillips 501, usually operatedat 10-12kv. For transmission electron microscope studies, only cleaned materialwasused.Thiswascarefullyplacedwithamicropipette ontocopper,Formvar-coatedgrids,air-dried,andthenobserved directly.TheinstrumentwasaJEOL 1200EX. Terminology The terminology adopted in this study generally follows that proposedbyAnonymous(1975)andRossetal. (1979). Specific terminology for Chaetoceros follows Brunei (1966, 1972) and & Rines Hargraves(1988).However,thefollowingtermsusedin this paper have been modified from those cited (Hernandez-Becerril, 199la,c, I992a): - Thetermchainisused instead ofcolony, ascolonyimpliesa more complex organization with some interaction between itsmembers. - Chainsarearbitrarilyconsideredshortifthenumberofcells inthemislessthan 10,longif 11 cellsormore. Usually,there is no overlap between these two categories, as species are typicallylong-chainedorshort-chained. - The term heteropolar is applied in the sense of Rines & Hargraves (1988), where the two ends of a chain orthe two valvesofacellaremarkedlydifferentfromeachother(PI. 1, Figs3a, b). Thus, todistinguisheachend thetermsanterior and posterior are used: the anterior end having valves with curved setae, directed towards the chain or cell, and the posteriorendwithsetaedirectedawayfromthechainorcell. - Girdle view is regarded as the broad girdle view, unless otherwisestated(PI. 1,Fig. 1). - 'Aperture' is the space between siblingcells in a chain (PI. 1, Fig. 1).Thisisdescribedasnarrowifitislessthan5um,and aswideifmorethan 5 um. Afewspeciesshowaratherwide range of variation in the size of aperture and in these cases the average measurement is given. The term aperture is D.U.HERNANDEZ-BECERRIL chosen in preference to 'foramen' (e.g. Rines & Hargraves, and setae. Measurements: 7-13 um a.a., 17-25 jam p.a., 24-30 1988), because the foramen represents a structure in the umap.(PI.2,Figs 1,2) valve, while the aperture is not considered to be a valve structure. EM. Thegeneralmorphologyofthisspeciesisrelativelysimple. - Sateentradmeithnhaeovilerobgpyeoseiinstoninoalnmyeipndartathcleycofcreoldllilno(gwBertduonhteehire,ei,r1ap9so6s6iit)t.isioHvneorwiynevcteoherm,pclhteahxii,ns Tcblyhoessemvaatllolvtephoferacboeia,dssem,sanaotlflteth,hoeaungsehdtwsaeeeta(aPkeI.bcao2s,setFsaieagrsaer3ei-r6sr;oemgPueI.ltai3r,mlyeFsipgea.rpf4p)oa.rraTethneetd Ti)aPkoasniotio(n19i8n3)thaescthhaeins:et'ateerimnintahle' tiserumsiendalinvatlhvee,sneonstetohfe tvahlivcekeneidnggersuhnopwasralalelhytaolitnheelriinmesaonfdthiengitrhdelemiannstelretiorno(wPsI o3f, terminalcell, in thechain; 'intercalary'refersto setaeofthe Figs 1, 2). Rimoportulaearepresent ineachvalve in thechain, wtinehtriemcrihcnaaallraercyetlhvlia;clkv'eesrpseaacinnaddl'cleailsrlgs,uesrientdchlautnoditdnhegestcohtrehiebirenst,eirnfntuaeslrecdva,allaavrneydosfweittthahee olsoficmtaphtleeedsteuitbnaeestchhoeapnecgenenttsroaetthotehfeoiutrthvseeirdvyealb(vPaeIs.ef3aa,cneF.digaEslxst1oe-r3dn)ias.tlaTllyhl,ye.tsThtherseuecytaaurrreee tbhieggseramsepinveasl,vei;i)'Phoestietrioovnalivnart'h,etcheell:se'tiasoevailnvadri'f,fetrheentsevtaaleveisn ctihrecvuallarvein(PcI.ro3s,s-Fsiegcsti1,on2)a.tTthheeybatshee,npceurrfvoeraatneddfbuysepowriotihdssibalsining setae, beyond which point they become thicker, square in - T(hPIe.tle,rFmig'.an1)n.ulus'(Stosch, 1977)isusedtonamethe'central cross-section, and spine-bearing; the spines run in rows along hyaline field', as used by Evensen & Hasle (1975) and the each edge and the areola pattern comprisestwo striae between 'centralarea'inthesenseofOkuno(1956). twocostae(PI.2,Fig.7;PI.3,Figs5-7). - The measurements given for Chaetoceros species are: apical DISTRIBUTION. 29,42,63. aa.xai.s),(tpyeprivcaallvlyarthaexiwsi(dpt.ah.)i,natnhdebapreoratdurgeir(dalpe.)vi(ePIw.,1a,bFbirgesvi1a,t2e)d. REMARKS. Seefollowingvariety. 2. Chaetocerosatlanticusvar. skeleton(F. Schutt) Hust. SYSTEMATICACCOUNT Hustedt, 1930: 643, fig. 365; Cupp, 1943: 104, fig. 59-Bb, c; Sournia, 1968:46. ChaetocerosskeletonF.Schutt Thirty-five taxa belonging to the genus Chaetoceros are Schutt, 1895: 45, pi. 5, fig. 19; Peragallo & Peragallo, described,thetaxonomicarrangementfollowingthetraditional 1897-1908:482,pi. 134,fig.9. classification (e.g. Hustedt, 1930; Cupp, 1943; Hendey, 1964; ?ChaetocerospolygonusF.Schutt Rines&Hargraves, 1988).Thelocaldistribution(inthematerial Schutt, 1895:46,pi. 5,fig.24;Hustedt, 1920:pi. 323,figs6,8; studied)isindicatedbythesamplenumbers(seeTable 1). Lebour, 1930: 114,fig.80;Hendey, 1964: 120,pi. 14,fig. 1 (non C.polygonusF.SchuttsensuHust., 1920:pi.322,figs5,6= C. atlanticusvar.neapolitanus(Schrod.)Hust.). CHAETOCEROS Ehrenb.inBer.Akad. Wiss.Berlin1844:200 Pis4,5. (1844).Typespecies: ChaetocerosdichaetaEhrenb. LM. Chains straight, short, delicate. In girdle view, cells octagonal, the apical axis being longer. Valve face convex, CHAETOCEROS bearing a short, cylindrical process, mantle very low, lines of I.Subgenus (PhaeocerosGran) girdlestraight; apertureswide. Invalveview, cellselliptical, the 1.SectionATLANTICAOstenf. sspeitnaeeso;nlytesrlimgihntallydisveetrageing.esSseetnatieatlhliyck,ucnodairfsfee,rebnetairaitnegdmifnruotme Centre of valve with prominent, tubular protrusion of the intercalary setae, the latterdiverging and curvingmore widely, rimoportula.Apertureswide. almost parallel to the chain axis. Several small chloroplasts presentincellandsetae.Measurements: 10-17uma.a.,8-11 urn 1. Chaetocerosatlanticusvar. neapolitanus(Schrod.) p.a.,8-10umap.(PI.4,Figs 1,2) Must. EM. The valves are not as heavily silicified as those of var. neapolitanus, but the structure is otherwise similar to that Hustedt, 1930: 645, fig. 366; Hendey, 1937: 290; Cupp, 1943: described above. The costa pattern becomes more apparent in Cha1e0t4,ocfeigr.o5s9n-eBaep,onliotnand;usSoSucrhnrioad,.1968:46. 4t)h.isAvariheytayliannedrraidmiaitsesaflrsoomptrheesecnetntroenofthtehevvaallvvee(ePId.ge4, Faingd. Schroder, 1900:29,pi. 1,fig.4;Hendey, 1964: 119,pi. 16,fig.3. thickeningsinthemantlerunalongthelinesofthegirdle(PI.4, Pis2,3. Fig.6).Eachvalvebearsarimoportula,locatedinthecentre(PI. rLeMc.tanCghualianr,stshterapiegrhvta,lsvhaorratx,israbtehienrgrloobnugsetr.,tIhnegciorrdnleervsisewm,ooctelhl,s s5,hoFritge.r3()P.I.T4h,iFsigrses4e,m6b;lPeIs.t5,haFtigo.f1)t.heInpsriedecetdhienrgivmaorpioetryt,ulbautisias sgwhftlieheridnexogeeahmlmrgtyialot.dlynhdlaeclylueTtv.r,ehavrilImecmvndakie.,nvntcaraVollolarveblneuevlsvreaotisw,ne,f,dwaa,cclnuiedcnrieesvsnlslltipiseinogrnghfecetlal-lsgilybimpaerotcrdaiooylrctneailvhn,selgstxe;ytr,thaiaaeinebtgtesheaetar;ntrucainaaeadnlpniganegfrorfalytteeusprdreeroitenofvastceeiaerwasabigtrsodieiuednsit,,gen cbftFsoihoiergemml.ppoCplrw.2rei)e.tasshhteTeleoshnalpcnteeotewiiswocnotiutfrststuhorctvofihtaauiurfect.rukebsenaerieot,oafwwnpeleotla(lhePrlienIg-t.edsatee5nwp,tuvooaseFre.lciooogiOi.pssdnett6sade)he.ealrtaTasenhbtamidehamaettreahekrbiaaesassbostillsretaeuhstcaopcittflahultadrattreehpeaserpcc(naPtrsIreiae.erbltnesa5itdoe,s 45 from the chain axis, terminal setae arise at a similar angle closetothetip,whichissharp(PI. 5,Figs4,5,7). from the corners. Numerous small chloroplasts present in cell DISTRIBUTION. 42,45,48,52. Pervalvar Axis 1. Valve Face Girdle Aperture Setae Intercalary Terminal Setae Transapical Axis \^. Plate1 Fig. 1:diagramillustratingterminologyusedtodescribeatypicalchainofChaetoceros(broadgirdleview).Fig.2:valveviewofaspeciesof Chaetoceros.Figs3a,3b:examplesofaheterovalvarspecies:C.peruvianus(3a),andaheteropolarspecies:C.coarctatus(3b). D.U.HERNANDEZ-BECERRIL Plate2 Chaetocerosatlanticusvar.neapolitanus.Figs1,2:typicalchains.LM.Fig.3:completechain.SEM.Fig.4:wholecell.TEM.Fig.5:valve showingsetaeandrimoportula.TEM.Fig.6:detailofchain.SEM.Fig.7:detailofseta.TEM.Figs1-3,bar=20urn;Figs4-6,bar= 10urn;Fig. 7,bar=2nm. STUDYOFCHAETOCEROSSPECIES Plate3 Chaetocerosatlanticusvanneapolitanus.Fig. 1:partofvalvewithbrokensetaandrimoportula.TEM.Fig.2:partofvalveshowingsetae andrimoportula.SEM.Fig.3:detailofrimoportula.SEM.Fig.4:anothercellshowingsomethickeninginthemantle.SEM.Fig.5:setawith rowsofspines.SEM.Fig.6:fusionoftwosiblingsetae.TEM.Fig.7:setashowingporoidareolae.TEM.Figs1-3,5,7,bar=2urn;Fig.4,bar= 10urn;Fig.6,bar=5urn. D.U.HERNANDEZ-BECERRIL Plate4 Chaetocerosatlanticusvar.skeleton.Figs1,2:partofchainandcompletechain,respectively.LM.Fig.3:partofchain.SEM.Fig.4:two siblingvalvesshowingrimoportulae.TEM.Fig.5:detailofchain.SEM.Fig.6:onevalveshowinghyalinerimandthickeninginmantle.SEM. Figs1-3,bar=20urn;Figs4-6,bar=5urn. REMARKS. Chaetoceros atlanticus var. neapolitanus and var. 3. ChaetocerosdichaetaEhrenb. skeleton are morphologically very similar to the type, as indicatedbyEvensen&Hasle(1975)andKoch&Rivera(1984), Ehrenberg, 1844: 200; Hustedt, 1920: pi. 326, fig. 8; Hustedt, and their taxonomic position is in little doubt. They differ in 1930: 648,fig. 367; Hendey, 1937: 291, pi. 6,figs9, 10; Cupp, havinga more temperate or subtropical distribution. Contrary 1943: 106, fig. 60; Hendey, 1964: 119, pi. 13, fig. 1; Okuno, to Simonsen's (1974) opinion that distinction 'seems to be 1970: pi. 652; Evensen & Hasle, 1975: 157, figs 1-5; Koch & senseless' between these two taxa, I consider that their Rivera, 1984:64,figs6-12. taxonomicseparationshouldberetained. ChaetocerosjanischianusCastrac. STUDYOFCHAETOCEROSSPECIES Plate5 Chaetocerosatlanticusvar.skeleton.Fig. 1:terminalvalve.TEM.Fig.2:insideviewofvalveshowingrimoportulainternally.SEM.Fig.3: singlecell.SEM.Fig.4:detailofsetawithporoidareolae.TEM.Fig.5:tipofseta.TEM.Fig.6:pointoffusionintwosiblingsetae.TEM.Fig.7: detailofanotherseta.TEM.Fig. 1,bar=5\an;Figs2,4-7,bar=2um;Fig.3,bar= 10nm. 10 D.U.HERNANDEZ-BECERRIL Castracane, 1886:77. fromtheapicalaxis.Setaethick,coarse,bearingspines;terminal Pis6,7. setae differ from intercalary setae only in direction of divergence,intercalarysetaearisingalmostparalleltotheapical LM. Chains straight, of variable length. In girdle view, cells axis, terminal setaecurving to thechain axis. Numerous, small rectangular, nearly octagonal, corners smooth. Valve face chloroplastspresentincellandsetae. Measurements: 38-45 um gmeannetrlaelllyowf,lalti,newsiotfhgiardtlheins,traciyglhitn;draipcearltuprreoscveesrsyawtidteh.eIncevnatlrvee, a.a.,32^8ump.a.,3^umap.(PL8,Fig. 1) view, cells nearly circular or elliptical. Setae thick, coarse; EM. The valves follow the general pattern of structure for the intercalary setaecurve smoothly and fuse furtherout from the genus: heavily silicified and perforated by poroids, but here a cellsthanterminalsetae;terminalsetaecurvetowardsthechain weak costa pattern is observed and the poroids become scarse axis. Numerous, small chloroplasts present in cell and setae. close to the valve centre (PL 8, Figs 2-4). The annulus is an Measurements:6-11 uma.a., ll-12ump.a., 13-22umap.(PL6, oblong hyaline field in the valve centre (PL 9, Figs 2-4). The Figs 1,2) rimoportula is located at the very centre of the valve, being a otsnsaEtithtpohMmrehpto.pueeeuvlcragdaetsSrhl,uhisvorsnoceuehryttstoalthor;iinatsnbdrnecdeserhoripainle(pciciPcratnoIgielh.sshesettste7lau,mwny(ebaetPFesInrwi,i.toegelln6i.ore,cpeoi.1tFfeb)ihio.TnsegebhedH.streyvoae6vaa)rnpetl.lvdrhdviTeeeendhpseo(eeeePu(rdnIrtPgf.rcIiseoie.im,rmd6so6a,eo,fst,opeocFFotadiimcrhngguteib.dsrcuyklrw4o3eea-si)nln6m.tcai)ahtotn.liTnhgnvlsehHeoiwaelpesaiylotdrsasrgvl-boaeoaloiilnliafodvgsktfas,eoee patPosP5.ehrifLLerem6afo9p)b9r,lo.la,earesFoTaeiplFhth,gaaioeestgbld(ytsue5Pebt,Lrbiy16bnne)-9saea.4i,irs)cdfF.ooeirifnmogwAeesowitmsntf1eheo,tosu4hsafr)het.-rsasiomTlvaiaftehdlbereeplreydontspraawebortfteaioetaedsteessernr,puaatisrornwseifeehooassontclerohommotesnbuodttlsiatssitseehinttecdg(aaieenPera,cL(cdeuPcg8tleLe(,harsPretF8L,aiaciwgl9nFna,soidlsgtF6le.,yitpght75iesoe;;s structure inside (PI. 7, Figs 1-3, 5). Setae differ from the DISTRIBUTION. 16,42,45,48. dwhbpiourhflteifecceenrh(deoanihntnac,ogsopwsvelitaaontrenihi.gnefitgiTti?veuhe)sdeoi(iornPrfaLslipC7x.or,lsoaFiywtdiglsegoassnn,ota4fai,lncb7udi)ss.ghtcahphpeoieerrfooliiyundnsicdnr(eotPdshLset-i7asp,resecFhotiailgvoasnep3aa,itss6tm,eaarl8lns)l,o, HottRhhpaEieisMssnlAesietRos'usKnpdeS(ycw1.io9he7nisT5cha)Chir.seodmbstesaphneeseyrcuvpisaboe.tsseHiiitooscinwcooselnnovfoseoiefrfrl,ymCte.rhtdeewbloroabrtimyeemaadoljcptioooosrmrCwptd.iuaibtflrohfairener(tagiehlnnoicsECsee.vsBeadmbnieealsnetdesywneu,esaei&innnt DISTRIBUTION. 12,48. is central and in C. borealis it is located to one side) and the pRrEeMsAeRncKeS.ofEvweenaskenco&staHeasilne t(h1e97v5a)lvecsomomfentthaitsedspecoines,thae bpruetsleancckeinogfipnorCo.ibdosreianltish.esetaebases,characteristicofC.densus characteristicnotfoundinthematerialused forthisstudy. The hair-like structures on thevalveedge have been found by some 6. ChaetocerostetrastichonCleve authors (e.g. Evensen & Hasle, 1975; Koch & Rivera, 1984). Hernandez-Becerril, 1992a:367,figs 1-8. ThesesameauthorshavealsostatedthatthesetainC.dichaetais circular in cross-section, which differs from my observations DISTRIBUTION. 12. whereithasclearlybeenseenaspolygonal. 7. ChaetocerosseychellarusG. Karst. 2.SectionBOREALIAOstenf. Hernandez-Becerril, 1993a: 121,figs 16-27. Tubularrimoportulausuallyabsent.Aperturesnarrow. DISTRIBUTION. 18, 19,45,48,63. 4. ChaetocerosoctagonusHern.-Bee. 8. Chaetocerosdenticulatus Lander Hernandez-Becerril, 19926:218,figs 1,3-15. Lauder, 1864:79,pi.8,fig.9;Hustedt, 1920-1921:pi.324,fig. & DISTRIBUTION. 7, 12. 7, pi. 337, fig. 7; Allen Cupp, 1935: 135, fig. 53; Subrahmanyan, 1946: 129,figs 188-190;Sournia, 1968:47,pi. 5. ChaetocerosdensusCleve 3,fig.24;Simonsen, 1974:31;Desikachary&Prema, 1987:pi. 258,fig. 5. Cleve, 1901:299;Meunier, 1913: 14,pi. 1,figs 14-28;Hustedt, ChaetocerosnanodenticulatusOkamura 1920:pi.325,fig.9;Hustedt, 1930:651,fig.368;Lebour, 1930: Okamura, 1907:91. 115,fig. 81;Cleve-Euler, 1951: 96,figs 184a-c; Hendeyetal., Chaetocerosdenticulatusf.angustaHust. 1954: 28,pi. 1,fig. 1; Hendey, 1964: 120,pi. 17,fig. 1;Drebes, Hustedt, 1920:pi. 324,fig.5 & 1974: 64, figs 48a, b; Rines Hargraves, 1988: 50, figs 100, Chaetocerosdenticulatusf.lataHust. 101. Hustedt, 1920:pi. 324,fig.6. Chaetocerosborealisvar.densaCleve PL 10. Cleve, 1897:20,pi. 1,figs3,4. Pis8,9. LM. Chains straight, ofvariable length, robust. In girdle view, cellsoctagonal,withsmoothcornersandconstrictionsatgirdle LM. Chains straight, usually long, robust. In girdle view, cells level. Valve face conical, mantle high, lines of girdle straight; rectangular or nearly eight-sided, with smooth corners and apertureswide. Invalveview,cellselliptical, thesetaediverging constrictionsatgirdlezones;aperturesnarrow.Valvefaceflator atanangleofabout 15-20 fromtheapicalaxis.Setaearisefrom slightly convex, mantle high, lines of girdle straight. In valve close to the valve centre, thick and coarse, with a tooth-like view,cellselliptical, thesetaedivergingatanangleofabout30 projectionnearthebaseincontactwiththatofthesiblingsetae.