ebook img

A Monte Carlo investigation of the critical behavior of Stavskaya's probabilistic cellular automaton PDF

0.49 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Monte Carlo investigation of the critical behavior of Stavskaya's probabilistic cellular automaton

AMonteCarloinvestigationofthecriticalbehaviorofStavskaya’sprobabilisticcellularautomaton J. Ricardo G. Mendonc¸a∗ InstitutodeF´ısica,UniversidadedeSa˜oPaulo–CaixaPostal66318,05314-970Sa˜oPaulo,SP,Brazil Stavskaya’smodelisaone-dimensionalprobabilisticcellularautomaton(PCA)introducedintheendofthe 1960’s as an example of a model displaying a nonequilibrium phase transition. Although its absorbing state phasetransitioniswellunderstoodnowadays,themodelneverreceivedafullnumericaltreatmenttoinvestigate itscriticalbehavior. InthisbriefreportwecharacterizethecriticalbehaviorofStavskaya’sPCAbymeansof Monte Carlo simulations and finite-size scaling analysis. The critical exponents of the model are calculated andindicatethatitsphasetransitionbelongstothedirectedpercolationuniversalityclassofcriticalbehavior, as it would be expected on the basis of the directed percolation conjecture. We also explicitly establish the relationshipofthemodelwiththeDomany-KinzelPCAonitsdirectedsitepercolationline,aconnectionthat seemstohavegoneunnoticedintheliteraturesofar. PACSnumbers:05.70.Fh,64.60.Ht,64.60.De 1 Keywords:Stavskayamodel,probabilisticcellularautomata,phasetransition,Domany-Kinzel,directedpercolation 1 0 2 I. INTRODUCTION verysimplerule: withprobabilityε ∈ [0, 1], ηi(t+1) = 1, otherwiseη (t+1)=η (t)·η (t). n i i−1 i a Stavskaya’s model is a one-dimensional probabilistic cel- Clearly, 1 = (1,1,...,1) is an absorbing state of the J lular automaton (PCA) proposed in the end of the 1960’s by model. Itcanbeproventhatthereexistsacriticalε∗suchthat 2 theRussianschoolofMarkovprocessesasanexampleofan forε > ε∗ theonlyinvariantmeasureofStavskaya’sPCAis 2 interactingparticlesystempresentinganonequilibriumphase δ1, the measure concentrated in 1, and that for ε < ε∗ the transition [1–3]. The model is related with the directed site invariant measures are translation-invariant convex combina- ] h percolation(DP)process,ofwhichitcanbeviewedasaone- tions of the form αµε + (1 − α)δ1, with 0 < α < 1 and c sidedversion,aswellaswiththeDomany-KinzelPCAinone µε themeasurethatputsmassonconfigurationswithdensity e ofitsmanifolds(cf.Sec.II)[4]. Roughlyspeaking,thephase 0<µε(1)<1[2,3,6]. Earlyboundsonthecriticalpointes- m transitioninStavskaya’smodelfollowsfromitsattractiveness timate0.09<ε∗ <0.323[3,6]. Theupperboundwaseven- - (itstendencyforformingclusters)andtheexistenceofanab- tually confirmed, but not improved, by different techniques t a sorbingstate,andiswellunderstoodnowadays. [8], while the lower bound never received a reassessment; it t However, while many rigorous results exist for this model should be remarked that lower bounds on critical values of s . [1–3, 5–11], it has never received a full numerical treatment interactingparticlesystemsarenotoriouslydifficulttoobtain. t a to estimate its critical point and critical exponents. In this Stavskaya’sPCAisrelatedwiththeDomany-Kinzel(DK) m briefreportweproceedtosuchaninvestigationofStavskaya’s PCA [4] by taking the complementary (negated) variables - model by Monte Carlo simulations and finite-size scaling η¯ = 1−η . ItcanthenbeseenthatStavskaya’sPCAcorre- d i i techniques. Besides closing a gap in the characterization of sponds to the DK PCA on the line p = p = 1 − ε, i.e., n 1 2 themodel,ourresultsaddanotherbitofevidenceinfavorof over the directed site percolation (site DP) line of the DK o c the DP conjecture, according to which phase transitions into PCA parameter space. Notice, however, that the dynamics [ anabsorbingstateinshort-rangedsinglecomponentsystems in the DK PCA is defined for each of its two sublattices in intheabsenceofconservedquantitiesallbelongtothesame the time direction (even and odd time steps), while the dy- 2 universality class of critical behavior [12, 13]. Remind that namicsinStavskaya’sPCAisdirect. OnthesiteDPline,the v 9 although the DP conjecture is grounded on solid theoretical DK PCA displays an inactive-active phase transition at the 8 argumentsandhasbeenverifiedinahostofmodelsystems,it critical point p∗ = p∗ = 0.705489(4) [17], corresponding 1 2 4 (i) could not be proved rigorously yet, and (ii) has only very toε∗ = 0.294511(4),withintherigorousboundsmentioned 1 thinexperimentalevidence[14,15],sothatitcontinuestorely before (the numbers between parentheses indicate the uncer- . 1 onmodelsystemstosustainitself. taintyinthelastdigitordigitsofthedata). Curiously,there- 1 lationshipbetweenStavskaya’sPCAandtheDKPCAseems 0 tohavegoneunnoticedinpreviousinvestigations[6–11], al- 1 II. STAVSKAYA’SMODEL thoughacouplingschemewithan“independentorientedper- : v colation” process equivalent with site DP was used in [8]. It i Stavskaya’s model is a two-state PCA defined on a one- isworthmentioningthatStavskaya’smodel,togetherwithan- X dimensional periodic lattice of L cells specified by the con- other PCA introduced by the same epoch, Vasil’ev’s model r a figuration η(t) = (η1(t), η2(t), ..., ηL(t)) ∈ {0,1}L and [6,18]—whichcorrespondstothep2 =0lineintheDKPCA evolving in discrete time t ∈ N according to the following or, equivalently, to a probabilistic version of CA rule 18 in Wolfram’sclassificationscheme[19]—predatestheDKPCA andrelatedmodelsbyalmosttwodecades,butdidnotreceive much attention, not even when CA and PCA reentered the ∗Email:[email protected] mainstreamscientificagendainthe1980’s. 2 11 00..55 LL== 88000000 ((aa)) 00..88 00..66 00..3322 ρρ −− 00..2244 11 ρρ 00..44 00..1166 −− 11 00..0088 00..22 00 0.288 0.291 0.294 0.297 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.05 ε 2000 20000 200000 FIG.1. StationarydensityofinactivecellsinanautomatonofL = t 8000cellsaveragedover1000samples. Theinsetshowsthecurve 00..2255 close to the critical point ε∗ = 0.29450(5) (value obtained from ((bb)) time-dependentsimulations). 00..2200 III. THECRITICALBEHAVIOR δδ 00..1155 Our Monte Carlo (MC) simulations of Stavskaya’s model ranasfollows. Foragivenε,thePCAisinitializedwitheach 0.10 η (0) = 1,1 (cid:54) i (cid:54) L,drawnindependentlywithprobability i 1/2. Stationarystatequantities,e.g. thedensityofactivecells ρ =L−1(cid:80) η ,arethensampledafterthesystemisrelaxed 0.05 L i i 0.000005 0.00005 0.0005 through100LMCsteps(MCS),withoneMCSequivalentto 1/t a synchronous update of the states of all L cells of the au- tomaton. This amount of relaxation proved enough for our FIG.2. (a)Logarithmicplotof1−ρ (t)withL = 20000cells. L purposes. Moreover, except for the data shown in Figure 1, (b) Instantaneous values of δ obtained from the curves in (a). In our results were obtained from time-dependent simulations, both graphs we have, from the uppermost curve downwards, ε = so that estimates on the stationary state did not concern us 0.2943,0.2944,0.2945,0.2946,and0.2947.Fromthesecurveswe much. Wereferthereaderto[16]foraniceexpositionofthe estimatedε∗ = 0.29450(5)andδ = 0.155(5). Thedashedlinein time-dependenttechniquesemployedinwhatfollows. panel(b)indicatesthebestvalueavailableforδDP. The critical behavior of the model can be determined by assumingthescalingrelation Noticethatthisestimateofε∗completelyagreeswiththecrit- 1−ρL(t;∆)∼t−β/ν(cid:107)Φ(∆t1/ν(cid:107), tν⊥/ν(cid:107)/L) (1) icalpointp∗1 =p∗2 =0.705489(4)=1−ε∗foundforthesite DPtransitionintheDKPCA[17]. close to the critical point ε∗, with ∆ = ε − ε∗ (cid:62) 0. We Theexponentν canbeobtainedbyplottingtδ(1−ρ (t)) L L (cid:107) L do not put a subscript ‘L’ on ∆ or the critical exponents to versus t∆ν(cid:107) and tuning ν(cid:107) to achieve data collapse with dif- lightenthenotation. Foraverylargesystem,relation(1)be- ferent ∆. The collapsed curves shown in Figure 3 were ob- comes1−ρL(t;∆) ∼ t−β/ν(cid:107)Φ(∆t1/ν(cid:107)),withΦ(x (cid:28) 1) ∼ tained with a combination of central values ε∗ = 0.29451, constantandΦ(x (cid:29) 1) ∼ xβ. Theinvestigationofthetime- δ =0.157,andν =1.73. Wefoundithardtodiscernvalues (cid:107) dependent profiles ρ (t;∆) then allow for the simultaneous ofν bylessthan±0.02. Otherwise, wefoundthedatacol- L (cid:107) determination of ε∗ and δ = β/ν , and judicious perusal of lapseverysensitivetothechoiceofε∗; infact,itcouldhave L (cid:107) (1)andderivedrelationsfurnishtheotherexponents. beenusedtolocateε∗ withinquitetightbounds. Combining Figure 1 displays the density profile ρ for an automaton δandν furnishesβ =δν =0.27(1)(orβ =0.268(10)). L (cid:107) (cid:107) ofL=8000cellsinthestationarystate. Weactuallyplotthe Thethirdindependentexponentcanbeobtainedbyplotting densityofinactivecells1−ρ instead,becauseitisthisquan- tδ(1−ρ (t)) versus t/Lz for different L and tuning z until L L tity that enters the scaling relation (1). The steep transition data collapse for some z. Since z = ν /ν by definition, (cid:107) ⊥ aboutε∗ anticipatesasmallvaluefortheexponentβ. Toesti- thisprocedurealsogivesν onceν isknown. Thefinite-size L ⊥ (cid:107) mateε∗ moreprecisely,weplot1−ρ (t)closetoε(cid:39)0.294 curvesappearinFigure4. Wefoundz =1.6(1). Thesethree L forsomelargeL. Onthecriticalpoint,1−ρ (t) ∼ t−δ and exponents, δ, ν , and z, suffice to determine the universality L (cid:107) wecanestimateδbyplottinglog [(1−ρ (t/b))/(1−ρ (t))] class of critical behavior of the model, the other exponents b L L against 1/t for some small b. Our data for L = 20000 and followingfromwellknownhyperscalingrelations[16]. b = 10appearinFigure2. Fromthesedatawecouldextract The best values available for δ, ν , β, and z for the (cid:107) the estimates ε∗ = 0.29450(5) and δ = 0.155(5). Similar DP process on the square lattice are δ = 0.159464(6), DP estimates using 4000 (cid:54) L (cid:54) 16000 confirm these values. ν = 1.733847(6), β = 0.276486(8), and z = (cid:107)DP DP DP 3 00..9900 1.580745(10)[20]. Thus,withintheerrorbarsourestimates for these exponents put the critical behavior of Stavskaya’s modelphasetransitionintheDPuniversalityclass,asitwould 00..8800 beexpectedonthebasisoftheDPconjecture. δδ tt )) ρρ −− 11 (( 00..7700 IV. SUMMARYANDCONCLUSIONS We estimated the critical point of Stavskaya’s model at 0.60 ε∗ = 0.29450(5) and found that the model belongs to the 0.0003 0.003 0.03 DPuniversalityclassofcriticalbehavior. Thevalueof1−ε∗ t∆ν is in excellent agreement with the critical point p∗ = p∗ = (cid:1) 1 2 0.705489(4)forthesiteDPtransitionintheDKPCA[17]. FIG.3. Datacollapseofthescaledtime-dependentdensityprofiles The estimates of the critical point as well as of the criti- forε−ε∗ =±0.0001,±0.0002.Theupper(lower)branchescorre- cal exponents could be improved by larger simulations, but spondtoε<ε∗(ε>ε∗). Thebestdatacollapsewasobtainedwith thecentralvaluesε∗ =0.29451,δ=0.157,andν =1.73. we believe that this would be superfluous, since both the lo- (cid:107) cationofthecriticalpointofthemodelwithinbetterbounds thanthoseprovidedbyrigorousandmean-fieldanalysesand 00..7777 thedeterminationofitsuniversalityclassofcriticalbehavior couldbeestablishedwithinthecomputationaleffortsreported 00..7766 here, namely, afewthousandhoursofCPUtimeonInteli7- δδtt 00..7755 860processorsrunningGCC/Linuxat2.8GHz. ρρ)) Takentogether,ournumericalresultsforStavskaya’sPCA −− 11 00..7744 and the rigorous results existent on its relationship with the (( generaltheoryofcellularautomataandpercolationprocesses 0.73 provideareasonablycompletecharacterizationofthemodel. The establishment of its relationship with the DK PCA on 0.72 its site DP line allows the translation of results between the 0.0001 0.001 0.01 0.1 1 two models, with potential benefits for future developments t/Lz involving either model per se or as approximations (e.g., on couplingschemes)tomodelsofgreatercomplexity. FIG.4.Finite-sizedatacollapseofthescaledtime-dependentdensity profilesonthecriticalpointε∗ =0.29450for4000(cid:54)L(cid:54)20000. Bestdatacollapsewasobtainedwithδ=0.157(thesamevalueasin Fig.3)andz =1.6.Noticethatthedataisspreadover(cid:38)3decades ACKNOWLEDGMENTS andthattherangeinthey-axisisreasonablytight. The author thanks Prof. Ma´rio J. de Oliveira (IF/USP) for severalhelpfulconversations. [1] O.N.StavskayaandI.I.Piatetski-Shapiro,“Homogeneousnet- [6] A.L.Toom,N.B.Vasilyev,O.N.Stavskaya,L.G.Mityushin, worksofspontaneouslyactiveelements,”Probl.Kibernet.20, G.L.Kurdyumov, andS.A.Pirogov, “DiscretelocalMarkov 91–106(1968)(inRussian)[Englishtransl.: Syst.TheoryRes. systems,” inR.L.Dobrushin, V.I.Kryukov, andA.L.Toom 20,75(1971)]. (eds.),StochasticCellularSystems: Ergodicity,Memory,Mor- [2] M.G.Shnirman,“OntheergodicityofacertainMarkovchain,” phogenesis (Manchester University Press, Manchester, 1990), Probl. Kibernet. 20, 115–124 (1968) (in Russian) [English pp.1–182. transl.:Syst.TheoryRes.20,106(1971)]. [7] C.MaesandS.B.Shlosman,“Ergodicityofprobabilisticcellu- [3] A.L.Toom,“Afamilyofuniformnetsofformalneurons,”So- larautomata: Aconstructivecriterion,”Commun.Math.Phys. vietMath.Dokl.9,1338–1341(1968). 135,233–251(1991). [4] E.DomanyandW.Kinzel, “Equivalenceofcellularautomata [8] H. de Jong and C. Maes, “Extended application of construc- toIsing-modelsanddirectedpercolation,”Phys.Rev.Lett.53, tivecriteriaforergodicityofinteractingparticlesystems,”Int. 311–314(1984); W.Kinzel, “Phasetransitionsofcellularau- J.Mod.Phys.C7,1–18(1996). tomata,”Z.Phys.B58,229–244(1985). [9] G. Gielis and C. Maes, “Percolation techniques in disordered [5] A.L.Toom,“Stableandattractivetrajectoriesinmulticompo- spinflipdynamics: Relationtotheuniqueinvariantmeasure,” nentsystems,”inR.L.DobrushinandYa.G.Sinai(eds.),Mul- Commun.Math.Phys.177,83–101(1996). ticomponentRandomSystems, AdvancesinProbabilityVol.6 [10] J. Depoorter and C. Maes, “Stavskaya’s measure is weakly (MarcelDekker,NewYork,1980),pp.549–575. Gibbsian,”MarkovProc.Relat.Fields12,791–804(2006). 4 [11] A.deMaere,“Phasetransitionandcorrelationdecayincoupled [17] J. W. Essam, A. J. Guttmann, and K. De’Bell, “On two- maplattices,”Commun.Math.Phys.297,229–264(2010). dimensionaldirectedpercolation,” J.Phys.A:Math.Gen.21, [12] H. K. Janssen, “On the nonequilibrium phase transition in 3815(1988);R.N.OnodyandU.P.C.Neves,“Seriesexpan- reaction-diffusionsystemswithanabsorbingstationarystate,” sionofthedirectedpercolationprobability,”J.Phys.A:Math. Z.Phys.B42,151–154(1981). Gen.25,6609(1992). [13] P. Grassberger, “On phase transitions in Schlo¨gl’s second [18] N.B.Vasil’ev,“Limitbehaviorofonerandommedium,”Probl. model,”Z.Phys.B47,365–374(1982). Peredachi Inf. 5, 68–74 (1969) (in Russian) [English transl.: [14] H. Hinrichsen, “On possible experimental realizations of di- Probl. Inf. Transm. 5, 57–62 (1968)]; N. B. Vasil’ev, “De- rectedpercolation,”Braz.J.Phys.30,69–82(2000);“Observa- scriptionofstationaryprobabilitiesofsomeMarkovinteraction tion of directed percolation—a class of nonequilibrium phase systems,” Probl. Peredachi Inf. 11, 109–112 (1975) [[English transitions,”Physics2,96(2009). transl.:Probl.Inf.Transm.11,344–346(1975)]. [15] K. A. Takeuchi, M. Kuroda, H. Chate´, and M. Sano, “Di- [19] S.Wolfram,“Statisticalmechanicsofcellularautomata,”Rev. rectedpercolationcriticalityinturbulentliquidcrystals,”Phys. Mod.Phys.55,601–644(1983). Rev.Lett.99,234503(2007);“Erratum,”Phys.Rev.Lett.103, [20] I. Jensen, “Low-density series expansions for directed perco- 089901(E)(2009);“Experimentalrealizationofdirectedperco- lation: I. A new efficient algorithm with applications to the lationcriticalityinturbulentliquidcrystals,” Phys.Rev.E 80, squarelattice,”J.Phys.A:Math.Gen.32,5233–5249(1999); 051116(2009). M. A. Mun˜oz, R. Dickman, A. Vespignani, and S. Zapperi, [16] H.Hinrichsen,“Nonequilibriumcriticalphenomenaandphase “Avalancheandspreadingexponentsinsystemswithabsorbing transitions into absorbing states,” Adv. Phys. 49, 815–958 states,”Phys.Rev.E59,6175–6179(1999);J.R.G.Mendonc¸a, (2000). “Precise critical exponents for the basic contact process,” J. Phys.A:Math.Gen.32,L467–L473(1999).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.