ebook img

A Modular Framework for Optimizing Grid Integration of Mobile and Stationary Energy Storage in Smart Grids PDF

224 Pages·2019·2.226 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Modular Framework for Optimizing Grid Integration of Mobile and Stationary Energy Storage in Smart Grids

Dominik Pelzer A Modular Framework for Optimizing Grid Integration of Mobile and Stationary Energy Storage in Smart Grids A Modular Framework for Optimizing Grid Integration of Mobile and Stationary Energy Storage in Smart Grids Dominik Pelzer A Modular Framework for Optimizing Grid Integration of Mobile and Stationary Energy Storage in Smart Grids Dominik Pelzer Hamburg, Germany Dissertation TU München, Germany, 2018 ISBN 978-3-658-27023-0 ISBN 978-3-658-27024-7 (eBook) https://doi.org/10.1007/978-3-658-27024-7 Springer Vieweg © Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer Vieweg imprint is published by the registered company Springer Fachmedien Wiesbaden GmbH part of Springer Nature The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany Table of Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Scope of This Work. . . . . . . . . . . . . . . . . . . . 10 1.5 Organization of This Work . . . . . . . . . . . . . . . 11 2 The Big Picture: Smart Grids, Electricity Markets, En- ergy Storage Systems and Electric Vehicles 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Smart Grids . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Demand-Side Management and Energy Stor- age Systems . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Control Paradigms . . . . . . . . . . . . . . . . 16 2.3 Electricity Markets . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Market Operators . . . . . . . . . . . . . . . . 19 2.3.2 Market Types and Service Classes . . . . . . . 19 2.3.3 Pricing Schemes . . . . . . . . . . . . . . . . . 22 2.4 Energy Storage . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Battery Technologies . . . . . . . . . . . . . . . 25 2.4.2 SuitabilityofBatteryEnergyStorageSystems for the Different Services and Markets . . . . . 27 2.4.3 Drivers for the Market Development of Bat- tery Energy Storage Systems . . . . . . . . . . 28 2.5 Plug-In Electric Vehicles . . . . . . . . . . . . . . . . . 29 2.5.1 Market Aspects . . . . . . . . . . . . . . . . . . 29 2.5.2 Power Grid Impact . . . . . . . . . . . . . . . . 30 2.6 Grid Integration of Battery Energy Storage Systems and Plug-In Electric Vehicles . . . . . . . . . . . . . . 35 2.6.1 Classification of Coordination Approaches . . . 35 vi Table of Contents 2.6.2 Profitability of Battery Energy Storage Sys- tems for Power Grid Services . . . . . . . . . . 37 2.6.3 Battery Degradation Monetization . . . . . . . 40 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Framework Architecture 45 3.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Framework Overview . . . . . . . . . . . . . . . . . . . 47 3.3 Components . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Interactions . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5 Transportation and Power System Simulation . . . . . 64 3.5.1 CityMoS Traffic . . . . . . . . . . . . . . . . . . 64 3.5.2 CityMoS Power . . . . . . . . . . . . . . . . . . 67 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 70 4 Scheduling Approach 73 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Multi-StageOptimizationProblemwithRollingHorizon 74 4.2.1 Formulation as Dynamic Programming Problem 77 4.2.2 Solution Algorithm . . . . . . . . . . . . . . . . 78 4.3 Equivalent Circuit Model . . . . . . . . . . . . . . . . 79 4.3.1 Reference Cell and Test Cell. . . . . . . . . . . 80 4.3.2 Open Circuit Voltage. . . . . . . . . . . . . . . 81 4.3.3 Internal Resistance . . . . . . . . . . . . . . . . 83 4.4 Charging Model . . . . . . . . . . . . . . . . . . . . . . 87 4.4.1 Linear Model . . . . . . . . . . . . . . . . . . . 88 4.4.2 EquivalentCircuitModel-BasedChargingModel 88 4.5 Battery Degradation Monetization Model . . . . . . . 94 4.5.1 Battery Degradation Processes . . . . . . . . . 94 4.5.2 Basic Model Assumptions . . . . . . . . . . . . 96 4.5.3 Physical Degradation Formalization . . . . . . 98 4.5.4 End of Life Estimation . . . . . . . . . . . . . . 102 4.5.5 Computing State of Health . . . . . . . . . . . 103 4.5.6 Degradation Monetization . . . . . . . . . . . . 104 Table of Contents vii 4.5.7 Degradation Model Parametrization . . . . . . 105 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 106 5 Applications 109 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 General Parameters . . . . . . . . . . . . . . . . . . . 109 5.3 Understanding the Implications of the Degradation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.1 Capacity Loss and the Influence of Calendar and Cycle Degradation on Costs . . . . . . . . 111 5.3.2 Dependency of Degradation Costs on Other Battery Parameters . . . . . . . . . . . . . . . 119 5.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . 121 5.4 Parameter Sensitivity . . . . . . . . . . . . . . . . . . 123 5.4.1 General Parameters . . . . . . . . . . . . . . . 123 5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . 123 5.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . 130 5.5 Comparison of Charging Strategies in a Singapore Context . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.5.1 Data and Parameters. . . . . . . . . . . . . . . 133 5.5.2 Determining Battery Capacity . . . . . . . . . 135 5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . 136 5.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . 143 5.6 Economic Viability of Battery Energy Storage Sys- tems in Different Markets . . . . . . . . . . . . . . . . 146 5.6.1 Markets . . . . . . . . . . . . . . . . . . . . . . 147 5.6.2 Parameters . . . . . . . . . . . . . . . . . . . . 147 5.6.3 Results . . . . . . . . . . . . . . . . . . . . . . 148 5.6.4 Conclusion . . . . . . . . . . . . . . . . . . . . 156 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 158 6 Conclusion 161 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.1.1 Methodology . . . . . . . . . . . . . . . . . . . 161 viii Table of Contents 6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . 163 6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.2.1 Extending the Framework’s Range of Appli- cation . . . . . . . . . . . . . . . . . . . . . . . 167 6.2.2 DevelopmentTowardsaSchedulingMechanism Integrated in Battery Management Systems . . 170 6.2.3 Extended Degradation Models . . . . . . . . . 173 6.2.4 Business Models for Battery Energy Storage Systems . . . . . . . . . . . . . . . . . . . . . . 174 Bibliography 177 Publications 205 List of Figures 2.1 Basic load shaping techniques. . . . . . . . . . . . . . 16 2.2 Simulation results showing the impact of PEV charg- ing on the Singapore power grid. . . . . . . . . . . . . 33 3.1 Pricedatabaseschemecontainingtherequiredmarket information. . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Framework architecture overview. . . . . . . . . . . . . 51 3.3 Overviewoftheclassesofthemodulesstorage_system, storage_unit and storage_commitment. . . . . . . . . 59 3.4 Conceptualized sequence diagram. . . . . . . . . . . . 65 4.1 Measured OCV data and fit function. . . . . . . . . . 82 4.2 Illustration of ohmic resistance. . . . . . . . . . . . . . 84 4.3 Charge polarization voltage of the test cell. . . . . . . 86 4.4 Comparison between measured data and fit functions. 87 4.5 Illustrationofcalendarandcyclecapacitylossfortwo cycling regimes. . . . . . . . . . . . . . . . . . . . . . . 99 5.1 Various model output parameters for a sequence of two different cycling regimes. . . . . . . . . . . . . . . 113 5.2 Calendar and cycle capacity loss as a function of time for two different cycling regimes. . . . . . . . . . . . . 114 5.3 Comparison of various model outputs for two investi- gated scenarios with two cycling regimes. . . . . . . . 115 5.4 Degradationcostsandcontributionofagingprocesses to overall degradation for different state transitions. . 116 5.5 Calendar costs per hour for 20kWh of battery capac- ity at different temperatures. . . . . . . . . . . . . . . 118 5.6 Average degradation costs considering calendar and cycle aging by varying battery price, battery capacity and the EOL condition. . . . . . . . . . . . . . . . . . 120 x List of Figures 5.7 ΔΓ dependency of calendar and cycle costs in a EOL log-log plot. . . . . . . . . . . . . . . . . . . . . . . . . 120 5.8 Sensitivity with regard to solver settings. . . . . . . . 127 5.9 Sensitivity with regard to fundamental battery spec- ifications. . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.10 Profits as a function of various battery operation pa- rameters. . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.11 Cumulativeshareofthepopulationaccordingtodaily energy consumption. . . . . . . . . . . . . . . . . . . . 136 5.12 Share of agents as a function of their relative savings with smart charging in the year 2017. . . . . . . . . . 140 5.13 Comparison of ICEV and PEV operating costs for different itineraries with uncoordinated charging and smart charging. . . . . . . . . . . . . . . . . . . . . . . 142 5.14 Share of agents with cost-competitiveness of PEVs with ICEVs for different battery capacities in the un- coordinated charging scenario. . . . . . . . . . . . . . . 143 5.15 Average annual profits with a lookahead of 7. . . . . . 149 5.16 Averageannualprofitscomputedconsideringcalendar and cycle aging with a lookahead of 7. . . . . . . . . . 150 5.17 Average annual profits over time in the different NY- ISO zones for a battery price of $150 per kWh. . . . . 153 5.18 Arbitrage profits for time resolutions of 5min and 60min with a lookahead of 7 for the year 2015. . . . . 155 5.19 Average annual profits for Γ = 0.6. . . . . . . . . . 157 EOL

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.