NonamemanuscriptNo. (willbeinsertedbytheeditor) A Mid-Infrared Spitzer Study of the Herbig Be Star R Mon and the Associated HH 39 Herbig-Haro Object M.Audard · S.Skinner · M.Gu¨del · T.Lanz · F.Paerels · H.Arce 7 0 0 2 n a J Received:date/Accepted:date 1 3 Abstract WereportoninitialresultsofourSpitzerCycle2 ofR Mon.A PAH emission featureat 11.3 m m is detected 1 program to observe the young massive star R Mon and its ontopofthestrongcontinuum;althoughnostrongemission v associated HH 39 Herbig-Haro object in the mid-infrared. orabsorptionlinesareobserved,wewillseektodetectfaint 6 0 Our program used all instruments on-board Spitzer to ob- lines. The combined IRAC, IRS, and MIPS data of the R 9 tain deepimageswith IRACof theHH 39 complexandof Mon/HH39systemwillhelpustounderstandcircumstellar 1 R Monand its surroundings,a deep imageof HH 39at 24 diskprocessing,andtheconnectionbetweenjets,outflows, 0 and 70 m m with MIPS, and mid-infrared spectra with the andHHobjects. 7 0 SH,LH,andLLmodulesofIRS.Theaimofthisprogramis Keywords HerbigBestar·Herbig-HaroObject·Accre- / tostudythephysicallinksinayoungmassivestarbetween h tion·Infrared·Spitzer p accretion disk, outflows and jets, and shocksin the associ- - atedHHobject.Ourpreliminaryanalysisrevealsthatseveral o PACS 95.85.Gn · 95.85.Hp · 97.10.Bt · 97.10.Gz · knots of HH 39 are clearly detected in most IRAC bands. r t In IRAC4 (8 m m), diffuse emission, probably from PAHs, 97.21.+a·97.82.Jw s a appears as foregroundemission covering the HH 39 emis- : v sion. The HH 39 knots are detected at 24 microns, despite 1 Introduction i the factthatdustcontinuumemission coversthe knotsand X showsthesamestructureasobservedwithIRAC4.TheIRS HerbigAe/Bestars(hereafterHAEBEs;Herbig,1960)form r a spectra of HH 39 show weak evidenceof [Ne II] 12.8 m m aclassofmassive,youngstarswithhighluminosities(10− and0–0S(1)H217.0m mlines.Amoredetailedanalysisis, 1000L⊙)andwithastronginfrared(IR)excessduetocir- however, required due to the faintness of the Herbig-Haro cumstellardust (Waters andWaelkens, 1998).The spectral knots. Finally, we obtainedthe SH and MIPS SED spectra energydistribution(SED)ofHAEBEscanbeexplainedby circumstellarenvelopeswithpolycyclicaromatichydrocar- M.Audard bons(PAHs;3.3,6.2,7.7,and11.3m m;Brookeetal.,1993; ISDC&GenevaObservatory,UniversityofGeneva,Ch.d’Ecogia16, Meeusetal.,2001),andbydustemissionfromamorphous 1290Versoix,Switzerland Tel.:+41-22-379-2166,Fax:+41-22-379-2133 or crystalline silicate bands (8−12 m m) or molecular and E-mail:[email protected] atomictransitions.Accretiondisksandoutflowsin theless S.Skinner massive classical T Tau stars (CTTS) are intimately con- UniversityofColorado nected,thusthepresenceofoutflowsinsomeHAEBEssug- M.Gu¨del geststhatdiskscouldbepresentaswell(e.g.,Corcoranand PaulScherrerInstitut Ray,1998a).CorcoranandRay(1998b)alsofoundthatthe T.Lanz wind mass-loss rate correlates with the IR excess over 5 UniversityofMaryland orders of magnitude in luminosity and from 0.5 to 10 M⊙ F.Paerels whenusingbothCTTSandHAEBEs.OutflowsinHAEBEs ColumbiaUniversity are ∼ 2−3 times faster (v ∼ 600−900 km s−1) than in H.Arce CTTS,butgenerallyshowsimilarcollimation(3◦−10◦),al- AmericanMuseumofNaturalHistory thoughthefractionofpoorlycollimatedoutflowsinHAEBEs 2 (50◦−120◦)islarger(e.g.,MundtandRay,1994).Complex shocksoccurattheinterfacebetweenthejetandthemolecu- larmaterial(Draine,1980),heatingupthegaswhichinturn coolsdownradiatively.ThisgasisdetectedasHerbig-Haro objects (HH) in excited lines in the optical, in the near-IR (e.g.,H ro-vibrationallinesaround2m m),andinthemid- 2 IR ([O I] 63 m m; Nisini et al., 1997; Liseau et al., 1997; Molinarietal.,2000). 2 TheRMonandHH39System Fig. 1 (Left) The HH 39 Herbig-Haro knots in the R band (from WalshandMalin,1985).(Right)3-colorIRACimageofHH39(red= TheHerbigBe starRMon(d=800pc)isassociatedwith 3.6m m,green=4.5m m,blue=5.8m m). NGC2261,areflectionnebulathatgraduallyfaintswithin- creasingwavelength(Closeetal.,1997).Abipolaroutflow and a high-velocity jet (v∼100 km s−1) pointing toward 1985).Severalknotsarelabeled,andinparticularknotAhas thenearbyHH39knots(r=7.5′,PA=350◦)weredetected beenidentifiedastheworkingsurfaceofthejetontothesur- roundingmolecularmaterial.Therightpaneloffig.1shows (Canto´ et al., 1981; Brugel et al., 1984; Movsessian et al., a 3-color IRAC image of HH 39 (red = 3.6 m m, green = 2002).Evidenceforacircumstellardiskissubstantiatedas 4.5m m,blue=5.8m m).Severalknotsareclearlydetectedin well(e.g.,Beckwithetal.,1986;Fuenteetal.,2003;Fuente themid-infrared.Fig.2showsfalse-colorimagesoftheHH et al., 2006). A faint CTTS companion at a separation of 0.7′′ and with K′ flux of 34 mJy is mentioned by Close et 39knotsineachofthefourIRACbands.KnotsD,G,C,and EareclearlydetectedinallIRACbands,andknotHistenta- al. (1997) and Weigelt et al. (2002).The HH 39 cluster of knotscoversanareaabout25′′×45′′(Fig.1;JonesandHer- tivelydetected.Adiffuseemissionisobservednearthepo- sitionofknotAinIRAC1only.Thefeaturecouldbedueto big, 1982; Walsh and Malin, 1985), and the northernmost H linesor3.3m mPAH.Sincethisfeatureisnotdetectedin knot,knotA,isbelievedtobetheworkingsurfaceofthejet 2 IRAC2,thisisa“PAH”-freeband,itisverylikelythatPAHs (SchwartzandSchultz,1992). Near-IRspectraofRMonexistmostlyinthe0.9−2.5m m contributetothediffuseemissionnearknotA.H2 lines,on range with low (∼400) spectral power (Kelly et al., 1994; the other hand, most likely contribute to the emission in ReipurthandAspin,1997;Porter etal.,1998).ISOneither knots D, G, C, and E. Supporting evidence comes from a observedRMonnorHH39.TheIRASLRSspectrum(9− faint0–0S(1)rotationalH2 linedetectedintheIRSspectra 21 m m) of R Mon is classified as an “unusual spectrum at17.03m mofthebrightknots(0.7−1.0×10−20Wcm−2). showing a flat continuum with unusual features” (Chen et Incontrast,IRSspectraofknotsA+A′donotshowevidence al., 2000). Aspin et al. (1988) and Yamashita et al. (1989) ofH2lineemissioninexcessofthenearbycontinuum.Note claimedtodetectanextendedemissioneastwardofRMon, that faint [Ne II] emission at 12.81 m m is measured in the bright knots and at the position of knots A+A′ (of the or- butitremainedundetectedbyCloseetal.(1997)withIRTF at 3.16 m m down to 1s ∼0.05 mJy arcsec−2 (CVF filter derof0.5×10−20Wcm−2).At8 m m,thebrightknotsare withanexposureof60s). barely visible on top of a diffuse emission that sweeps in through the knots. This extended emission is likely of due to PAHs (7.7 m m) and is also seen in the dust continuum 3 Spitzerobservations 24m mMIPSimage(Fig.3and4).Itsoriginisunclearbutit couldbetheupperwalloftheNGC2261reflectionnebula We have obtained 4.2 hrs of Spitzer time to study the R cavity. Mon/HH39system.Ourprogram(PID20034)usesallin- Fig. 3 shows the MIPS images of the HH 39 region at struments:IRACandMIPSimagesofHH39;IRACimages 24 and 70 m m together with an optical Deep Sky Survey of R Mon and its jets; IRS spectra of R Mon, its jets, and image.DustcontinuumemissionisdetectedacrosstheHH severaloftheHH39knots;andMIPSSEDofRMon.The 39knots,in particularat24 m m.NeverthelessfaintHH 39 observationsweretakenatdifferentepochs,spanningfrom knotsarealsodetectedat24m m(Fig.4),butthereisnoclear October2005toApril2006. evidenceoftheknotsinthe70m mimage.Ontheotherhand, itshouldberemindedthattheFWHMPRFat70m mis18′′, 3.1 TheHerbig-HaroobjectHH39 i.e., about the distance from knot A to the group of knots (G, D, E, C, H). Therefore, since the MIPS 70 m m image Fig. 1 (left) shows the contour profiles of the Herbig-Haro does not, apparently,observe the same diffuse emission as object HH 39 see in the R band (from Walsh and Malin, at24m mor8m m,itispossiblethatthefaintemissionatthe 3 Fig.3 MIPS24and70m mimages(leftandmiddle)oftheHH39re- giontogetherwithaDSSimage(right)ofRMon,thereflectionnebula NGC2261andHH39,onthesamescale. Fig.2 (a)IRACfalse-colorimagesofHH39.Backgroundsurfaceflux densitiesareoftheorder0.30,0.35,2.1,10.5MJysr−1 inIRAC1,2, 3,and4,respectively(zodiestimates:0.12,0.37,1.72,10.4MJysr−1; ISM light estimates: 0.15,0.20,0.56,4.79 MJy sr−1). In con- trast, the bright knots have peak surface flux densities of about 0.95,1.1,3.2,11.8MJysr−1. positionoftheclusterofknotsisinfactpartiallydueto[O I]63m mlineemissionfromtheknots. Emission from the upperpartof NGC 2261is also de- tectedinMIPSat24m m.ThebrightemissionSWofHH39 is the IR source IRAS 06362+0853. There is no evidence fordiffuseemissionin2MASSaroundIRAS06362+0853, suggestingthatitisofinterstellarcirrusnature.Surfaceflux densities at 24 m m are around 42 MJy sr−1 for the “blue” Fig.4 IRAC3.6m mand8m m,andMIPS24m mand70m mfalse- color regions and go up to 43.1 MJy sr−1 across HH 39. colorimagestogether withthepositionsofHH39knotsdetected in IRAC1.TheIRAC8m mandMIPS24m mdetectPAHanddustemis- PeaksurfacefluxdensitiesforIRAS06362+0853areabout sionacrossHH39,likelyduetotheupperwalloftheNGC2261reflec- 44.4 MJy sr−1 and 46.7 MJy sr−1 for the dust emission tionnebulacavity.Incontrast,at70m m,theupperwallisnotdetected, of NGC 2261. At 70 m m, “blue” regions are about 31− andtheHH39knotsarenotclearlydetected(seetext). 33 MJy sr−1, whereas the emission across HH 39 is 48− 50MJysr−1,and80−85MJysr−1nearIRAS06362+0853. The SPOT backgroundestimates are 37.6 MJy sr−1 (zodi) aimedtodeterminewhetherafainteastwardextendedemis- and2.96MJysr−1(ISM)at24m mand10.8MJysr−1(zodi), sionfeaturedetectedby Aspinet al. (1988)and Yamashita 21.9MJysr−1 (ISM),and0.2MJysr−1 (cosmic)at70m m. etal.(1989),butundetectedbyCloseetal.(1997),couldin- deedbedetectedwiththehighlysensitiveIRACdetectors. Thesurfacefluxdensitiesinthe“blue”regionsareofsimilar Thetotal(zodiandcirrus)backgroundfluxdensitiesare valuesastheestimatedtotal. 0.35, 2.86, 15.5 MJy sr−1 (based on SPOT). However,the brightnessofRMonissuchthatthePRFilluminatesthefull 3.2 RMon sub-arraydetector.Aperturephotometry(witharadiusof10 pixels=12′′,requiringnoaperturecorrection),thetotalflux Fig.5showstheIRACimagesoftheHerbigBestarRMon densities for R Mon are 17.59±0.29 Jy, 30.41±0.40 Jy, anditsimmediatesurroundings.NotethatIRAC2couldnot and31.37±0.36Jy in IRAC 1,3, and4, respectively.The be used, even in sub-array mode, due to R Mon’s bright- estimated background fluxes over a circle of 10 pixel ra- ness at 4.5 m m. The main goal of these observations was dius are negligible (0.004, 0.03, 0.17 Jy) compared to R to detectanyfaintemissionfromthejets (NSdirection)or Mon’sbrightnessand theRMS uncertainties.Notethatthe fromthecircumstellardisk(EWdirection).Inparticular,we abovefluxesincludeanycontributionfromRMonB,sepa- 4 Fig. 5 IRAC 3.6 m m, 5.8 m m, and 8 m m images (log scale) of the HerbigBestarRMon.IRAC2couldnotbeobtained,duetoRMon’s brightnessat4.5m m,evenwithasub-arraymode. ratedfromRMonby0.7′′ (Closeetal.,1997).However,in comparisonwithRMon,thecompanionisexpectedtocon- tribute negligibly (0.0013,0.0085,0.035Jy in JHK′; Close etal.,1997).ThenextstepwillbetosubtractthePRFofR Montopossiblydetectemissionfromthediskandthejets. WewillneedtocreateIRACsub-arrayPRFsfromsub-array dataofstarsobserved,e.g.,intheFEPSprogram. Finally, Fig. 6 shows the IRS SH spectrum of R Mon (top)andits rawSED from1 to 100 m m(bottom).Forthe latter,we usedIRACfluxes,the IRSSH spectrum,andthe MIPS SED and complemented them with values from the literature(Closeetal.,1997;andMSX).TheIRSSHspec- trumshowsaclearPAH featureat11.3 m mandotherfaint featuresmightbepresentaswell.Adetailedanalysisison- goingtoremoveinstrumentaleffects(e.g.,defringing). Acknowledgements This work is based on observations made with Fig. 6 (Top): IRS SH spectrum of R Mon. (Bottom): R Mon’s raw theSpitzerSpaceTelescope,whichisoperatedbytheJetPropulsion (notdereddened) SEDfrom1to100 m m.IRACfluxesareshownas Laboratory, California Institute of Technology under a contract with triangles(theerrorbarsaresmallerthanthesymbol),theIRSSHspec- NASA.SupportforthisworkwasprovidedbyNASAthroughanaward trumasablackline,andtheMIPSSEDasaredline.Valuesfromthe (JPLCIT1275416)issuedbyJPL/Caltech.MAalsoacknowledgessup- literature(Closeetal.,1997andMSX)areshownasbluediamonds. portfromaSwissNationalScienceFoundationProfessorship(PP002– 110504). 19. Movsessian,T.A.,Magakian,T.Y.,&Afanasiev,V.L.:A&A390, L5(2002) References 20. Mundt,R.&Ray, T.P.:inASPConf. Ser. 62:TheNatureand EvolutionaryStatusofHerbigAe/BeStars,237(1994) 21. Nisini,B.etal.:A&A315,L321(1996) 1. Aspin,C.,etal.:A&A197,242(1988) 22. Porter,J.M.,Drew,J.E.,&Lumsden,S.L.:A&A332,999(1998) 2. Beckwith,S.,etal.:ApJ309,755(1986) 23. Reipurth,B.&Aspin,C.:AJ114,2700(1997) 3. Brooke,T.Y.,Tokunaga,A.T.,&Strom,S.E.:AJ106,656(1993) 24. Schwartz,R.D.&Schultz,A.S.B.:AJ104,220(1992) 4. Brugel,E.W.,Mundt,R.,&Buehrke,T.:ApJ287,L73(1984) 25. Walsh,J.R.&Malin,D.F.:MNRAS217,31(1985) 5. Canto´,J.,etal.:ApJ244,102(1981) 26. Waters,L.B.F.M.&Waelkens,C.:ARA&A36,233(1998) 6. Chen,P.S.,Wang,X.H.,&He,J.H.:Ap&SS271,259(2000) 27. Weigelt,G.,etal.:A&A392,937(2002) 7. Close,L.M.etal.:ApJ489,210(1997) 28. Yamashita,T.,etal.:ApJ336,832(1989) 8. Corcoran,M.&Ray,T.P.:A&A336,535(1998a) 9. Corcoran,M.&Ray,T.P.:A&A331,147(1998b) 10. Draine,B.T.:ApJ,241,1021(1980) 11. Fuente,A.,etal.:ApJ598,L39(2003) 12. Fuente, A., Alonso-Albi, T., Bachiller, R., Natta, A., Testi, L., Neri,R.,&Planesas,P.:ApJ,649,L119(2006) 13. Herbig,G.H.:ApJS4,337(1960) 14. Jones,B.F.&Herbig,G.H.:AJ87,1223(1982) 15. Kelly,D.M.,Rieke,G.H.,&Campbell,B.:ApJ425,231(1994) 16. Liseau,R.,etal.:inIAUSymp.182:Herbig-HaroFlowsandthe BirthofStars,182,111(1997) 17. Meeus,G.,etal.:A&A365,476(2001) 18. Molinari,S.etal.:ApJ538,698(2000)