ebook img

A magnetic reconnection model for quasi-periodic oscillations in black hole systems PDF

0.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A magnetic reconnection model for quasi-periodic oscillations in black hole systems

ResearchinAstron.&Astrophys.Vol.0(200x)No.0,000–000 Researchin (http://www.raa-journal.org) Astronomyand Astrophysics A magnetic reconnection model for quasi-periodic oscillations in black hole systems 3 1 0 Chang-YinHuang1,2,Ding-XiongWang1∗,Jiu-ZhouWang1 andZhi-YunWang3 2 n 1 SchoolofPhysics,HuazhongUniversityofScienceandTechnology,Wuhan430074,China; a 2 SchoolofMathematicsandStatistics,HuazhongUniversityofScienceandTechnology,Wuhan430074, J China; 2 3 SchoolofPhysicsandElectronicEngineering,HubeiUniversityofArtsandScience,Xiangyang 441053,China ] ∗[email protected] E H . h Abstract The quasi-periodic oscillations (QPOs) in black hole (BH) systems of different p scalesareinterpretedbasedonthemagneticreconnectionofthelarge-scalemagneticfields - generatedbythetoroidalelectriccurrentsflowingintheinnerregionofaccretiondisk,where o thecurrentdensityisassumedtobeproportionaltothemassdensityoftheaccretingplasma. r t The magnetic connection (MC) is taken into account in resolving the dynamic equations s a of the accretion disk, in which the MC between the inner and outer disk regions, the MC [ betweentheplungingregionandthedisk,andtheMCbetweentheBHhorizonandthedisk are involved.It turnsoutthatthe single QPO frequencyof severalBH systems of different 1 v scalescanbefittedbyinvokingthemagneticreconnectionduetotheMCbetweentheinner 2 andouterregionsofthedisk,wheretheBH binariesXTEJ1859+226,XTEJ1650-500and 6 GRS1915+105andthemassiveBHsinNGC5408X-1andREJ1034+396areincluded.In 1 addition,theX-rayspectracorrespondingtotheQPOsare fittedforthesesourcesbasedon 0 thetypicaldisk-coronamodel. . 1 0 Key words: accretion, accretion disks — black hole physics — magnetic fields — stars: 3 individual(XTEJ1859+226,XTEJ1650-500,GRS1915+105)—galaxies:individual(NGC 1 5408,REJ1034+396) : v i X 1 INTRODUCTION r a Asiswellknown,X-rayquasi-periodicoscillation(QPO)isacommonphenomenonintheradiationfrom black-hole binaries (BHBs). The high-frequencyQPOs (HFQPOs) have been observedin several BHBs, some of which show interesting 3:2 frequency pairs (GRS 1915+105, GRO J1655-40, XTE J1550-564, H1743-322), and others display single QPO (XTE J1859+226, XTE J1650-500). QPOs have also been observed in ultraluminousX-ray sources (ULXs), e.g., a 54 mHz QPO in M82 X-1 and a 20 mHz QPO inNGC5408X-1werediscoveredrespectivelybyStrohmayer&Mushotsky(2003)andStrohmayeretal. (2007) withXMM-Newton.Strohmayer& Mushotsky(2009) discoveredanotherstrong10mHzQPO in NGC5408X-1,andfoundthatthecorrelationoftimingandspectralpropertiesofthissourceissimilarto thoseofGalacticBHBs. ThefirstconvincingQPOofactivegalacticnuclei(AGNs)wasdiscoveredbyGierlinskietal.(2008) in narrow line Seyfert 1 RE J1034+396, which opened a window for the comparative timing studies of stellar-mass and supermassive black holes (BHs). The 1-hourX-ray QPO observedin RE J1034+396is analogousto the 67 Hz QPO in BHB GRS 1915+105(Middelton& Done 2010). In earlier years, quasi- periodic signals like QPOs were discovered in some supermassive BHs. For example, the power density 2 C.Y.Huang,D.X.Wang,J.Z.Wang&Z.Y.Wang spectraoftwoX-rayflaresofSgrA*observedin2000and2002showfivedistinctpeaksatperiodsof 100, 219,700,1150,2250seconds(Aschenbachetal.2004)andaquasi-periodicfluxmodulationwithaperiod of22.2minuteswasdiscoveredintheX-raydataoftheSgrA*flarein2004(Blangeretal.2006). A number of models have been proposed to interpret HFQPOs in BHBs. However, none of them canfullyexplainthecharacteristicsofQPOs, especiallythecorrelationsofspectralandtimingproperties (Remillard&McClintock2006;Maitra&Miller2010).Asiswellknown,HFQPOsinBHBsarestrongly correlatedtosteeppowerlaw(SPL)state.AsuccessfulmodelofQPOsshouldlinkthecorrespondingspec- tral state, allowing for a highly dynamicalinterplay between thermal and nonthermalprocesses with the mechanismsoperatingoverawiderangeofluminosity(Remillard&McClintock2006).QPOsobservedin massiveBHsareprobablyrelatedtothebrightstatewhichissimilartotheSPLstateofBHBs(Strohmayer & Mushotsky2003, 2009; Middeltonetal. 2009), and they mayhave the same originas the HFQPOs in BHBs(Gierlinskietal.2008;Bian&Huang2010). InverseComptonscatteringisgenerallythoughttobethepromisingradiationmechanismofSPLstate (Zdziarski2000;McClintock&Remillard2006,hereafterMR06),anddisk-coronamodelissuccessfulin fitting the spectrum of SPL state (Gan et al. 2009, hereafter G09; Huang et al. 2010). Zhao et al. (2009) (hereafterZ09)interpretedHFQPOsinBHBsasthemagneticreconnectionoflarge-scalemagneticfields generated by toroidal electric currents flowing in the disk without considering the spectral state. In this paper,weimprovethemodelofZ09basedonthedisk-coronamodelwiththemagneticconnection(MC) effects.We fitboththe QPO frequenciesandthecorrespondingX-rayspectra offourBH systemsofdif- ferentscales,inwhichtwoBHBs(XTEJ1859+226,XTEJ1650-500),oneULX(NGC5408X-1)andone supermassiveBH(REJ1034+396)areincluded. This paper is organized as follows. A description of the model is given in Section 2. The QPO fre- quenciesandX-rayspectraofthefoursourcesarefittedbasedonthedisk-coronamodelwithMCeffects inSection3.AndsomeissuesrelatedtoourmodelarediscussedinSection4.Throughoutthispaper,the geometricunitsG=c=1areused. 2 MODELDESCRIPTION 2.1 OriginofmagneticfieldsinBHsystems Large-scalemagnetic fields play veryimportantroles in high energyastrophysicalphenomena.The rela- tivisticjetsfromAGNsandBHBsarelaunchedandcollimatedbyinvokingtheopenlarge-scalemagnetic fields relatedto the BZ and BP processes(Blandford& Znajek 1977; Blandford& Payne 1982), and the broadironlinesobservedinBHsystemscouldbeinterpretedbytransferringenergyandangularmomentum froma spinningBH to itssurroundingaccretiondisk byinvokingthemagneticconnectionvia theclosed large-scalemagneticfieldsconnectingthehorizonwiththeinnerdisk(Wilmsetal.2001;Milleretal.2002; Li 2002a; Wang et al. 2002, hereafterW02).However,a consensuson the origin of large-scalemagnetic fieldsinBHsystemshasnotbeenreached. Unlike neutron stars, magnetic fields cannotexist on the horizonof an isolated BH, and they should be maintainedby the surroundingenvironment,such as an accretiondisk. For BHBs, the magneticfields probablycomefromtheplasmaofthecompanion.Oneofthemostpromisingoriginsoflarge-scalemag- neticfieldsinBHsystemsisaccretiondiskaroundtheBHs,andsomeauthorscalculatedthemagneticfield configurationsbyassumingthetoroidalelectriccurrentinthedisk(Li2002b;Z09).However,theoriginof thecurrentsremainstobeclarified. Inthispaper,weintendtointerprettheoriginoftheelectriccurrentbasedontheassumptionthatthe accretingplasmadeviatessomehowfromelectricneutralityasitflowsthroughtheLagrangepointintothe Roche lobe of the BHBs, resulting in toroidalelectric currentsflowing in the accretion disk. In addition, weresolvethedynamicalequationsoftheaccretiondiskbytakingtheMCeffectsintoaccountandfigure outthemassdensityandcurrentdensityinthedisk,andthendeterminetheconfigurationofthelarge-scale magnetic fields by consideringthe interaction between the electric currentand the disk with the iterative algorithm.ItturnsoutthatwecanfittheassociationofQPOswithspectralstatesinBHsystemsofdifferent scalesbasedonourmodel. Amagneticreconnectionmodelforquasi-periodicoscillationsinblackholesystems 3 8 6 MCHD W H M (cid:144)r4 MCPD 2 BH MCDD AccretionDisk Disk 00 2 rrin 4 rr0 6 8 rin r0 r(cid:144)M BlackHole Fig.1 Theconfigurationoflarge-scalemagnetic Fig.2 Aschematicdrawingofmagneticrecon- fields generated by the continuous distribution nectioninMCDD,wheretheredlinerepresents of toroidal electric current flowing in the disk. thefieldlineconnectingradiirin andr0. Themagneticfieldlinesareplottedinthinlines andtheboundariesbetweenthreetypesofmag- neticconnection(MCHD,MCPD,andMCDD) areshownbythethicklines.Theredlinerepre- sentsthemagneticfieldlineconnectingtheradii rinandr0.ThefigureisplottedwithmBH =10, a = 0.8,m˙ = 0.1,α = 0.3,η = 10−13, and ∗ n = 5, where m˙ and α are the mass accretion rate in unit of the Eddingtonaccretionrate and theviscosityparameter,respectively. Thedeviationfromelectricneutralityisdescribedbydefiningaparameterηasfollows, η n n /n , (1) e p p ≡| − | wheren andn arethenumberdensitiesofelectronsandprotons,respectively.Thechargedensitycanbe e p expressedas ρ =ηen , (2) e p wheree=4.8 10−10e.s.uistheelectroncharge. × Thelarge-scalemagneticfieldsgeneratedbythetoroidalelectriccurrentmayinturnaffectthecurrent. For example, the field lines may pipe hot electrons into the corona above the disk therefore change the charge density in the disk. This effect should be strongest in the inner disk because the magnetic field intensity is strongest near the inner edge of the disk and decreases rapidly outwards. For simplicity, we assumethiseffectdecreaseswith theincreasingdiskradiusasa powerlawandthesurfacedensityofthe currentinthediskcanbeexpressedas ηe j =ρ 2h ν r−n =ηen 2h Ω r1−n = ρ hΩ r1−n, (3) e K p K m K · · · · · µm p whereh,ρ ,andm arethehalfheightofthedisk,themassdensityandtheprotonmassrespectively.The m p powerlawindexnisafreeparameterforfittingtheQPOfrequency,andµ = 0.615istheweight-average molecularweightof the gas. The toroidalelectric currentis assumed to distribute fromthe inner edgeof the disk to the outer boundary of the disk-corona system, the radius of which is set at r = 100M in out calculations,sincetheradiationoftheaccretiondiskmainlycomesfromtheinnerregion. 4 C.Y.Huang,D.X.Wang,J.Z.Wang&Z.Y.Wang 13 12 190Hz 11 n 10 9 8 10-16 10-15 10-14 10-13 10-12 Η Fig.3 Thecontourof190HzQPOofXTEJ1859+226inη nparameterspacewithm =12, BH − a =0.96,m˙ =0.38,andα=0.3. ∗ FollowingtheworkofZnajek(1978),Linet(1979),Li(2002b)andZ09,wecancalculatethetoroidal componentoftheelectricvectorpotentialdeterminedbythecurrentgivenbyEq.(3)withagivenmassden- sityofthediskmatter.Andtheboundariesofinner-outerregionsrelatedtothemagneticfieldconfiguration can be determined.As shown by Fig.1, there are three types of magnetic field configurationgenerated— MCoftheBH with thedisk(MCHD),MCoftheplungingregionwiththedisk(MCPD),andMCofthe innerandouterdiskregions(MCDD).IntheMCDDregion,themagneticfieldlinesarefrozeninthedisk attheinnerandouterfootpoints.Thefieldlineswilltwistthemselvessincetheinnerandouterfootpoints havedifferentangularvelocities.InFig.1,theinnerandouterfootpointsofthefieldlineinredlocateatr in (theinneredgeofthedisk)andr ,respectively.Thevalueofthe angularvelocitydifferencebetweenthe 0 footpointsofthisfieldlineismaximalamongallthelinesinMCDDregion,sothislinewilltwistitselffirst andtriggerthemagneticreconnection,asshowninFig.2,whichreleasesmagneticenergyperiodicallyto generateflareswith the frequencyofthe differencebetweenKeplerianfrequenciesofthe innerand outer footpoints.WeinterpretthisfrequencyastheQPOfrequency,anditreads: ν = ΩK(rin)−ΩK(r0) =ν (r3/2M−3/2+a )−1 (r3/2M−3/2+a )−1 , (4) QPO 2π 0h in ∗ − 0 ∗ i where ν0 ≡ m−BH13.23×10−4Hz and mBH ≡ M/M⊙ is the black hole mass in unit of the solar mass. a a/M isthedimensionlessBHspin.r isinitializedattheinnermoststablecircularorbit(ISCO). ∗ in ≡ As shown by Eq. (3), parametersn and η determine the currentdensity and thereforemagnetic con- figurationandQPOfrequencyoncethesurfacedensityofdiskmatterisgiven.Thevalueofη determines thecurrentintensityandthereforemagneticfieldstrength,whilethatofndeterminestheconcentricityof thecurrentsandmagneticfields.AlargernleadstoasmallerMCDDregion,asmallerdistancebtweenrin andr0,andhencealowerQPOfrequency,whileasmallernleadstotheoppositeresults.Asanexample, acontourof190HzQPOofXTEJ1859+226isplottedinη nparameterspaceasshowninFig.3.Itis foundthatamaximumη 10−12isrequiredtoavoidatoost−rongmagneticfieldforastablesolutionwith ∼ theMCeffect. 2.2 ThedynamicalequationsofdiskandcoronawithMCeffects ThedynamicalequationsoftheaccretionflowaremodifiedbyconsideringtheMCeffectsonthetransfer ofenergyandangularmomentum(Li2002a;G09), d (M˙ L† g)=4πr(QL† H ), (5) D MC dr − − d (M˙ E† gΩ )=4πr(QE† H Ω ), (6) dr D − i − MC i Amagneticreconnectionmodelforquasi-periodicoscillationsinblackholesystems 5 d¶Di+1 dZDi+1 d¶D dZD d¶D dZD dZC dZC dZC I I I d¶Di dZDi d¶P dZP d¶H dZH Fig.4 AnequivalentcircuitforMCDD,MCPDandMCHDgivenfromlefttoright. where Q and g are respectivelythe viscously dissipated energyper unitdisk surface and interiorviscous torqueofthedisk,andQconsistsoftwoparts, Q=Q +Q , (7) d cor whereQ isradiatedfromdiskasblackbody, d Q =σT4, (8) d eff andQ istransportedintothecoronatoheatitbymagneticreconnectionoftangledsmall-scalemagnetic cor fields,anditreads(Liuetal.2002) B2 B3 Q = DV = D , (9) cor A 4π 4π√4πρ whereB ,V andρaretheintensityofthesmall-scalemagneticfields,theAlfvenspeed,andmassdensity, D A respectively. ThequantityH inEqs.(5)and(6)isthefluxofangularmomentumanditreads MC 2 H 1 dTMC = 1 dΨ Ωi−Ωi+1, (10) MC ≡ 4πr dr 2πrdr (cid:18)2π(cid:19) dZ i where dT and dΨ are the torque exerted on to an infinitesimal annulus of the disk and magnetic flux MC threadingtheinfinitesimalannulus,respectively. WecancalculateavarietyofmagnetictransferofenergyinBHaccretiondiskbyusinganequivalent circuitinananalogouswaytoMacdonald&Thorne(1982)andW02asshowninFig.4.ThreetypesofMC (MCDD,MCPDandMCHD)indicatedinFig.1aregiveninFig.4,inwhichaseriesofloopscorrespondto theadjacentmagneticsurfacesarisingfromtherotationoftheclosedfieldlines. ThequantitiesdZ ,dZ ,dZ anddZ aretheresistancescorrespondingtothetwoadjacentmagnetic D P H C surfacesinthedisk,theplungingregion,theBH horizonandthecorona,respectively.Thequantitiesdε D anddε arerespectivelytheelectromotiveforcesgeneratedbytherotationofthediskandtheBHhorizon H asgivenbyW02,anddε istheelectromotiveforceduetotherotationoftheplungingregion. P ThequantitiesΩi,Ωi+1 anddZi inEqs.(6)and(10)areexplainedforthethreedifferentdiskregions asfollows. (1) MCDD region: Ωi and Ωi+1 are respectively the angular velocities of the inner footpointi and outerfootpointi+1oftheclosedfieldlineonthedisk,andtheresistancedZ isdefinedby i R dr dZ =dZ = cor , (11) i cor 2πr whereR istheaveragearealresistivityofthediskandcorona,whichisrelatedtoR ,thesurfaceresis- cor H tivityoftheBHhorizonasfollows, R =η R cor R H (12) (cid:26)RH =4π =377ohm, 6 C.Y.Huang,D.X.Wang,J.Z.Wang&Z.Y.Wang whereη isaparametertoadjustthevalueofR .Forsimplicity,wesetη =0.1incalculations. R cor R (2)MCHDregion:Ωi =ΩHandΩi+1 =ΩDaretheangularvelocitiesoftheBHhorizonandthedisk respectively.Theresistance dZ =dZ +dZ , (13) i H cor where dZ =2ρ dθ/̟. (14) H H TheparametersinEq.(14)aregivenby ̟ =(Σ /ρ )sinθ, ρ2 r2 +a2cos2θ, H H H ≡ H Σ 2Mr , r =M(1+q), q = 1 a2. (15) H ≡ H H − ∗ p (3)MCPD region:Ωi = ΩP andΩi+1 = ΩD are respectivelythe angularvelocitiesof the plunging regionandthedisk,andΩ isgivenasfollows(Shapiro&Teukolsky1983;Wang2000), P (r 2M)L†+2aME† Ω = − . (16) P (r3+a2r+2Ma2)E† 2aML† − TheresistanceisthesameasthatinMCDDexpressedbyEq.(11). We adopt the same assumption as given by G09 about the corona: the optical depth of the corona τ =1andtheheightofthecoronal=10r . cor ms 3 FITTINGTHEQPOFREQUENCIESANDX-RAYSPECTRA In our model, the toroidalelectric currentinteractswith the dynamicsof the accretion disk. To solve the dynamicEqs.(5)and(6),wemustknowtheconfigurationofthelarge-scalemagneticfieldsgeneratedby thetoroidalelectriccurrent,whosedistributionisrelatedtothesurfacedensityofthediskmatterbyEq.(3), and ρ is in turnfiguredoutby solvingthe dynamicalequations.For simplicity,we assume thatinitially m thereisnoelectriccurrentinthedisk,andsolvetheEqs.(5)and(6)withH =0togettheglobalsolution MC ofthedisk-coronasystem.Theemergedspectrumofthedisk-coronasystemisthensimulatedwithMonte Carlo method based on the code developed by G09. The free parameters of the disk-corona model, e.g., BHspina andmassaccretionratem˙ ,canbedeterminedbyfittingtheobservedspectrum.Sothesurface ∗ density of the disk matter is obtained. Then we consider the interaction between the electric currentand disk-coronawiththeiterativealgorithmwhichconsistsofthefollowingsteps: (i)AssumingavalueofthepowerlawindexninEq.(3),e.g.n=5. (ii)Calculatingthesurfacedensityofthetoroidalelectriccurrentinthediskandtheconfigurationof thelarge-scalemagneticfields. (iii)Resolvingthedisk-coronasystembytakingtheMCeffectsintoaccount. (iv)Repeatingsteps(ii)and(iii)untilthesurfacedensityofdiskmatterremainsstable. (v)Calculatingthefrequencyν byEq.(4). QPO (vi)Repeatingsteps(i)-(v)untiltheQPOfrequencyisinaccordancewiththeobservations. Steps(ii)-(iii)shouldberepeatedseveraltimesbeforethesurfacedensityofdiskmatterbecomesstable. Finally,wesimulatetheemergedspectrumagainuntilitisunchanged. To avoid the negative radiation flux from the inner disk due to the transfer of energy and angular momentumtotheouterdiskbytheMCDDasarguedbyGanetal.(2007),weadjusttheradiusoftheinner boundaryofthedisktodeviateoutwardsfromISCO.Althoughthedeviationislessthan10%oftheradius ofISCO,itresultsin 30%decreaseofQPOfrequency. ∼ 3.1 FittingtheHFQPOsinXTEJ1859+226andXTEJ1650 500withSPLstate − ObservationsshowthatHFQPOsinBHBsareassociatedwiththeSPLstatewhichischaracterizedbyhigh luminosity (therefore high accretion rate), strong power-law component and the steep power-law index (Γ > 2.4).WefitthesingleHFQPOsandthecorrespondingX-rayspectraoftwoBHBsXTEJ1859+226 and XTE J1650-500. The comparisons between the simulated spectra and the observed ones are shown Amagneticreconnectionmodelforquasi-periodicoscillationsinblackholesystems 7 211---PhotonscmskeV0.00.000.1111 HaL+++++++++++++++++++++++++++++++++++++++++++++++++++X+H+T1+9+E9+9+J++O1mmaΑ+ +*8cB==+=t+H50+0+10=9..+363.+1+9+-8++26+1282L6 211---PhotonscmskeV0.00.000.1111 HbL+++++++++++++++++++++++++++++++++++++++++++++++++++X+H+T1+9+E9+9+J++O1mmaΑ+ +*8cB==+=t+H50+0+10=9..+362.+1+9+-7++29+12882L6 211---PhotonscmskeV0.00.000.1111 HcL+++++++++++++++++++++++++++++++++++++++++++++++++++X+H+T1+9+E9+9+J++O1mamΑ+ +*8c==+B=t+5H0+0+10=9..+363.++97+-1++9.+612882L6 10-4 10-4 10-4 2 5 10 20 50 100 2 5 10 20 50 100 2 5 10 20 50 100 EnergyHkeVL EnergyHkeVL EnergyHkeVL Fig.5 The simulated spectra of XTE J1859+226 with different parameters: (a) m = 12, BH a = 0.96, m˙ = 0.38 and α = 0.3; (b) m = 12, a = 0.998, m˙ = 0.27 and α = 0.3; ∗ BH ∗ (c) m = 7.6, a = 0.998, m˙ = 0.31, and α = 0.3. The total spectrum and its thermal BH ∗ and Comptonized components are plotted in solid, dotted and dashed lines, respectively. The observationdataaretakenfromMR06.Thesourcedistanceissetat11kpc(Zuritaetal.2002; MR06)andtheinclinationi=70◦isassumed. for XTE J1859+226 and XTE J1650 500in Figs. 5 and 6, respectively.The total spectra consist of the − thermalcomponentemittedfromthediskandthepower-lawcomponentgeneratedbytheinverseCompton scatteringofthesoftphotonsbytherelativisticelectronsinthecorona. ThefittingparametersarelistedinTable1,inwhichm˙ andαarerespectivelythemassaccretionratein termsoftheEddingtonaccretionrate(1.4 1018m gs−1)andtheviscosityparameter.TheBHmassof BH × XTEJ1859+226wasestimatedintherange7.6 12M (MR06).We fitthespectrumofXTEJ1859+226 ⊙ − observedinOctober16 18of1999(MR06)withtheBHmassoftheupperlimit12M andofthelower ⊙ − limit7.6M . Sincethe BH massof XTEJ1650 500hasnotbeenwell estimated,we take a largermass ⊙ − 7.3M andasmallerone4M ,whichareestimatedbyOroszetal.(2004)tofitthespectrum.Verylarge ⊙ ⊙ BH spin is needed to fit the spectra for the lower limit to the BH mass, and the lower limit to BH spin correspondingto each BH mass is given in Table 1. The spectrum of XTE J1650 500is fitted with the − lowerandupperlimitstospinforeachBHmass,whilethespectrumofXTEJ1859+226canbefittedonly foranextremeKerrBHwiththelowerlimittotheBHmass7.6M .Thevalueoftheviscosityparameter ⊙ αisselectedproperlyintherange0.1 0.3tofitthespectrumofeachsource.Thedifferenceofthevalue − arisesprobablyfromthedifferenceofthestrengthofthesmall-scalemagneticfieldinthediskiftheviscous processisdominatedbythetangledsmall-scalemagneticfield.Thevaluesofthefittingparametersnand η for QPO frequencies are listed in the last two column in Table 1. We fix η at a certain value for each scaleofBHmass.BHsystemswithsmallermasshavestrongermagneticfieldallowingoflargervalueof η. A larger value of n is needed with a smaller BH mass, implying that the toroidalelectric currentsare concentratedveryclosetoISCO. 3.2 QPOsinNGC5408X-1andREJ1034+396 OneofattractivefeaturesofourmodelisthatitisapplicabletofitQPOswithcorrespondingX-rayspectra observedintheBHsystemsofdifferentscales.Strohmayeretal.(2007)discoveredastrong20mHzQPO intheULXNGC5408X-1,andtheX-raytimingandspectralpropertiesareanalogoustothoseexhibited byGalacticstellar-massBHsinthe‘veryhigh’orSPLstate.ThefittingparametersfortheQPOandX-ray spectrumofNGC5408X-1arelistedalsoinTable1.Thesimulatedspectrafordifferentparametersandthe comparisonstotheobservedenergyspectrumareshowninFig.7.However,atpresent,theBHmassesin theULXsareconstrainedtoawiderangefrom102M to105M (Milleretal.2003;Cropperetal.2004; ⊙ ⊙ Robertsetal.2005;Wu&Gu2008).WetakeaverylargeBHmass105M tofitthedataofNGC5408X-1 ⊙ sinceboththeX-rayspectrumandQPOfrequencyarefittedbetterforlargerBHmass.TheQPOfrequency andspectrumarebothtakenfromStrohmayeretal.(2007)withthesameHydrogencolumndensity,which arefittedinourmodelwiththelowerandupperlimitstotheBHspinasshowninTable1. 8 C.Y.Huang,D.X.Wang,J.Z.Wang&Z.Y.Wang XTEJ1650-500 XTEJ1650-500 211---PhotonscmskeV01.000.00-114 ++Ha+L++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H++2++0+0++1mamΑ+ *+S=B=+=eH0+0p0=+..2.1+278+01.7+3L+ + 211---PhotonscmskeV01.000.00-114 ++Hb+L++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H++2++0+0++1mmΑa+ +*S=B=+=eH0+0p0=+..20.+279+31.9+3L8+ + 10-5 ++ 10-5 ++ 15 20 30 50 70 100 150 200 15 20 30 50 70 100 150 200 EnergyHkeVL EnergyHkeVL XTEJ1650-500 XTEJ1650-500 211---PhotonscmskeV01.000.00-114 ++Hc+L++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H++2++0+0++1mΑm+a +S*==B+=eH0+0p0+.=.21+.249+711+L+ + 211---PhotonscmskeV01.000.00-114 ++Hd+L++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H++2++0+0++1mΑma+ +*S==B+=eH0+0p0+.=.20.+294+619+L8+ + 10-5 ++ 10-5 ++ 15 20 30 50 70 100 150 200 15 20 30 50 70 100 150 200 EnergyHkeVL EnergyHkeVL Fig.6 The simulated spectra of XTE J1650 500 with different parameters: (a) m = 7.3, BH − a = 0.87,m˙ = 0.10andα = 0.2;(b)m = 7.3,a = 0.998,m˙ = 0.03andα = 0.2;(c) ∗ BH ∗ m = 4, a = 0.91, m˙ = 0.17, and α = 0.2; (d) m = 4, a = 0.998, m˙ = 0.06, and BH ∗ BH ∗ α=0.2.TheobservationdataaretakenfromMiniuttietal.(2004).Thesourcedistanceissetat 2.6kpc(Homanetal.2006)andtheinclinationi=70◦isassumed. The first convincing QPO of AGNs was reported by Gierlinski et al. (2008) in RE J1034+396. Middelton&Done(2010)suggeststhattheQPOdiscoveredinREJ1034+396hasananalogytothe67Hz QPOseenintheBHBGRS1915+105duetotheirsimilar‘hotdiskdominated’energyspectra.Unlikeother HFQPOs, the 67 Hz QPO in GRS 1915+105is an exceptionalcase, which appears in thermal-dominant (TD) state (MR06).In thissubsection,we fit boththe 67 Hz QPO in GRS 1915+105andthe 0.00027Hz QPO in RE J1034+396 as a comparison. The spectrum of GRS 1915+105 showing the 67 Hz QPO is takenfromMiddleton&Done(2010).AndthespectrumofREJ1034+396showingthe0.00027HzQPOis takenfromMiddletonetal.(2009)withthesameminimumgalacticabsorptionfixedat1.31 1020cm−2. × The‘hotdiskdominated’spectraof GRS 1915+105and RE J1034+396are bothfitted with almostmax- imum BH spinsas shown in Table 1, and their comparisonswith the observedspectra are shown in Figs 8 and 9, respectively.The disparities between the simulated spectra and the observed ones in the energy bands10 30keVforGRS1915+105and0.5 1keVforRE J1034+396indicateprobablythata second − − ComptonizationprocessisneededtogeneratetheTDspectrumasshowninFigs10and11ofMiddelton& Done(2010),wherealowtemperature,opticallythickthermalComptonizationisaddedtofitthespectra. ThisComptonizationmaybegeneratedfromthetransitionlayerbetweenthediskandthecorona. InspectingTable 1 and Figs 5 9,we find that the QPOs and the correspondingX-ray spectra of BH − systemsofdifferentscalescanbefittedwiththemagneticreconnectionofthelarge-scalemagneticfields basedonthedisk-coronamodel.QPOsinmassiveBHshavesimilarfeatureswiththoseofBHBs,e.g.very centralizeddistributionoftheelectriccurrentsorlargevalueofn,anditsinverseproportiontoBH mass. Theyare eitherrelated to the SPL state, like XTE J1859+226and XTE J1650 500,or related to the TD − state,likeGRS1915+105.ThesesimilarcharacteristicshintprobablythatQPOsinBHsystemsofdifferent scalesmayhavethesameoriginandareassociatedwiththesamespectralstate. Amagneticreconnectionmodelforquasi-periodicoscillationsinblackholesystems 9 Table1 ThefittingparametersforQPOfrequenciesandX-rayspectra. Source νQPO(Hz) mBH a∗ m˙ α n η XTEJ1859+226 190a 12b 0.96 0.38 0.3 8.4 0.998 0.27 0.3 8.9 7.6b 0.998 0.31 0.3 14.6 XTEJ1650−500 250c 7.3d 0.87 0.10 0.2 3.1 0.998 0.03 0.2 9.1 10−12 4d 0.91 0.17 0.2 17.7 0.998 0.06 0.2 23.1 GRS1915+105 67e 18b 0.998 0.25 0.14 16.9 10b 0.998 0.40 0.16 27.0 NGC5408X-1 0.02f 1.0×105 0.95 0.012 0.1 15.1 10−16 0.998 0.005 0.1 15.5 REJ1034+396 0.00027g 7.0×106h 0.99 0.15 0.3 16.4 10−17 0.998 0.14 0.3 16.4 2.0×106h 0.998 0.13 0.3 39.7 10−15 aCui et al. (2000); bMR06; cHoman et al. (2003); dOrosz et al. (2004); eMorgan etal.(1997);fStrohmayeretal.(2007);gGierlinskietal.(2008);hZhouetal.(2010) 0.01 0.01 NGC5408X-1 NGC5408X-1 211---onscmskeV011.0000--154 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H+2+0+0amΑm +6*=B==HJ000a=..1n.09115502L5 211---onscmskeV011.0000--154 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H+2+0+0maΑm +6*=B==HJ00a0=..1n.01905095L58 hot + + hot + + P 10-6 HaL + + P 10-6 HbL + + + + 0.5 1.0 2.0 5.0 10.0 0.5 1.0 2.0 5.0 10.0 EnergyHkeVL EnergyHkeVL Fig.7 The simulated spectra of NGC 5408 X-1 with different parameters: (a) m = 105, BH a =0.95,m˙ =0.012andα=0.1;(b)m =105,a =0.998,m˙ =0.005andα=0.1.The ∗ BH ∗ plotstyleisthesameasFigure5.TheobservationdataaretakenfromStrohmayeretal.(2007). Thesourcedistanceissetat4.8Mpc(Karachentsevetal.2002)andtheinclinationi = 75◦ is assumed.ThetotalHydrogencolumndensityissetasnH =13 1020cm−2(Strohmayeretal. × 2007). 4 DISCUSSION Inthispaper,atoymodelfortheQPOsinBHsystemsofdifferentscalesisproposedbasedonthemagnetic reconnectionoflarge-scalemagneticfieldsgeneratedbythetoroidalelectriccurrentsinthedisk.Thedy- namicalequationsofaccretiondiskareresolvedbasedontheinteractionbetweentheelectriccurrentswith thedisk-coronasystembyusingtheiterativealgorithm.The190Hzand250HzsingleHFQPOsinBHBs XTEJ1859+226andXTEJ1650 500associatedwithSPLstatesarewellfittedbasedonthedisk-corona − modelwithelectriccurrentsflowingintheinnerdisk.AndthesimilarQPOsobservedinULXNGC5408 X-1andSeyfert1AGNREJ1034+396andthecorrespondingX-rayspectraarealsofitted.Thespectrum ofNGC5408X-1isfittedwithstrongpower-lowcomponentandsteeppower-lawindexsuggestingthatthe QPOissimilartotheHFQPOsinBHBsXTEJ1859+226andXTEJ1650-500andareprobablyassociated withthesamespectralstate—SPLstate.WhiletheQPOinREJ1034+396isanalogoustothe67HzQPO inGRS1915+105whichisassociatedwithTDstate. 10 C.Y.Huang,D.X.Wang,J.Z.Wang&Z.Y.Wang 100 100 1-L GRS1915+105 1-L GRS1915+105 21--cmskeV 101 ++ +++++++++++++++++++++++++++++++++ H1996Αamm A*==B=p0H00r.=.1.229415998L8 21--cmskeV 101 ++ +++++++++++++++++++++++++++++++++ H1996Αamm A*==B=p0H00r.=.1.42961990L8 V + V + ke ++ ke ++ HFkeVE 0.1 ++++++++++++ ++++++++ HFkeVE 0.1 HbL ++++++++++++ ++++++++ E +++ + E +++ + 0.01 +++ +++++ + ++ 0.01 +++ +++++ + ++ 1 2 5 10 20 50 100 200 1 2 5 10 20 50 100 200 EnergyHkeVL EnergyHkeVL Fig.8 ThesimulatedspectraofGRS1915+105withdifferentparameters:(a)m = 18,a = BH ∗ 0.998,m˙ = 0.25andα = 0.14;(b)m = 10,a = 0.998,m˙ = 0.4andα = 0.16.Theplot BH ∗ style is the same as Figure 5. The observationdata are taken from Middleton & Done (2010). Thesourcedistanceissetat11kpc(McClintocketal.2006)andtheinclinationi=66◦(Fender etal.1999)isused. 0.020 0.020 0.020 211---HLFkeVkeVcmskeVE25´´000011....0000000001--125044 HaL +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++R+++++++E+H++2++m+0maΑ+J +0+*B=1=+7+=H+000+=0M+..3+31.7+954a+´9y+++13+03169L+6 211---HLFkeVkeVcmskeVE25´´000011....0000000001--125044 HbL +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++R+++++++E+H++2++m+0maΑ+J +0*+B=1=+=7+H+000+0=M+..3+31.79+44a+´9y++8+13+03169L+6 211---HLFkeVkeVcmskeVE25´´000011....0000000001--125044 HcL +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++R+++++++E+H++2++m+Α0ma+J +0*=+B1=+=7+H0+00+0=.M+.33+1.29+34a+´9y++8+13+03169L+6 E1´10-4 + E1´10-4 + E1´10-4 + 0.2 0.5 1.0 2.0 5.0 10.0 0.2 0.5 1.0 2.0 5.0 10.0 0.2 0.5 1.0 2.0 5.0 10.0 EnergyHkeVL EnergyHkeVL EnergyHkeVL Fig.9 ThesimulatedspectraofREJ1034+396withdifferentparameters:(a)m = 7 106, BH a =0.99,m˙ =0.15andα=0.3;(b)m =7 106,a =0.998,m˙ =0.14andα=0×.3;(c) ∗ BH ∗ m =2 106,a =0.998,m˙ =0.13,andα=×0.3.TheplotstyleisthesameasFigure5.The BH ∗ × observationdataaretakenfromMiddletonetal.(2009).Thesourcedistanceissetat125.9Mpc (z=0.042,H0=100km s−1 Mpc−1) andthe inclinationi = 40◦ is assumed.We only consider theminimumgalacticabsorptionfixedat1.31 1020cm−2(Middletonetal.2009). × SimilaritiesoftheQPOsinBHsystemsofdifferentscalesenableustoestimatesomephysicalquan- tities of the massive BHs which have not been well constrained at present. As suggested by MR06, the frequenciesofHFQPOsinBHBsshowingthe3:2frequencypairsareinverseproportionaltotheBHmass. Abramowiczetal.(2007)usedthe1/M scalingtoexpectQPOfrequenciesforBHsofdifferentscalesand neutronstars.Similarly,wecanusethisrelationtoestimatetheBHmassinULXNGC5408X-1.Including thethreeBHBsshowingthesingleHFQPO,wehavetherelationship,m = 1460ν−1 ,betweentheBH BH QPO massandtheQPOfrequencyasshowninFig.10.TheBHmassofNGC5408X-1isthenestimatedabout 7.3 104M withthe0.02HzQPOasshownbytheblackdotinFig.10. ⊙ × Thequasi-periodicsignalssimilartoQPOswerealsodiscoveredintheX-rayfluxofSgrA*.Ifthese signalsare indeedQPOs andaretriggeredby themagneticreconnectiondescribedin this paper,thenthe lowerlimitoftheBHspincanbeconstrainedbecausetheouterfootpointsofthemagneticfieldlinescannot extendtotheinfinitedistance.WeestimatethelowerlimitoftheBHspinofSgrA*as0.448byfittingthe 22.2minutessignalsdiscoveredintheX-rayflareon2004August31(Blangeretal.2006)usingthemass 4.4 106M (Genzeletal.2010),whichisveryclosetothevaluea 0.44 0.08estimatedbyKatoet ⊙ ∗ × ≈ ± al.(2010)usingtheQPOmethodinthecontextofdisk-seismology.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.