A lower bound on the solutions of Kapustin-Witten equations 6 1 0 2 Teng Huang p e S 3 2 ] G Abstract D Inthisarticle,weconsidertheKapustin-Wittenequationsonaclosed4-manifold. . h Westudy certain analytic properties of solutions to the equations on a closed mani- t a fold. The main result is that there exists an L2-lower bound on the extra fields over m a closed four-manifold satisfying certain conditions if the connections are not ASD [ connections.Furthermore,wealsoobtainasimilarresultabouttheVafa-Wittenequa- 6 tions. v 6 8 9 Keywords.Kapustin-Wittenequations,ASD connections,flat GC-connections 7 0 . 1 Introduction 1 0 6 1 LetX beanoriented4-manifoldwithagivenRiemannianmetricg.Weusethemetricon : v X to define the Hodge star operator on Λ•T∗X and then write the bundle of 2-forms as i X thedirectsumΩ2T∗X = Ω+ Ω− withΩ+ denotingthebundleofself-dual2-formsand ⊕ r a with Ω− denoting the bundleof anti-self-dual 2-forms, with respect to this Hodge star. If ω denotesagiven2-form,thenitsrespectiveself-dualandanti-self-dualpartsaredenoted byω+ andω−. Let P be a principal bundle over X with structure group G. Supposing that A is the connection on P, then we denote by F its curvature 2-form, which is a 2-form on X A with values in the bundle associated to P with fiber the Lie algebra of G denoted by g. We define by d the exterior covariant derivativeon section of Λ•T∗X (P g) with A G ⊗ × respect totheconnectionA. TheKapustin-Wittenequationsare defined on aRiemannian 4-manifoldgivena prin- cipal bundle P. For most our considerations, G is taken to be SO(3). The equations T.Huang:DepartmentofMathematics,UniversityofScienceandTechnologyofChina,Hefei,Anhui 230026,PRChina;e-mail:[email protected] MathematicsSubjectClassification(2010):53C07;58E15 1 2 TengHuang requireapair(A,φ)ofconnectionon P and sectionofT∗X (P g) tosatisfy G ⊗ × (F φ φ)+ = 0 and (d φ)− = 0 and d φ = 0. (1.1) A A A − ∧ ∗ Witten [23, 24, 25, 26], [9], [11] and also Haydys [10] proposed that certain linear com- binations of the equations in (1.1) and the version with the self and anti-self dual forms interchanged should also be considered. The latter are parametrized by τ [0,1] which ∈ can bewrittenas τ(F φ φ)+ = (1 τ)(d φ)+, A A − ∧ − (1 τ)(F φ φ)− = τ(d φ)−, (1.2) A A − − ∧ − d φ = 0. A ∗ The τ = 0 version of (1.2) and the τ = 1 version of (1.2) is the version of (1.1) that is definedonX withitssamemetricbutwithitsorientationreversed.InthecasewhenX is compact,KapustinandWitten[11]provedthatthesolutionof(1.1)withτ (0,1)exists ∈ onlyinthecasewhenP ghaszerofirstPontrjaginnumber,andifso,thesolutionsare G × such that A + √ 1φ defining a flat PSL(2,C) connection. A nice discussions of there − equationscan befoundin [8]. IfX iscompact,and (A,φ)obeys(1.1), then YMC(A+√−1φ) = Z |(FA −φ∧φ)|2 +|dAφ|2 dvolg X (cid:0) (cid:1) = F 2 2 F ,φ φ + φ φ 2 [F ,φ],φ dvol Z | A| − h A ∧ i | ∧ | −h∗ A i g X (cid:0) (cid:1) = F 2 4 F+,φ φ +2 (φ φ)+ 2 dvol Z | A| − h A ∧ i | ∧ | g X (cid:0) (cid:1) = F 2 2 F+ dvol Z | A| − | A|i g X (cid:0) (cid:1) = 4π2p (P so(3)). 1 SO(3) − × where so(3) is the Lie algebra of SO(3) and p (P) is the first Pontrjagin number, the 1 second line we used the fact (2.5). This identity implies, among other things, that there are no solutions to (1.1) in the case when X is compact and the first Pontrjagin number is positive. It also implies that (A,φ) solves (1.1) when X is compact and p (P 1 SO(3) × so(3)) = 0 ifand onlyifA+√ 1φ defines aflat SL(2,C) connectiononX. − In [16], Taubes studied the Uhlenbeck style compactness problem for SL(2,C) con- nections,includingsolutionstotheaboveequations,onfour-manifolds(seealso[17,18]). In[13],Tanakaobservedthatequations(1.1)onacompactKa¨hlersurfacearethesameas Simpson’s equations, and proved that the singular set introduced by Taubes for the case ofSimpson’sequationshasa structureofaholomorphicsubvariety. AlowerboundonthesolutionsofKapustin-Wittenequations 3 Wedefinetheconfigurationspaces := Ω1(X,g ), P P C A × ′ := Ω2,+(X,g ) Ω2,−(X,g ). P P C × Wealso definethegauge-equivariantmap KW : ′, C → C KW(A,φ) = F+ (φ φ)+,(d φ)− . A − ∧ A (cid:0) (cid:1) MimickingthesetupofDonaldsontheory,theKW-modulispaceis M (P,g) := (A,φ) KW(A,φ) = 0 / . KW P { | } G The moduli space M of all ASD connections can be embedded into M via A ASD KW 7→ (A,0),hereAisanASDconnection.Inparticular,Taubes[14,15]provedtheexistenceof ASD connections on certain four-manifolds satisfying extra conditions. For any positive real constantC R+, wedefinetheC-truncatedmodulispace ∈ MC (P,g) := (A,φ) M (P,g) φ C . KW { ∈ KW | k kL2(X) ≤ } In this article, we assume that there is a peculiar circumstance in that one obtains an L2 lower bound on the extra field φ on a closed, oriented, four-dimension manifold, X satisfiescertain conditionsiftheconnectionisnotan ASD connection. Theorem 1.1. (Main Theorem) Let X be a closed, oriented, 4-dimensional Riemannian manifold with Riemannaian metric g, let P X be a principal G-bundle with G being → a compact Lie group with p (P) negative and be such that there exist µ,δ > 0 with the 1 propertythatµ(A) µforallA B (P,g),whereB (P,g) := [A] : F+ < δ ≥ ∈ δ δ { k AkL2(X) } andµ(A)isasin(4.1).Thereexistapositiveconstant,C,withthefollowingsignificance. If (A,φ) is an L2 solution of MC (P,g), then A is anti-self-dual with respect to the 1 KW metricg. Corollary1.2. Let X bea closed, oriented,4-dimensionRiemannianmanifoldwith Rie- mannaianmetricg , letP beaprincipalSO(3)bundlewithP so(3)hasnegative SO(3) × first Pontrjagin class over X. Then there is an open dense subset, C(X,p (P)), of the 1 Banach space, C(X), of conformal equivalence classes, [g], of Cr Riemannian metrics onX (forsomeintegerr 3)withthefollowingsignificance.If[g] C(X,p (P)),then 1 ≥ ∈ there exist a positiveconstant, C, with the followingsignificance. Supposethat P and X obeys oneof thefollowingsetsof conditions: (1)b+(X) = 0;or (2)b+(X) > 0 and the second Stiefel-Whitney class, w (P) H2(X;Z/2Z), is non- 2 ∈ trivial. If (A,φ) is an L2 solution of MC (P,g), then A is anti-self-dual with respect to the 1 KW metricg. 4 TengHuang The organization of this paper is as follows. In section 2, we first review some esti- mates of the Kapustin-Witten equations. Thanks to Uhlenbeck’s work, we observe that A must be a flat connection if φ L2 is sufficiently small, when A+√ 1φ is a flat GC- k k − connectionand φ kerd∗. In section3, westudy certain analyticpropertiesofsolutions ∈ A totheKapustin-Wittenequationsontheclosedmanifolds.Insection4,wegeneralizethe previousobservationtothecaseofKapustin-Wittenequations.Moreprecisely, weshow that if X satisfy certain conditions and φ is sufficiently small, there exists a ASD L2 k k connectionneargivenconnectionAmeasuredby F+ ,thenwecompletetheproofof k AkL2 main theorem by the similar way for the case of flat GC-connections. In the last section, wealsoobtainsimilarresultabout theVafa-Witten equations. 2 Fundamental preliminaries We shall generally adhere to the now standard gauge-theory conventions and notation of Donaldson and Kronheimer [2]. Throughout our article, G denotes a compact Lie group and P a smooth principal G-bundle over a compact Riemannnian manifold X of di- mension n 2 and endowed with Riemannian metric g. For u Lp(X,g ), where P ≥ ∈ 1 p < and k isan integer,wedenote ≤ ∞ k u := j u pdvol 1/p, (2.1) k kLpk,A(X) (cid:0)Xj=0 ZX |∇A | g(cid:1) where : C∞(X,Ω·(g )) C∞(X,T∗X Ω·(g ))isthecovariantderivativeinduced A P P ∇ → ⊗ bytheconnection,A,onP andLevi-CivitaconnectiondefinedbytheRiemannianmetric, g,onT∗X,andallassociatedvectorbundleoverX,and j := ... (repeatedj ∇A ∇A◦ ◦∇A timesforj 0). TheBanach spaces, Lp (X,Ωl(g )), arethecompletionsofΩl(X,g ) ≥ k,A P P withrespect tothenorms(2.1). Forp = ,wedenote ∞ k kukL∞k,A(X) := esssup|∇jAu|. (2.2) X X j=0 Forp [1, )and nonnegativeintegerk, Banach spacedualitytodefine ∈ ∞ Lp′ (X,Ωl(g )) := Lp (X,Ωl(g )) ∗, −k,A P k,A P (cid:0) (cid:1) wherep′ [1, )is thedual exponentdefined by1/p+1/p′ = 1. ∈ ∞ 2.1 Identities for the solutions ThissectionderivessomebasicidentitiesthatareobeyedbysolutionstoKapustin-Witten equations. AlowerboundonthesolutionsofKapustin-Wittenequations 5 Theorem 2.1. (Weitezenbo¨ckformula) d∗d +d d∗ = ∗ +Ric( )+ [ F , ]onΩ1(X,g ) (2.3) A A A A ∇A∇A · ∗ ∗ A · P where Ric istheRiccitensor. AsasimpleapplicationofWeitezenbo¨ckformula, wehavethefollowingproposition, Proposition2.2. If(A,φ) isa solutionofKapustin-Wittenequations,then ∗ φ+Ric φ+2 (φ φ)+,φ = 0. (2.4) ∇A∇A ◦ ∗ ∗ ∧ (cid:2) (cid:3) Proof. From (d φ)− = 0, wehaved φ = d φ.Then wehave A A A ∗ d d φ = d d φ. A A A A ∗ Sinced∗ = d , weobtain A −∗ A∗ d∗d φ = [F ,φ]. (2.5) A A −∗ A From (2.3)and (2.5), wecompletestheproofofProposition2.2. Using a technique of Taubes ([14], p.166) also described in ([12], p.23–24), we com- binetheWeitzenbo¨ckformulawithMorrey’smean-valueinequalitytodeduceaboundon φ L∞ in termsof φ L2. First,werecall ameanvalueinequalityas follow: k k k k Theorem2.3. ([12]Theorem3.1.2)LetX beasmoothclosedRimeannianmanifold.For all λ > 0 there are constants C with the following property. Let V X be any real λ { } → vectorbundleequippedwithametric,A anysmoothmetric-compatibleconnection, V ∈ A andσ Ω0(X,V) anysmoothsectionwith satisfiesthepointwiseinequality ∈ σ, ∗ σ λ σ 2. h ∇A∇A i ≤ | | Then σ satisfiestheestimate σ L∞ Cλ σ L2. k k ≤ k k Theorem 2.4. Let X be a compact 4-dimensional Riemannian manifold. There exists a constant,C = C(X), with thefollowing property.Forany principalbundleP X and → anyL2 solution(A,φ) totheKapustin-Wittenequations, 1 φ L∞(X) C φ L2(X). k k ≤ k k 6 TengHuang Proof. By Theorem 3.7, wemay assumethat(A,φ) issmooth.Form(2.4), in pointwise, ∗ φ,φ = Ric φ,φ +4 (φ φ)+ 2 . (2.6) h∇A∇A i − h ◦ i | ∧ | (cid:0) (cid:1) SinceX iscompact, wegetapointwiseboundoftheform ∗ φ,φ λ φ 2 (2.7) h∇A∇A i ≤ | | for a constant λ depending on Riemannian curvature of X. From (2.7) and Theorem 2.3, weobtain φ L∞(X) C φ L2(X). k k ≤ k k 2.2 Flat G -connections C Let P X be a principal G-bundle with G being a compact Lie group with p (P) is 1 → zero, then thesolutions(A,φ)to theKapustin-Wittenequationsare flat GC-connections: F φ φ = 0 and d φ = 0 and d φ = 0. A A A − ∧ ∗ First,wereviewakeyresultduetoUhlenbeckfortheconnectionswithLp-smallcurvature (2p > n)[20]. Theorem2.5. ([20]Corollary4.3)LetX beaclosed,smoothmanifoldofdimensionn ≥ 2andendowedwithaRiemannianmetric,g,andGbeacompactLiegroup,and2p > n. Thenthereareconstants,ε = ε(n,g,G,p) (0,1]andC = C(n,g,G,p) [1, ),with ∈ ∈ ∞ the following significance. Let A be a Lp connection on a principal G-bundle P over X. 1 If F ε, A Lp(X) k k ≤ then there exist a flat connection, Γ, on P and a gauge transformation g Lp(X) such ∈ 2 that (1)d∗ g∗(A) Γ = 0onX, Γ − (2) g(cid:0)∗(A) Γ L(cid:1)p C FA Lp(X) and k − k 1,Γ ≤ k k (3) g∗(A) Γ C F . k − kLn/2 ≤ k AkLn/2(X) 1,Γ Theorem 2.6. Let X be a closed, oriented, 4-dimensional Riemannian manifold with Riemannaian metric g, let P X be a principal G-bundle with G being a compact Lie → groupwithp (P) = 0.Thereexistapositiveconstant,C,withthefollowingsignificance. 1 If (A,φ)isan L2 solutionofMC (P,g),then Aisa flatconnection. 1 KW AlowerboundonthesolutionsofKapustin-Wittenequations 7 Proof. ByTheorem3.7,wecanassume(A,φ)issmooth.FromtheTheorem2.4,wehave φ L∞(X) C7 φ L2(X), k k ≤ k k whereC isonlydependentonmanifold.Since(A,φ)isasolutionoftheKapustin-Witten 7 equations,wehave F φ φ C φ 2 , k AkLp(X) ≤ k ∧ kLp(X) ≤ 8k kL2(X) wherep > 2.Wecanchoose φ C sufficientlysmallsuchthatC C2 ε,where L2(X) 8 k k ≤ ≤ ε is the constant in the hypothesisof Theorem 2.5. Then from Theorem 2.5, there exist a flat connectionΓ such that A Γ C F . L2(X) 9 A L2(X) k − k 1 ≤ k k UsingtheWeitezenbo¨ck formula,we haveidentities (d∗d +d d∗)φ = ∗ φ+Ric φ, (2.8) Γ Γ Γ Γ ∇Γ∇Γ ◦ and (d∗d +d d∗)φ = ∗ φ+Ric φ+ [ F ,φ], (2.9) A A A A ∇A∇A ◦ ∗ ∗ A whichlead to thefollowingtwointegralinequalities φ 2 + Ric φ,φ 0. (2.10) k∇Γ kL2(X) Z h ◦ i ≥ X and φ 2 + Ric φ,φ +2 F 2 = 0. (2.11) k∇A kL2(X) Z h ◦ i k Ak X On theotherhand,wealso haveanotherintegralinequality φ φ 2 [A Γ,φ] 2 k∇A −∇Γ kL2(X) ≤ k − kL2(X) C A Γ 2 φ 2 (2.12) ≤ 10k − kL4(X)k kL4(X) C F 2 φ 2 . ≤ 11k AkL2(X)k kL2(X) Combingtheseinequalities,wearriveat 0 φ 2 + Ric φ,φ ≤ k∇Γ kL2(X) Z h ◦ i X φ 2 + Ric φ,φ + φ φ 2 ≤ k∇A kL2(X) Z h ◦ i k∇A −∇Γ kL2(X) X (C φ 2 2) F 2 . ≤ 12k kL2(X) − k AkL2(X) We can choose φ C sufficiently small such that C C2 1, then F vanishes. L2(X) 12 A k k ≤ ≤ 8 TengHuang 2.3 A vanishing theorem on extra fields Asusual, wedefinethestabilizergroupΓ ofAinthegaugegroup by A P G Γ := g g∗(A) = A . A P { ∈ G | } Definition 2.7. A connection A is said to be irreducible if the stabilizer group Γ is A isomorphicto thecentreofG, and Aiscalled reducibleotherwise. Lemma 2.8. ([2] Lemma 4.3.21) If A is an irreducible SU(2) or SO(3) anti-self-dual connection on a bundle E over a simply connected four-manifoldX, then the restriction ofAto anynon-emptyopen setin X is alsoirreducible. Theorem 2.9. Let X be a simply-connected Riemannian four-manifold, let P X be → an SU(2) or SO(3) principalbundle.If A is irreducibleanti-self-dualconnection P ∈ A andφ Ω1(X,g )satisfy P ∈ φ φ = 0 and d φ = 0 and d∗φ = 0 ∧ A A thenφ = 0. Proof. Since F+ = 0, φ φ = 0, then φ has at most rank one. Let Zc denote the A ∧ complementofthezeroofφ.Byuniquecontinuationoftheellipticequation(d +d∗)φ = A A 0,Zc iseitheremptyordense. The Lie algebra of SU(2) or SO(3) is three-dimensional, with basis σi and i=1,2,3 { } Liebrackets σi,σj = 2ε σk. ijk { } In alocal coordinate,wecan set φ = 3 φ σi, whereφ Ω1(X).Then i=1 i i ∈ P 0 = φ φ = 2(φ φ )σ3 +2(φ φ )σ2 +2(φ φ )σ1. 1 2 3 1 2 3 ∧ ∧ ∧ ∧ Wehave 0 = φ φ = φ φ = φ φ . (2.13) 1 2 3 1 2 3 ∧ ∧ ∧ On Zc, φ is non-zero, then without loss of generality we can assume that φ is non-zero. 1 From (2.13), thereexistfunctionsµand ν such that φ = µφ and φ = νφ . 2 1 3 1 Hence, φ = φ (σ1 +µσ2 +νσ3) 1 σ1 +µσ2 +νσ3 = φ (1+µ2 +ν2)1/2( ). 1 1+µ2 +ν2 p AlowerboundonthesolutionsofKapustin-Wittenequations 9 Then on Zc write φ = ξ ω for ξ Ω0(Zc,g ) with ξ,ξ = 1, and ω Ω1(Zc). We P ⊗ ∈ h i ∈ compute 0 = d (ξ ω) = d ξ ω ξ dω, A A ⊗ ∧ − ⊗ 0 = d (ξ ω) = d ξ ω ξ d ω. A A ∗ ⊗ ∧∗ − ⊗ ∗ Takingtheinnerproductwithξ andusingtheconsequenceof ξ,ξ = 1that ξ,d ξ = 0, A h i h i wegetdω = d∗ω = 0.Itfollowsthatd ξ ω = 0.Sinceω isnowherezeroalongZc,we A ∧ must have d ξ = 0 along Zc. Therefore, A is reducible along Zc. However according to A [2] Lemma 4.3.21, A is irreducible along Zc. This is a contradiction unless Zc is empty. Therefore Z = X,so φis identicallyzero. 3 Analytic results 3.1 The Kuranishi complex The most fundamental tool for understanding moduli space of anti-self-dual connection isthecomplexassociatetoan anti-self-dualconnection A givenby asd 0 Ω0(g ) dAasd Ω1(g ) d+Aasd Ω2,+(g ) 0. P P P → −−−→ −−−→ → Thecomplexassociated toKapustin-Wittenequationsistheform d0 d1 0 Ω1(g ) (A,φ) Ω1(g ) Ω1(g ) (A,φ) Ω2,−(g ) Ω2,+(g ) 0, P P P P P → −−−→ × −−−→ × → where d1 is the linearization of KW at the configuration (A,φ), and d0 gives the (A,φ) (A,φ) action of infinitesimal gauge transformations. These maps d0 and d1 form a com- (A,φ) (A,φ) plexwheneverKW(A,φ) = 0. The action of g on (A,φ) Ω1(g ), and the corresponding infinitesimal P P P ∈ G ∈ A × actionofξ Ω0(g ) is P ∈ d0 : Ω0(g ) Ω1(g ) Ω1(g ), (A,φ) P → P × P d0 (ξ) = ( d ξ,[ξ,φ]). (A,φ) − A ThelinearizationofKW at thepoint(A,φ) isgivenby d1 (a,b) = (d b+[a,φ])−,(d a+[b,φ])+ . (A,φ) A A (cid:0) (cid:1) Wecompute d1 d0 (ξ) = [ξ,(d φ)−],[ξ,(F +φ φ)+] . (A,φ) ◦ (A,φ) A A ∧ (cid:0) (cid:1) 10 TengHuang Thedualcomplexis d1,∗ d0,∗ 0 Ω2,−(g ) Ω2,+(g ) (A,φ) Ω1(g ) Ω1(g ) (A,φ) Ω0(g ) 0. P P P P P → × −−−→ × −−−→ → Therecodifferentialsare d1,∗ (a′,b′) = (d∗b′ [φ,a′],d∗a′ + [φ,b′]), (A,φ) A −∗ A ∗ and d0,∗ (a,b) = ( d∗a+ [φ, b]). (A,φ) − A ∗ ∗ Proposition3.1. ThemapKW(A,φ) hasanexact quadraticexpansiongiven by KW(A+a,φ+b) = KW(A,φ)+d1 (a,b)+ (a,b),(a,b) , A,φ { } where (a,b),(a,b) is thesymmetricquadraticformgivenby { } (a,b),(a,b) := [a,b]−,(a a+[b,b])+ . { } ∧ (cid:0) (cid:1) Givenfixed(A ,φ ),welookforsolutionstotheinhomogeneousequationKW(A + 0 0 0 a,φ +b) = ψ .By Proposition3.1, thisequationis equivalentto 0 0 d1 + (a,b),(a,b) = ψ KW(A ,φ ). (3.1) A0,φ0 { } 0 − 0 0 To makethisequationelliptic,it’snatureto imposethegauge-fixingcondition d0,∗ (a,b) = ζ. (A0,φ0) Ifwedefine := d0,∗ +d1 , D(A0,φ0) (A0,φ0) (A0,φ0) ψ = ψ KW(A ,φ ). 0 0 0 − thentheellipticsystemcan berewritten as + (a,b),(a,b) = (ζ,ψ). (3.2) D(A0,φ0) { } Thisissituationis considerin [6]equation3.2in thecontextofPU(2)monopoles. 3.2 Regularity and elliptic estimates First wesummarizetheresultof [6], which applyverbatimto Kapustin-Wittenequations uponreplacing thePU(2) spinorΦby φ,