A Littlewood-Richardson rule for evaluation 4 0 representations of U (sl ) 0 q n 2 n b a Bernard LECLERC J 8 ] T R Abstract . h We give a combinatorialdescription of the composition factors of the induction productof t a two evaluationmodules of the affine Iwahori-Heckealgebra of type GLm. Using quantum m affineSchur-Weylduality,thisyieldsa combinatorialdescriptionofthecompositionfactors [ ofthetensorproductoftwoevaluationmodulesofthequantumaffinealgebraUq(sln). 1 b v 7 1 Introduction 7 0 1 1.1 Let Hm denote the Iwahori-Hecke algebra of type Am−1 over C(t). This is a semisimple 0 associative algebra isomorphic to the group algebra C(t)[S ] of the symmetric group. Hence m 4 its simple modules S(λ) are parametrized by the partitions λ of m. Consider a decomposition 0 / m = m1 + m2, and two partitions λ(1) and λ(2) of m1 and m2, respectively. Then we have a h H -moduleS(λ(1))andaH -moduleS(λ(2)),andwecanformtheinducedmodule t m1 m2 a m S(λ(1))⊙S(λ(2)):= IndHm S(λ(1))⊗S(λ(2)) . : Hm1⊗Hm2 (cid:16) (cid:17) v Here, H ⊗ H is identified to a subalgebra of H in the standard way. Using again the i m1 m2 m X isomorphism H ∼= C(t)[S ], we see that the multiplicity of a simple H -module S(µ) in m m m r S(λ(1)) ⊙ S(λ(2)) is equal to the classical Littlewood-Richardson coefficient cµ (see e.g. a λ(1)λ(2) [Mcd]). 1.2 Let now H be the affine Iwahori-Hecke algebra over C(t) (see 2.1 below). For each m invertiblez ∈ C(t)wehaveasurjectiveevaluationhomomorphismτ :H → H . Pullingback z m m b the simple H -module S(λ) via τ weobtain a simple H -module S(λ;z) called an evaluation m z m b module. In analogy with 1.1, given two invertible elements z and z of C(t), we can then form b 1 2 theinduced H -module m Sb(λ(1);z )⊙S(λ(2);z ):= IndHm S(λ(1);z )⊗S(λ(2);z ) . 1 2 Hbm1⊗Hm2 (cid:16) 1 2 (cid:17) b b 1 It turns out that if we fix λ(1),λ(2) and vary the spectral parameters z ,z , this module is gener- 1 2 ically irreducible, that is, it is simple except for a finite number of values of the ratio z /z . In 1 2 [LNT,Theorem36]acombinatorial description ofthesespecial valueswasgiven. In this note we shall make this result more precise by describing all the composition factors of S(λ(1);z ) ⊙ S(λ(2);z ) at these critical values z /z . We shall also prove that, in contrast 1 2 1 2 withtheclassicalLittlewood-Richardson rule,allthecompositionfactorsappearwithmultiplicity one. The composition factors occuring in a product will be described using the combinatorics of Lusztig’s symbols, that is, of certain two-row arrays introduced by Lusztig for parametrizing the irreduciblecomplexrepresentations oftheclassicalreductivegroupsoverfinitefields[Lu1,Lu2]. 1.3 Wewillderiveourcombinatorialformulafromsomeexplicitcalculationsofcanonicalbases in level 2representations ofthe quantum algebra U (sl )performed in[LM]. More precisely, v n+1 bydualizing[LM,Theorem3],wegetaformulafortheexpansionoftheproductoftwoquantum flagminorsonthedualcanonical basisofU (sl )(Theorem 4). UsingthenAriki’stheorem as v n+1 in[LNT],weobtain immediately the above-mentioned Littlewood-Richardson rule forinduction products oftwoevaluation modulesoveraffineHeckealgebras(Theorem2). Finally, by means of the quantum affine analogue of the Schur-Weyl duality developed by Cherednik, Chari-Pressley and Ginzburg-Reshetikhin-Vasserot, we can deduce from this rule a similar one for the tensor product of two evaluation modules over the quantum affine algebra U (sl ). q N b 2 Composition factors of induced H -modules m 2.1 Let H be the affine Hecke algebra of typebGL over C(t). It has invertible generators m m T1,...,Tmb−1,y1,...,ym subjecttotherelations T T T = T T T , (1 6 i6 m−2), i i+1 i i+1 i i+1 T T = T T , (|i−j| > 1), i j j i (T −t)(T +1) = 0, (1 6i 6 m−1), i i y y = y y , (1 6 i,j 6 m), i j j i y T = T y , (j 6= i,i+1), j i i j T y T =ty , (1 6 i 6 m−1). i i i i+1 Thesubalgebra Hm generated bytheTi’sistheIwahori-Hecke algebra oftypeAm−1. Forany invertible z ∈ C(t) we have a unique algebra homomorphism τ : H → H such z m m that b τ (T ) = T , τ (y ) = z, (i = 1,...,m−1). z i i z 1 Thisiscalledtheevaluation atz. 2 Wealsohaveanalgebraautomorphism σ : H → H suchthat z m m σ (T )= T , σ (y )= zyb, (bi = 1,...,m−1). z i i z i i Thisiscalledtheshiftbyz. 2.2 As mentioned in the introduction, given two partitions λ(1) and λ(2), the structure of the induced H -module m S(λ(1);z )⊙S(λ(2);z ) b 1 2 depends essentially on the ratio z /z . Indeed, by twisting this module with the shift automor- 1 2 phismσ weobtaintheinduced module z S(λ(1);zz )⊙S(λ(2);zz ). 1 2 Forexample,itisknownthatifz /z 6∈tZthenS(λ(1);z )⊙S(λ(2);z )isirreducible. Therefore, 1 2 1 2 wecanassumewithoutlossofgenerality that z = tai, a ∈ Z, a > ℓ(λ(i)), (i = 1,2), (1) i i i where as usual ℓ(λ) denotes the length of the partition λ. Since S(λ(1);z ) ⊙ S(λ(2);z ) and 1 2 S(λ(2);z )⊙S(λ(1);z )have the samecomposition factors withthe samemultiplicities, wecan 2 1 alsoassumethata 6 a . 1 2 2.3 Itwillbeconvenient towritepartitions inweaklyincreasing order. Givenapartition λand an integer a > ℓ(λ) we can make λ into a non-decreasing sequence (λ ,...,λ ) of length a by 1 a setting λ = 0forj = 1,...,a−ℓ(λ). Wecanthenassociate to(λ,a)theincreasing sequence j β = (β ,...,β ), β = j +λ . (2) 1 a j j Inthisway,given(λ(i),a )(i = 1,2)asin2.2,weobtainasymbol i β(2) β(2),...,β(2) S = = 1 a2 . (3) (cid:18)β(1)(cid:19) (cid:18)β(1),...,β(1)(cid:19) 1 a1 Forexample,thesymbolattached tothepairs((1,1,2),3) and((2,3),5) is 1 2 3 6 8 S = . (cid:18)2 3 5 (cid:19) Conversely, givenasymbolS,i.e. atwo-rowarrayasinEq.(3)with 1 6β(i) < ··· < β(i) (i = 1,2), 1 ai thereisauniquepair(λ(i),a )(i = 1,2)whosesymbolisS. i 3 2.4 ThesymbolS ofEq.(3)issaidtobestandard ifβ(2) 6 β(1) fork 6 a . In[LM,§2.5]we k k 1 havedefinedthepairsofastandardsymbolS,andthesetC(S)ofallsymbolsΣobtainedfromS by permuting someofitspairs. Asshown in[LM, Lemma9], these notions areequivalent tothe notionofadmissible involution ofLusztig[Lu4]. Fortheconvenience ofthereader weshall recallthese definitions. LetS = β beastandard γ symbol. We define an injection ψ : γ −→ β such that ψ(j) 6 j for all j ∈ (cid:0)γ.(cid:1)To do so it is enough todescribe thesubsets γl = {j ∈ γ | ψ(j) = j −l}, (0 6 l 6 n). Wesetγ0 =γ ∩β andforl > 1weput γl = {j ∈ γ−(γ0∪···∪γl−1)| j−l ∈β −ψ(γ0∪···∪γl−1)}. Observethatthestandardness ofS impliesthatψ iswell-defined. Example1 Take 1 3 5 8 9 S = . (cid:18)3 6 7 10 (cid:19) Then γ0 = {3}, γ1 = {6,10}, γ2 = ··· = γ5 = ∅, γ6 = {7}. Hence ψ(3) = 3, ψ(6) = 5, ψ(7) = 1, ψ(10) = 9. The pairs (j,ψ(j)) with ψ(j) 6= j (that is, j 6∈ β ∩γ) will be called the pairs of S. Given a standard symbol S with p pairs, we denote by C(S) the set of all symbols obtained from S by permuting some pairs in S and reordering the rows. Weconsider S itself as an element of C(S), henceC(S)hascardinality 2p. 2.5 Givenapartition λand aninteger awecall Youngdiagram of(λ,a)theYoung diagram of λinwhicheachcell(i,j)isfilledwiththeintegeri−j+a. Forinstance,ifλ = (2,3)anda= 5 thentheYoungdiagramof(λ,a)is 4 5 5 6 7 TherowsoftheYoungdiagram of(λ,a)yieldamultisegment m(λ,a) := [k,k+λ −1]. k 16Xk6a 4 This is a formal sum (or multiset) of intervals in Z, in which we discard the empty intervals corresponding tothek’swithλ = 0. Thus,continuing withthesameexample,wehave k m((2,3),5) =[4,5]+[5,7]. Similarly,weattachtoapair(λ(i),a )(i = 1,2)ortoitssymbolS themultisegment i m(S) = m(λ(1),a )+m(λ(2),a ). 1 2 2.6 Toeachmultisegment m:= [α ,β ] k k Xk isattachedanirreducible Hm-moduleLm,wherem = k(βk +1−αk)(seee.g. [LNT,§2.1]). P b 2.7 Letusassumethatthepair(λ(i),a )(i = 1,2) satisfiestheconditions of2.2. LetΣdenote i thesymbolattachedtothispair. Wecannowstate: Theorem2 Thecomposition factors ofS(λ(1);ta1)⊙S(λ(2);ta2)arethemodules Lm(S) where S runs through the set of standard symbols such that Σ ∈ C(S). Each of them occurs with multiplicity one. Theorem2willbededuced fromTheorem4below. Example3 Let(λ(1),a ) = ((1,4),2) and(λ(2),a ) = ((1,2,3),4). Thecorresponding symbol 1 2 is 1 3 5 7 Σ = . (cid:18)2 6 (cid:19) Thestandard symbolsS suchthatΣ ∈ C(S)are 1 2 5 6 1 2 5 7 1 3 5 6 1 3 5 7 , , , . (cid:18)3 7 (cid:19) (cid:18)3 6 (cid:19) (cid:18)2 7 (cid:19) (cid:18)2 6 (cid:19) It follows that the composition factors of S((1,4);t2)⊙S((1,2,3);t4) are the Lm where m is onethefollowingmultisegments: n = [1,2]+[2,6]+[3,4]+[4,5], n = [1,2]+[2,5]+[3,4]+[4,6], 1 2 n = [1,1]+[2,2]+[2,6]+[3,4]+[4,5], n = [1,1]+[2,2]+[2,5]+[3,4]+[4,6]. 3 4 5 3 Canonical bases 3.1 Fixn > 2andletg = sl . WeconsiderthequantumenvelopingalgebraU (g)overQ(v) n+1 v with Chevalley generators e ,f ,t (1 6 j 6 n). The simple roots and the fundamental weights j j j aredenotedbyα andΛ (1 6k 6 n)respectively. Theirreducible representation ofU (g)with k k v highest weightΛisdenoted byV(Λ). WedenotebyU (n)thesubalgebra ofU (g)generated by v v e (1 6 j 6 n). j 3.2 LetB(resp.B∗)denotethecanonicalbasis(resp.thedualcanonicalbasis)ofU (n)([Lu3], v [BZ];seealso[LNT,§3]). TheelementsofBandB∗ arenaturallylabelledbythemultisegments msupported on[1,n]. Weshalldenotethembybm andb∗m respectively. Thevectorsb∗m forwhichmisoftheform m = m(λ,a) forsomepartitionλandsomeintegeraarecalledquantumflagminors. Indeed,by[BZ],theycan be expressed as quantum minors of a triangular matrix whose entries are iterated brackets of the e ’s(see[LNT,§5.2]). i 3.3 Let(λ(i),a )(i = 1,2)beasin2.2. Wealsoassumethatthemultisegments i m = m(λ(i),a ) (i = 1,2) i i are supported on [1,n]. Let Σ be the symbol attached to the pair (λ(i),a ) (i = 1,2). For a i standard symbolS suchthatΣ ∈ C(S)wedenote byn(S,Σ)thenumberofpairsofS whichare permuted to get Σ. Finally, we denote by N (λ,a) the number of cells of the Young diagram of j (λ,a)containing theintegerj. Theorem4 Wehave b∗m1b∗m2 = v−Na1(λ(2),a2) vn(S,Σ)b∗m(S) XS wherethesumrunsthrough allstandardsymbolsS suchthatΣ ∈C(S). Example5 Wetake(λ(1),a )and(λ(2),a )asinExample3. Hence 1 2 m = [1,1]+[2,5], m = [2,2]+[3,4]+[4,6]. 1 2 ThenN (λ(2), a ) =N ((1,2,3),4) = 1,andweobtain, usingthenotationofExample3, a1 2 2 b∗m b∗m = v−1(v2b∗n +vb∗n +vb∗n +b∗n ). 1 2 1 2 3 4 6 3.4 Proof of Theorem 4. Following [LNT, §7.2], we will replace calculations of products of elements of B∗ by calculations of dual canonical bases of finite-dimensional representations of U (g). v 3.4.1 Let U (n−) denote the subalgebra of U (g) generated by the f ’s, and let x 7→ x♯ denote v v i the algebra isomorphism from U (n) to U (n−) defined by e♯ = f (i = 1,...,n). Let Λ be a v v i i dominant integral weight and let u be a highest weight vector of the irreducible module V(Λ). Λ Thenthemapπ : x7→ x♯u projectsthecanonicalbasisBofU (n)totheunionofthecanonical Λ Λ v basisB(Λ)ofV(Λ)withtheset{0}. Thedualmapπ∗ givesanembedding ofthedualcanonical Λ basisB∗(Λ)ofV(Λ) ≃ V(Λ)∗ intothedualcanonical basisB∗ ofU (n) ≃ U (n)∗. v v 3.4.2 In particular the subset of B∗ obtained by embedding the bases B∗(Λ ) (1 6 a 6 n) of a the fundamental representations is precisely the subset of quantum flag minors. It is well known thatV(Λ )isaminusculerepresentationwhosebasesB∗(Λ )andB(Λ )coincide. Moreoverthe a a a elementsofthesebasesarenaturallylabelledbythepairs(λ,a)whoseYoungdiagram(asdefined in 2.5) contains only cells numbered by integers between 1 and n. Denoting them by b∗ we (λ,a) have ∗ ∗ ∗ π (b )= b Λa (λ,a) m(λ,a) Equivalently, wecan also label the elements of B∗(Λ )by one-row symbols β as in Eq.(2)with a β 6 n+1. i 3.4.3 Similarly,thebasisB∗(Λ )⊗B∗(Λ )isnaturallylabelledbythesetofsymbolsS asin a1 a2 Eq.(3)withβ(i) 6 n+1(i = 1,2). Usingthetheory ofcrystal bases[K1,K2]onecanseethat ai the basis B∗(Λ + Λ ) has a natural labelling by the subset of standard symbols [LM, §2.3]. a1 a2 Moreover, denoting by b∗ the element of B∗(Λ +Λ ) labelled by the standard symbol S we S a1 a2 have,usingalsothenotation of2.5, ∗ ∗ ∗ π (b ) = b . Λa1+Λa2 S m(S) 3.4.4 Letι: V(Λ +Λ ) → V(Λ )⊗V(Λ )betheU (g)-moduleembeddingwhichmaps a1 a2 a1 a2 v u to u ⊗ u , and let ι∗ : V(Λ ) ⊗ V(Λ ) → V(Λ + Λ ) be its dual. Let flb∗iaΛga∈1m+BΛina∗o2(rΛs.ai)ItΛ(iias1=sho1w,Λ2n)a2iannd[LdNenTo,te§7b.y2.7b∗m] tiha=a1t tπhΛ∗eaiim(ba∗ig)ae2(iof=b∗1,⊗2)b∗tah1uencdoerrraet2shpeocnodminpgoqsiutaionntuomf 1 2 tmheapBs∗π-Λ∗exa1p+anΛsai2on◦oι∗fbc∗moinbc∗midesituispetnooaugphowtoercaolfcuvlawteitthhethmeaptrroixduocftthbe∗mm1ba∗mp2ι.∗Hweitnhceretsopeccatlctoultahtee 1 2 basesB∗(Λ )⊗B∗(Λ )andB∗(Λ +Λ ). a1 a1 a1 a2 7 3.4.5 The matrix of ι with respect to the bases B(Λ +Λ ) and B(Λ )⊗B(Λ ) was cal- a1 a2 a1 a1 culatedin[LM,Theorem3]intermsofLusztig’ssymbols. Transposing thismatrixweobtainthe desired matrixofι∗. Using3.4.2and3.4.3,wethengettheformulaofTheorem4. 2 3.5 ProofofTheorem2. By[LNT,§3.7]themultisegmentsmindexingthecompositionfactors Lm of S(λ(1);ta1) ⊙ S(λ(2);ta2) are those occuring in the right-hand side of the formula of Theorem 4. Moreover the composition multiplicities are obtained by specializing v to 1 in the coefficients ofthisformula. Hencetheyareallequalto1. 2 4 Tensor products of U (sl )-modules q N 4.1 Let U (sl ) be the quantized abffine algebra of type A(1) with parameter q a square root q N N−1 oft(seeforexample[CP]forthedefiningrelations ofU (sl )). Thequantum affineSchur-Weyl b q N duality between H and U (sl ) [CP, Ch, GRV] gives a functor F from the category of m q N b m,N finite-dimensional H -modules to the category of level 0 finite-dimensional representations of b m b U (sl ). If N > m, F maps the simple modules of H to simple modules of U (sl ). q N m,N m q N b However, the image of a non-zero simple H -module may be the zero U (sl )-module. More b m b q N b precisely,thesimpleHm-moduleLmismapbpedtoanon-zerosimpleUq(slN)b-moduleifandonly if allthe segments occuring in mhave length 6 N −1. Inthis case the Drinfeld polynomials of b b Fm,N(Lm)areeasilycalculated fromm(see[CP]). ThefunctorF transformsinductionproductintotensorproduct,thatis,forM inC and m,N 1 m1 M inC onehas 2 m2 F (M ⊙M )= F (M )⊗F (M ). m1+m2,N 1 2 m1,N 1 m2,N 2 4.2 TheimageunderF ofanevaluationmoduleforH isanevaluationmoduleforU (sl ), m,N m q N andallevaluation modulesofU (sl )canbeobtained inthisway,byvaryingm ∈ N∗. q N b b b 4.3 By application of the Schur functor F to Theorem 2 we thus obtain a combinatorial m,N descriptionofallcompositionfactorsofthetensorproductoftwoevaluationmodulesofU (sl ). q N Example6 We continue Example 3 and Example 5. The image of the H5-module Lm1 ubnder F istheevaluation moduleV(m )ofU (sl )withDrinfeldpolynomials 5,N 1 q N b P1(u) = u−b q−2, P (u) = P (u) = 1, 2 3 P (u) = u−q−7, 4 P (u) = 1, (5 6 k 6 N −1). k 8 Thisisanon-zeromoduleifandonlyifN >5. Similarly,theimageoftheH6-moduleLm2 under F istheevaluation moduleV(m )ofU (sl )withDrinfeldpolynomials 6,N 2 q N b P (u) = u−b q−4, 1 P (u) = u−q−7, 2 P (u) = u−q−10, 3 P (u) = 1, (4 6 k 6 N −1). k Thisisanon-zeromoduleifandonlyifN > 4. TheimagesoftheH11-modulesLm1,Lm2,Lm3, Lm4 underF11,N arethemodulesV(n1),V(n2),V(n3),V(n4)wibthrespectiveDrinfeldpolyno- mials P (u) = 1, 1 P (u) = (u−q−3)(u−q−7)(u−q−9), 2 P (u) = P (u) = 1, 3 4 P (u) = u−q−8, 5 P (u) = 1, (6 6 k 6 N −1); k P (u) = 1, 1 P (u) = (u−q−3)(u−q−7), 2 P (u) = u−q−10, 3 P (u) = u−q−7, 4 P (u) = 1, (5 6 k 6 N −1); k P (u) = (u−q−2)(u−q−4), 1 P (u) = (u−q−7)(u−q−9), 2 P (u) = P (u) = 1, 3 4 P (u) = u−q−8, 5 P (u) = 1, (6 6 k 6 N −1); k P (u) = (u−q−2)(u−q−4), 1 P (u) = u−q−7, 2 P (u) = u−q−10, 3 P (u) = u−q−7, 4 P (u) = 1, (5 6 k 6 N −1). k 9 ThemodulesV(n )andV(n )arenon-zeroonlyifN > 6. HenceV(m )⊗V(m )hasonlytwo 1 3 1 2 composition factors V(n ) and V(n ) for N = 5, and four composition factors V(n ),V(n ), 2 4 1 2 V(n ),V(n )forN > 6. 3 4 4.4 Wenotethatourresultimpliesthefollowing Theorem7 All composition factors of the tensor product of two evaluation modules of U (sl ) q N occurwithmultiplicity one. b References [BZ] A.BERENSTEIN,A.ZELEVINSKY,StringbasesforquantumgroupsoftypeAr,AdvancesinSovietMath.(Gelfand’s seminar)16(1993),51–89. [CP] V.CHARI,A.PRESSLEY,QuantumaffinealgebrasandaffineHeckealgebras,PacificJ.Math.174(1996),295–326. [Ch] I.V.CHEREDNIK,AnewinterpretationofGelfand-Tzetlinbases,DukeMath.J.54(1987),563–577. [GRV] V.GINZBURG,N.YURESHETIKHIN,E.VASSEROT,Quantumgroupsandflagvarieties,A.M.S.Contemp.Math.175 (1994),101–130. [K1] M.KASHIWARA,Crystalizingtheq-analogueofuniversalenvelopingalgebras,Commun.Math.Phys.133(1990),249– 260. [K2] M.KASHIWARA,Oncrystalbasesoftheq-analogueofuniversalenvelopingalgebras,DukeMath.J.63(1991),465–516. [LM] B.LECLERC,H.MIYACHI,Constructiblecharactersandcanonicalbases,Preprint2003,math.QA/0303385. [LNT] B. LECLERC, M. NAZAROV, J.-Y.THIBON,Induced representations ofaffineHeckealgebras andcanonical basesof quantumgroups,inStudiesinmemoryofIssaiSchur,115–153,ProgressinMath.210,Birkhauser2002. [LT] B.LECLERC,P.TOFFIN,AsimplealgorithmforcomputingtheglobalcrystalbasisofanirreducibleUq(sln)-module,Int. J.Algebra.Comput.10(2000),191–208. [Lu1] G.LUSZTIG,AclassofirreduciblerepresentationsofaWeylgroup,Indag.Math.,41(1979),323–335. [Lu2] G.LUSZTIG,Charactersofreductivegroupsoverafinitefield,AnnalsofMath.Studies,PrincetonUniv.Press1984. [Lu3] G.LUSZTIG,Canonicalbasesarisingfromquantizedenvelopingalgebras,J.Amer.Math.Soc.3(1990),447–498. [Lu4] G.LUSZTIG,Heckealgebraswithunequalparameters,CRMMonographSeries18,AMS2003. [Mcd] I.G.MACDONALD,SymmetricfunctionsandHallpolynomials,Oxford,1995. B. LECLERC: LaboratoiredeMathe´matiquesNicolasOresme, Universite´deCaen,CampusII, BldMare´chalJuin,BP5186,14032Caencedex,France email: [email protected] 10