ebook img

A Littlewood-Richardson rule for evaluation representations of quantum affine sl(n) PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Littlewood-Richardson rule for evaluation representations of quantum affine sl(n)

A Littlewood-Richardson rule for evaluation 4 0 representations of U (sl ) 0 q n 2 n b a Bernard LECLERC J 8 ] T R Abstract . h We give a combinatorialdescription of the composition factors of the induction productof t a two evaluationmodules of the affine Iwahori-Heckealgebra of type GLm. Using quantum m affineSchur-Weylduality,thisyieldsa combinatorialdescriptionofthecompositionfactors [ ofthetensorproductoftwoevaluationmodulesofthequantumaffinealgebraUq(sln). 1 b v 7 1 Introduction 7 0 1 1.1 Let Hm denote the Iwahori-Hecke algebra of type Am−1 over C(t). This is a semisimple 0 associative algebra isomorphic to the group algebra C(t)[S ] of the symmetric group. Hence m 4 its simple modules S(λ) are parametrized by the partitions λ of m. Consider a decomposition 0 / m = m1 + m2, and two partitions λ(1) and λ(2) of m1 and m2, respectively. Then we have a h H -moduleS(λ(1))andaH -moduleS(λ(2)),andwecanformtheinducedmodule t m1 m2 a m S(λ(1))⊙S(λ(2)):= IndHm S(λ(1))⊗S(λ(2)) . : Hm1⊗Hm2 (cid:16) (cid:17) v Here, H ⊗ H is identified to a subalgebra of H in the standard way. Using again the i m1 m2 m X isomorphism H ∼= C(t)[S ], we see that the multiplicity of a simple H -module S(µ) in m m m r S(λ(1)) ⊙ S(λ(2)) is equal to the classical Littlewood-Richardson coefficient cµ (see e.g. a λ(1)λ(2) [Mcd]). 1.2 Let now H be the affine Iwahori-Hecke algebra over C(t) (see 2.1 below). For each m invertiblez ∈ C(t)wehaveasurjectiveevaluationhomomorphismτ :H → H . Pullingback z m m b the simple H -module S(λ) via τ weobtain a simple H -module S(λ;z) called an evaluation m z m b module. In analogy with 1.1, given two invertible elements z and z of C(t), we can then form b 1 2 theinduced H -module m Sb(λ(1);z )⊙S(λ(2);z ):= IndHm S(λ(1);z )⊗S(λ(2);z ) . 1 2 Hbm1⊗Hm2 (cid:16) 1 2 (cid:17) b b 1 It turns out that if we fix λ(1),λ(2) and vary the spectral parameters z ,z , this module is gener- 1 2 ically irreducible, that is, it is simple except for a finite number of values of the ratio z /z . In 1 2 [LNT,Theorem36]acombinatorial description ofthesespecial valueswasgiven. In this note we shall make this result more precise by describing all the composition factors of S(λ(1);z ) ⊙ S(λ(2);z ) at these critical values z /z . We shall also prove that, in contrast 1 2 1 2 withtheclassicalLittlewood-Richardson rule,allthecompositionfactorsappearwithmultiplicity one. The composition factors occuring in a product will be described using the combinatorics of Lusztig’s symbols, that is, of certain two-row arrays introduced by Lusztig for parametrizing the irreduciblecomplexrepresentations oftheclassicalreductivegroupsoverfinitefields[Lu1,Lu2]. 1.3 Wewillderiveourcombinatorialformulafromsomeexplicitcalculationsofcanonicalbases in level 2representations ofthe quantum algebra U (sl )performed in[LM]. More precisely, v n+1 bydualizing[LM,Theorem3],wegetaformulafortheexpansionoftheproductoftwoquantum flagminorsonthedualcanonical basisofU (sl )(Theorem 4). UsingthenAriki’stheorem as v n+1 in[LNT],weobtain immediately the above-mentioned Littlewood-Richardson rule forinduction products oftwoevaluation modulesoveraffineHeckealgebras(Theorem2). Finally, by means of the quantum affine analogue of the Schur-Weyl duality developed by Cherednik, Chari-Pressley and Ginzburg-Reshetikhin-Vasserot, we can deduce from this rule a similar one for the tensor product of two evaluation modules over the quantum affine algebra U (sl ). q N b 2 Composition factors of induced H -modules m 2.1 Let H be the affine Hecke algebra of typebGL over C(t). It has invertible generators m m T1,...,Tmb−1,y1,...,ym subjecttotherelations T T T = T T T , (1 6 i6 m−2), i i+1 i i+1 i i+1 T T = T T , (|i−j| > 1), i j j i (T −t)(T +1) = 0, (1 6i 6 m−1), i i y y = y y , (1 6 i,j 6 m), i j j i y T = T y , (j 6= i,i+1), j i i j T y T =ty , (1 6 i 6 m−1). i i i i+1 Thesubalgebra Hm generated bytheTi’sistheIwahori-Hecke algebra oftypeAm−1. Forany invertible z ∈ C(t) we have a unique algebra homomorphism τ : H → H such z m m that b τ (T ) = T , τ (y ) = z, (i = 1,...,m−1). z i i z 1 Thisiscalledtheevaluation atz. 2 Wealsohaveanalgebraautomorphism σ : H → H suchthat z m m σ (T )= T , σ (y )= zyb, (bi = 1,...,m−1). z i i z i i Thisiscalledtheshiftbyz. 2.2 As mentioned in the introduction, given two partitions λ(1) and λ(2), the structure of the induced H -module m S(λ(1);z )⊙S(λ(2);z ) b 1 2 depends essentially on the ratio z /z . Indeed, by twisting this module with the shift automor- 1 2 phismσ weobtaintheinduced module z S(λ(1);zz )⊙S(λ(2);zz ). 1 2 Forexample,itisknownthatifz /z 6∈tZthenS(λ(1);z )⊙S(λ(2);z )isirreducible. Therefore, 1 2 1 2 wecanassumewithoutlossofgenerality that z = tai, a ∈ Z, a > ℓ(λ(i)), (i = 1,2), (1) i i i where as usual ℓ(λ) denotes the length of the partition λ. Since S(λ(1);z ) ⊙ S(λ(2);z ) and 1 2 S(λ(2);z )⊙S(λ(1);z )have the samecomposition factors withthe samemultiplicities, wecan 2 1 alsoassumethata 6 a . 1 2 2.3 Itwillbeconvenient towritepartitions inweaklyincreasing order. Givenapartition λand an integer a > ℓ(λ) we can make λ into a non-decreasing sequence (λ ,...,λ ) of length a by 1 a setting λ = 0forj = 1,...,a−ℓ(λ). Wecanthenassociate to(λ,a)theincreasing sequence j β = (β ,...,β ), β = j +λ . (2) 1 a j j Inthisway,given(λ(i),a )(i = 1,2)asin2.2,weobtainasymbol i β(2) β(2),...,β(2) S = = 1 a2 . (3) (cid:18)β(1)(cid:19) (cid:18)β(1),...,β(1)(cid:19) 1 a1 Forexample,thesymbolattached tothepairs((1,1,2),3) and((2,3),5) is 1 2 3 6 8 S = . (cid:18)2 3 5 (cid:19) Conversely, givenasymbolS,i.e. atwo-rowarrayasinEq.(3)with 1 6β(i) < ··· < β(i) (i = 1,2), 1 ai thereisauniquepair(λ(i),a )(i = 1,2)whosesymbolisS. i 3 2.4 ThesymbolS ofEq.(3)issaidtobestandard ifβ(2) 6 β(1) fork 6 a . In[LM,§2.5]we k k 1 havedefinedthepairsofastandardsymbolS,andthesetC(S)ofallsymbolsΣobtainedfromS by permuting someofitspairs. Asshown in[LM, Lemma9], these notions areequivalent tothe notionofadmissible involution ofLusztig[Lu4]. Fortheconvenience ofthereader weshall recallthese definitions. LetS = β beastandard γ symbol. We define an injection ψ : γ −→ β such that ψ(j) 6 j for all j ∈ (cid:0)γ.(cid:1)To do so it is enough todescribe thesubsets γl = {j ∈ γ | ψ(j) = j −l}, (0 6 l 6 n). Wesetγ0 =γ ∩β andforl > 1weput γl = {j ∈ γ−(γ0∪···∪γl−1)| j−l ∈β −ψ(γ0∪···∪γl−1)}. Observethatthestandardness ofS impliesthatψ iswell-defined. Example1 Take 1 3 5 8 9 S = . (cid:18)3 6 7 10 (cid:19) Then γ0 = {3}, γ1 = {6,10}, γ2 = ··· = γ5 = ∅, γ6 = {7}. Hence ψ(3) = 3, ψ(6) = 5, ψ(7) = 1, ψ(10) = 9. The pairs (j,ψ(j)) with ψ(j) 6= j (that is, j 6∈ β ∩γ) will be called the pairs of S. Given a standard symbol S with p pairs, we denote by C(S) the set of all symbols obtained from S by permuting some pairs in S and reordering the rows. Weconsider S itself as an element of C(S), henceC(S)hascardinality 2p. 2.5 Givenapartition λand aninteger awecall Youngdiagram of(λ,a)theYoung diagram of λinwhicheachcell(i,j)isfilledwiththeintegeri−j+a. Forinstance,ifλ = (2,3)anda= 5 thentheYoungdiagramof(λ,a)is 4 5 5 6 7 TherowsoftheYoungdiagram of(λ,a)yieldamultisegment m(λ,a) := [k,k+λ −1]. k 16Xk6a 4 This is a formal sum (or multiset) of intervals in Z, in which we discard the empty intervals corresponding tothek’swithλ = 0. Thus,continuing withthesameexample,wehave k m((2,3),5) =[4,5]+[5,7]. Similarly,weattachtoapair(λ(i),a )(i = 1,2)ortoitssymbolS themultisegment i m(S) = m(λ(1),a )+m(λ(2),a ). 1 2 2.6 Toeachmultisegment m:= [α ,β ] k k Xk isattachedanirreducible Hm-moduleLm,wherem = k(βk +1−αk)(seee.g. [LNT,§2.1]). P b 2.7 Letusassumethatthepair(λ(i),a )(i = 1,2) satisfiestheconditions of2.2. LetΣdenote i thesymbolattachedtothispair. Wecannowstate: Theorem2 Thecomposition factors ofS(λ(1);ta1)⊙S(λ(2);ta2)arethemodules Lm(S) where S runs through the set of standard symbols such that Σ ∈ C(S). Each of them occurs with multiplicity one. Theorem2willbededuced fromTheorem4below. Example3 Let(λ(1),a ) = ((1,4),2) and(λ(2),a ) = ((1,2,3),4). Thecorresponding symbol 1 2 is 1 3 5 7 Σ = . (cid:18)2 6 (cid:19) Thestandard symbolsS suchthatΣ ∈ C(S)are 1 2 5 6 1 2 5 7 1 3 5 6 1 3 5 7 , , , . (cid:18)3 7 (cid:19) (cid:18)3 6 (cid:19) (cid:18)2 7 (cid:19) (cid:18)2 6 (cid:19) It follows that the composition factors of S((1,4);t2)⊙S((1,2,3);t4) are the Lm where m is onethefollowingmultisegments: n = [1,2]+[2,6]+[3,4]+[4,5], n = [1,2]+[2,5]+[3,4]+[4,6], 1 2 n = [1,1]+[2,2]+[2,6]+[3,4]+[4,5], n = [1,1]+[2,2]+[2,5]+[3,4]+[4,6]. 3 4 5 3 Canonical bases 3.1 Fixn > 2andletg = sl . WeconsiderthequantumenvelopingalgebraU (g)overQ(v) n+1 v with Chevalley generators e ,f ,t (1 6 j 6 n). The simple roots and the fundamental weights j j j aredenotedbyα andΛ (1 6k 6 n)respectively. Theirreducible representation ofU (g)with k k v highest weightΛisdenoted byV(Λ). WedenotebyU (n)thesubalgebra ofU (g)generated by v v e (1 6 j 6 n). j 3.2 LetB(resp.B∗)denotethecanonicalbasis(resp.thedualcanonicalbasis)ofU (n)([Lu3], v [BZ];seealso[LNT,§3]). TheelementsofBandB∗ arenaturallylabelledbythemultisegments msupported on[1,n]. Weshalldenotethembybm andb∗m respectively. Thevectorsb∗m forwhichmisoftheform m = m(λ,a) forsomepartitionλandsomeintegeraarecalledquantumflagminors. Indeed,by[BZ],theycan be expressed as quantum minors of a triangular matrix whose entries are iterated brackets of the e ’s(see[LNT,§5.2]). i 3.3 Let(λ(i),a )(i = 1,2)beasin2.2. Wealsoassumethatthemultisegments i m = m(λ(i),a ) (i = 1,2) i i are supported on [1,n]. Let Σ be the symbol attached to the pair (λ(i),a ) (i = 1,2). For a i standard symbolS suchthatΣ ∈ C(S)wedenote byn(S,Σ)thenumberofpairsofS whichare permuted to get Σ. Finally, we denote by N (λ,a) the number of cells of the Young diagram of j (λ,a)containing theintegerj. Theorem4 Wehave b∗m1b∗m2 = v−Na1(λ(2),a2) vn(S,Σ)b∗m(S) XS wherethesumrunsthrough allstandardsymbolsS suchthatΣ ∈C(S). Example5 Wetake(λ(1),a )and(λ(2),a )asinExample3. Hence 1 2 m = [1,1]+[2,5], m = [2,2]+[3,4]+[4,6]. 1 2 ThenN (λ(2), a ) =N ((1,2,3),4) = 1,andweobtain, usingthenotationofExample3, a1 2 2 b∗m b∗m = v−1(v2b∗n +vb∗n +vb∗n +b∗n ). 1 2 1 2 3 4 6 3.4 Proof of Theorem 4. Following [LNT, §7.2], we will replace calculations of products of elements of B∗ by calculations of dual canonical bases of finite-dimensional representations of U (g). v 3.4.1 Let U (n−) denote the subalgebra of U (g) generated by the f ’s, and let x 7→ x♯ denote v v i the algebra isomorphism from U (n) to U (n−) defined by e♯ = f (i = 1,...,n). Let Λ be a v v i i dominant integral weight and let u be a highest weight vector of the irreducible module V(Λ). Λ Thenthemapπ : x7→ x♯u projectsthecanonicalbasisBofU (n)totheunionofthecanonical Λ Λ v basisB(Λ)ofV(Λ)withtheset{0}. Thedualmapπ∗ givesanembedding ofthedualcanonical Λ basisB∗(Λ)ofV(Λ) ≃ V(Λ)∗ intothedualcanonical basisB∗ ofU (n) ≃ U (n)∗. v v 3.4.2 In particular the subset of B∗ obtained by embedding the bases B∗(Λ ) (1 6 a 6 n) of a the fundamental representations is precisely the subset of quantum flag minors. It is well known thatV(Λ )isaminusculerepresentationwhosebasesB∗(Λ )andB(Λ )coincide. Moreoverthe a a a elementsofthesebasesarenaturallylabelledbythepairs(λ,a)whoseYoungdiagram(asdefined in 2.5) contains only cells numbered by integers between 1 and n. Denoting them by b∗ we (λ,a) have ∗ ∗ ∗ π (b )= b Λa (λ,a) m(λ,a) Equivalently, wecan also label the elements of B∗(Λ )by one-row symbols β as in Eq.(2)with a β 6 n+1. i 3.4.3 Similarly,thebasisB∗(Λ )⊗B∗(Λ )isnaturallylabelledbythesetofsymbolsS asin a1 a2 Eq.(3)withβ(i) 6 n+1(i = 1,2). Usingthetheory ofcrystal bases[K1,K2]onecanseethat ai the basis B∗(Λ + Λ ) has a natural labelling by the subset of standard symbols [LM, §2.3]. a1 a2 Moreover, denoting by b∗ the element of B∗(Λ +Λ ) labelled by the standard symbol S we S a1 a2 have,usingalsothenotation of2.5, ∗ ∗ ∗ π (b ) = b . Λa1+Λa2 S m(S) 3.4.4 Letι: V(Λ +Λ ) → V(Λ )⊗V(Λ )betheU (g)-moduleembeddingwhichmaps a1 a2 a1 a2 v u to u ⊗ u , and let ι∗ : V(Λ ) ⊗ V(Λ ) → V(Λ + Λ ) be its dual. Let flb∗iaΛga∈1m+BΛina∗o2(rΛs.ai)ItΛ(iias1=sho1w,Λ2n)a2iannd[LdNenTo,te§7b.y2.7b∗m] tiha=a1t tπhΛ∗eaiim(ba∗ig)ae2(iof=b∗1,⊗2)b∗tah1uencdoerrraet2shpeocnodminpgoqsiutaionntuomf 1 2 tmheapBs∗π-Λ∗exa1p+anΛsai2on◦oι∗fbc∗moinbc∗midesituispetnooaugphowtoercaolfcuvlawteitthhethmeaptrroixduocftthbe∗mm1ba∗mp2ι.∗Hweitnhceretsopeccatlctoultahtee 1 2 basesB∗(Λ )⊗B∗(Λ )andB∗(Λ +Λ ). a1 a1 a1 a2 7 3.4.5 The matrix of ι with respect to the bases B(Λ +Λ ) and B(Λ )⊗B(Λ ) was cal- a1 a2 a1 a1 culatedin[LM,Theorem3]intermsofLusztig’ssymbols. Transposing thismatrixweobtainthe desired matrixofι∗. Using3.4.2and3.4.3,wethengettheformulaofTheorem4. 2 3.5 ProofofTheorem2. By[LNT,§3.7]themultisegmentsmindexingthecompositionfactors Lm of S(λ(1);ta1) ⊙ S(λ(2);ta2) are those occuring in the right-hand side of the formula of Theorem 4. Moreover the composition multiplicities are obtained by specializing v to 1 in the coefficients ofthisformula. Hencetheyareallequalto1. 2 4 Tensor products of U (sl )-modules q N 4.1 Let U (sl ) be the quantized abffine algebra of type A(1) with parameter q a square root q N N−1 oft(seeforexample[CP]forthedefiningrelations ofU (sl )). Thequantum affineSchur-Weyl b q N duality between H and U (sl ) [CP, Ch, GRV] gives a functor F from the category of m q N b m,N finite-dimensional H -modules to the category of level 0 finite-dimensional representations of b m b U (sl ). If N > m, F maps the simple modules of H to simple modules of U (sl ). q N m,N m q N b However, the image of a non-zero simple H -module may be the zero U (sl )-module. More b m b q N b precisely,thesimpleHm-moduleLmismapbpedtoanon-zerosimpleUq(slN)b-moduleifandonly if allthe segments occuring in mhave length 6 N −1. Inthis case the Drinfeld polynomials of b b Fm,N(Lm)areeasilycalculated fromm(see[CP]). ThefunctorF transformsinductionproductintotensorproduct,thatis,forM inC and m,N 1 m1 M inC onehas 2 m2 F (M ⊙M )= F (M )⊗F (M ). m1+m2,N 1 2 m1,N 1 m2,N 2 4.2 TheimageunderF ofanevaluationmoduleforH isanevaluationmoduleforU (sl ), m,N m q N andallevaluation modulesofU (sl )canbeobtained inthisway,byvaryingm ∈ N∗. q N b b b 4.3 By application of the Schur functor F to Theorem 2 we thus obtain a combinatorial m,N descriptionofallcompositionfactorsofthetensorproductoftwoevaluationmodulesofU (sl ). q N Example6 We continue Example 3 and Example 5. The image of the H5-module Lm1 ubnder F istheevaluation moduleV(m )ofU (sl )withDrinfeldpolynomials 5,N 1 q N b P1(u) = u−b q−2, P (u) = P (u) = 1, 2 3 P (u) = u−q−7, 4 P (u) = 1, (5 6 k 6 N −1). k 8 Thisisanon-zeromoduleifandonlyifN >5. Similarly,theimageoftheH6-moduleLm2 under F istheevaluation moduleV(m )ofU (sl )withDrinfeldpolynomials 6,N 2 q N b P (u) = u−b q−4, 1 P (u) = u−q−7, 2 P (u) = u−q−10, 3 P (u) = 1, (4 6 k 6 N −1). k Thisisanon-zeromoduleifandonlyifN > 4. TheimagesoftheH11-modulesLm1,Lm2,Lm3, Lm4 underF11,N arethemodulesV(n1),V(n2),V(n3),V(n4)wibthrespectiveDrinfeldpolyno- mials P (u) = 1, 1 P (u) = (u−q−3)(u−q−7)(u−q−9), 2 P (u) = P (u) = 1, 3 4 P (u) = u−q−8, 5 P (u) = 1, (6 6 k 6 N −1); k P (u) = 1, 1 P (u) = (u−q−3)(u−q−7), 2 P (u) = u−q−10, 3 P (u) = u−q−7, 4 P (u) = 1, (5 6 k 6 N −1); k P (u) = (u−q−2)(u−q−4), 1 P (u) = (u−q−7)(u−q−9), 2 P (u) = P (u) = 1, 3 4 P (u) = u−q−8, 5 P (u) = 1, (6 6 k 6 N −1); k P (u) = (u−q−2)(u−q−4), 1 P (u) = u−q−7, 2 P (u) = u−q−10, 3 P (u) = u−q−7, 4 P (u) = 1, (5 6 k 6 N −1). k 9 ThemodulesV(n )andV(n )arenon-zeroonlyifN > 6. HenceV(m )⊗V(m )hasonlytwo 1 3 1 2 composition factors V(n ) and V(n ) for N = 5, and four composition factors V(n ),V(n ), 2 4 1 2 V(n ),V(n )forN > 6. 3 4 4.4 Wenotethatourresultimpliesthefollowing Theorem7 All composition factors of the tensor product of two evaluation modules of U (sl ) q N occurwithmultiplicity one. b References [BZ] A.BERENSTEIN,A.ZELEVINSKY,StringbasesforquantumgroupsoftypeAr,AdvancesinSovietMath.(Gelfand’s seminar)16(1993),51–89. [CP] V.CHARI,A.PRESSLEY,QuantumaffinealgebrasandaffineHeckealgebras,PacificJ.Math.174(1996),295–326. [Ch] I.V.CHEREDNIK,AnewinterpretationofGelfand-Tzetlinbases,DukeMath.J.54(1987),563–577. [GRV] V.GINZBURG,N.YURESHETIKHIN,E.VASSEROT,Quantumgroupsandflagvarieties,A.M.S.Contemp.Math.175 (1994),101–130. [K1] M.KASHIWARA,Crystalizingtheq-analogueofuniversalenvelopingalgebras,Commun.Math.Phys.133(1990),249– 260. [K2] M.KASHIWARA,Oncrystalbasesoftheq-analogueofuniversalenvelopingalgebras,DukeMath.J.63(1991),465–516. [LM] B.LECLERC,H.MIYACHI,Constructiblecharactersandcanonicalbases,Preprint2003,math.QA/0303385. [LNT] B. LECLERC, M. NAZAROV, J.-Y.THIBON,Induced representations ofaffineHeckealgebras andcanonical basesof quantumgroups,inStudiesinmemoryofIssaiSchur,115–153,ProgressinMath.210,Birkhauser2002. [LT] B.LECLERC,P.TOFFIN,AsimplealgorithmforcomputingtheglobalcrystalbasisofanirreducibleUq(sln)-module,Int. J.Algebra.Comput.10(2000),191–208. [Lu1] G.LUSZTIG,AclassofirreduciblerepresentationsofaWeylgroup,Indag.Math.,41(1979),323–335. [Lu2] G.LUSZTIG,Charactersofreductivegroupsoverafinitefield,AnnalsofMath.Studies,PrincetonUniv.Press1984. [Lu3] G.LUSZTIG,Canonicalbasesarisingfromquantizedenvelopingalgebras,J.Amer.Math.Soc.3(1990),447–498. [Lu4] G.LUSZTIG,Heckealgebraswithunequalparameters,CRMMonographSeries18,AMS2003. [Mcd] I.G.MACDONALD,SymmetricfunctionsandHallpolynomials,Oxford,1995. B. LECLERC: LaboratoiredeMathe´matiquesNicolasOresme, Universite´deCaen,CampusII, BldMare´chalJuin,BP5186,14032Caencedex,France email: [email protected] 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.