ebook img

A limit theorem for a random walk in a stationary scenery coming from a hyperbolic dynamical system PDF

0.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A limit theorem for a random walk in a stationary scenery coming from a hyperbolic dynamical system

A limit theorem for a random walk in a stationary s enery oming from a hyperboli dynami al system Françoise Pène Université de Bretagne O identale 6 UMR CNRS 6205 0 Département de Mathématiques, UFR S ien es et Te hniques 0 6, avenue Vi tor Le Gorgeu, 29238 BREST Cedex 3, Fran e 2 fran oise.peneuniv-brest.fr n a J 2nd February 2008 0 3 S] Abstra t. In this paper, we (eMxte,nd,νa,Tre)sult offK:esMten anRd Spitzer [13℄. Let us onsider an invertible D probability dynami al system (ξk :F=f Tka)nkdZ (S→n)n 0some fun tion with null expe tation. WZe de(cid:28)ne the stationary sequen e ◦ ∈ . Let ≥ be a simple symmetri random walk on h. indenpendent of (ξk)k∈Z. We are interested in the study of the sequen e of random variables of the form ( ξ ) (M, ,ν,T) at k=1 Sk n≥1. We give examples of partially hyperboli dynami al systems F and of fun tions m fPsu h that n134 nk=1ξSk n 1 onverges in distribution. [ (cid:16) P (cid:17) ≥ 1 v 1 Introdu tion 5 3 (ξn)n Z 7 In [13℄, Kesten and Spitzer prove that,(iSf ) ∈ is a sequen e of independent identi aZlly distributed 1 satisfyinga entrallimit theoremand if n n≥0 isthesimplesymmetri randomwalkon independent 60 of(ξk)k∈Z,then n134 ni=1ξSk n 1 onvergesindistribution. Inthispaper,ourgoalistoestablishsu ha 0 (ξk)(cid:16)k Z P (cid:17) ≥ h/ hreyspueltrbwohlie nproper∈tieiss.aMstoarteiopnraer yisseelyq,uwene estoufdryanthdeom avsaesriawbhleensg(iξvken=bfy a◦Tdykn)ka∈mZi, awlitshysftema νw-i tehntseormede (M, ,ν,T) at Hölder ontinuous fun tion and when F is one of the following dynami al systems : m T M =Td0 • the transformation is an ergodi algebrai automorphism ofthe torus endowedwith its : ν d 2 v normalised Haar measure (for some 0 ≥ ); Xi • thetransformationT isadiagonaltransformationona ompa tquotientM ofSld0(R)byadis rete M T ν r subgroup, being endowed with a natural -invariantprobability measure ; a T • the transformation is the Sinai billiard transformation. 1 n ξ In these situations, we prove that n34 i=1 Sk n 1 onverges in distribution to the random variable E[ξ ξ ]∆ ∆ (cid:16) P (cid:17) ≥ 1 n ξˆ m∈Z 0 m 1, where 1 has the limit distribution of n34 i=1 Sk n 1 obtained by Kesten and pP (ξˆm)m (cid:16) P (cid:17) ≥ Spitzer when is a sequen e of independent identi ally distributedE[rξanξdo]m variables with null enxopnen etgaattioivneasnind ewiitthisvtahreialnim eit1o.fLtheteuvsarniaonti eeotfha√1tn, inln=o−u01rξ laassesn, Pgomes∈tZi in(cid:28)0nimty.is well de(cid:28)ned and is P (ξk)k Z We also get the same result of onvergen e in (dMist,rib,uνt,ioTn)for the following seξqu=enf e Tk ∈ . Let us k onsiderthesameexamplesofdynami alsystems F . Insteadoftaking ◦ ,wesuppose 1 ω M (ξk)k Z tha1t;,1 onditionally to ∈ , ∈ is anωindepMendξen(tω,se)quen e of random variables withhvaTluke(sωi)n k {− }. We suppose that, onditionally to ∈ h, · is equal to1 1 with probability ◦ , for some nonnegative Hölder ontinuous fun tion with expe tation 2. This model is envisaged by (M, ,ν,T) Guillotin-Plantard and Le Ny in [8℄ for other questions and with other hypotheses on F and f on . ξk p ω M (ξk)k Z Moreover we generalize this to the ase whenξ takes valuesθ( onditionally to f∈ T,k(ω) ∈ is k j j an independent sequen e of random variables, being equal to with probability ◦ , with f +...+f =1 f ,...,f 1 p 1 p and with are nonnegative Hölder ontinuous fun tions). In se tion 2, we state a general result under te hni al hypotheses of de orrelation (our theorem 1). Se tion5isdevotedtotheproofofthisresult(theideaoftheproofisinspiredbyonestepofanindu tive method of Jan [9, 11℄ used in [14℄). In se tion 3, we give some appli ations of our abstra t theorem 1. We apply our theorem 1 to the examplesmentionned preSvliou(sRly)(ergodi algebrai automorphismsof thetorus, diagonaltransformation ofa ompa tquotientof d0 , billiardtransformation). Theproofsoftheresultsofse tion3aredone in se tions 3 and 4. 2 A te hni al result (Sn)n 1 (ξk)k Z Theorem 1(ΩL,et,P) ≥ and ∈ be two sequen es of random variables de(cid:28)ned on the same proba- bility spa e T su h that : (Sn)n 0 (ξk)k Z 1. ≥ and ∈ are independent one of the other; (S ) Z n n 0 2. ≥ is a simple symmetri random walk on ; (ξk)k Z 3. ∈ is a stationary sequen e of entered random variables admitting moments of the fourth order; 4. we have : 1+p E[ξ ξ ] <+ 0 p | | ∞ p 0 X≥ p supN 2 E[ξ ξ ξ ξ ] <+ . and N 1 − | k1 k2 k3 k4 | ∞ ≥ k1,k2,k3,kX4=0,...,N−1 C >0 (ϕp,s)p,s N r 1 5. There exists some , some ∈ and some integer ≥ su h that : (p,s) N2, ϕ ϕ lim √sϕ =0 p+1,s p,s rs,s ∀ ∈ ≤ and s + → ∞ n ,n ,n ,n 0 n n n n 1 2 3 4 1 2 3 4 and su h that, for all integers with ≤ ≤ ≤ ≤ , for all real numbers α ,...,α β ,...,β n1 n2 and n3 n4, we have : Cov eiPnk=2n1αkξk,eiPnk=4n3βkξk ≤C 1+ n2 |αk|+ n4 |βk|!ϕn3−n2,n4−n3. (cid:12) (cid:16) (cid:17)(cid:12) kX=n1 kX=n3 (cid:12) (cid:12) (cid:12) (cid:12) 1 n ξ E[ξ ξ ]∆ Then,thesequen eofrandomvariables n43 i=1 Sk n 1 onvergesindistributionto p∈Z 0 p 1, ∆1 := RL1(x)dBx (Bx)(cid:16)x R P (bt)t(cid:17)0≥ qP wher(eL (x)) , where x (∈b )and L≥ (xa)re=twlimo inde1pentd1ent standa(rbd)bdrsownian motions and t t≥R0 is the lo al time at of t t≥0, i.e. t ε↓0 2ε 0 (x−ε,x+ε) s . R (ξk)k Z Let us noti e that the point 5 of our theorem 1 is true if ∈ is a stationary sequen e of random α variables satisfying the following -mixing ondition ( f. for example [10℄, lemma 1.2) : lim √nα =0, α := sup sup sup P(A B) P(A)P(B) . n n n→+∞ with p≥0; m≥0A∈σ(ξ−p,...,ξ0)B∈σ(ξn,...,ξn+m)| ∩ − | 2 3 Appli ations (ξ ) k k Now let us give some examples of stationary sequen es satisfying the points 3, 4 and 5 of our (M, ,ν,T) (M, ,ν) theorem1. We say that F is an invertibledynami al system if F is a probability spa e T :M M endowed with an invertible bi-measurable transformation → . (M, ,ν,T) C >0 0 Hypothesis 2 Letus onsider(aϕn i)nvertible d(yκna)mi al system F su hgth:aMtthereCexists , n n 0 m m 0 Kthe(1r)e ex[0is;t+two] realKse(q2u)en [0e;s+ ] ≥ and ≥ and, for any fung ,tg˜io,hn,˜h:M →C , there exist g g ∈ ∞ and ∈ ∞ su h that, for all bounded fun tions → : n 0 Cov (g,h Tn) c g h + h K(1)+ g K(2) ϕ 1. for all integer ≥ , we have : | ν ◦ |≤ 0 k k∞k k∞ k k∞ g k k∞ h n; (cid:16) (cid:17) m 0 K(1) c K(1) 2. for all integer ≥ , we have : g◦T−m ≤ 0 g ; m 0 k=0,...,m K(2) c K(2)(1+κ ) 3. for all integer ≥ , and all , we have : h Tk ≤ 0 h m ; ◦ K(1) g K(1)+ g˜ K(1) 4. we have : g×g˜ ≤k k∞ g˜ k k∞ g ; K(2) h K(2)+ h˜ K(2) 5. we have : h h˜ ≤k k∞ h˜ k k∞ h ; × (ϕ ) r 1 sup n6(1+ 6. tκhe)ϕsequ<en+ e . n n≥0 is de reasing and there exists an integer ≥ su h that : n≥1 n nr ∞ K(1) g Forsomehyperboli orpartiallyhyperboli transformations,su hpropertiesaresatis(cid:28)edwith some g K(2) h Hölder onstant of alonϕg th=eαunnstable manαifold]0s;a1n[d hκsom=emHβölder onstaβnt of0 along the stable- n m entral manifolds, with for some ∈ and for some ≥ . Let us mention, for example, the ergoSdli a(Rlg)ebrai automorphisms of the torus as well as the diagonal transformationon ompa t quotient of d0 ( f. [12℄). Moreover, in the ase of the Sinai billiard transformation, these properties omefrom [6, 5℄. Sin etheearliestworkofSinai[15℄, thesebilliardsystemshavebeen studied by many authors (let us mention [1, 2, 3, 4, 7℄). More pre isely, we state : d 2 (M, ,ν,T) 0 Proposition 3 Let us onsider an integer ≥ . Let F be one of the following dynami al systems : M d0 Td0 = Rd0/Zd0 σ (i) is the -dimensional tνorus Td0 T endowed with its Borel -alTgedb0ra F and with the Sno∈rmSalldis0e(dZ)Htahaeremigeeansvuarleuesoonf wRhid 0ahnadre niostarnooatlgoefbrtahie uanuittoym. oWrpehiesnmdoowf Td0 gwiivtehnthbye amemtrait ridx indu ed by the natural metri on . M Sl (R) Γ Sl (R) M := xΓ; x Sl (R) (ii) is a ompa t quotient of d0 by aνdis rete subgroup of d0 : Sl {(R) ∈ d0 }; endowed with the normalised measure indu ed by the Haar measure on d0 . The transfor- T S =diag(T ,...,T ) Smlati(oRn) orresponds to the multipli ation on the left biy=a d1,ia..g.o,dnal m1atTrix T > 0 1 d0 ∈ Md0 not equal todthe identity and su h that, for all 0− , i ≥ i+1 SL. W(Re)endow with the metri indu ed by a right-translations invariant riemanian metri on d0 . (M, ,ν,T) (iii) F is the time-dis rete dynami al systemgivenby thedis rete Sinaibilliard ( orresponding :=T2 I O to the re(cid:29)e tion times on a s atterer). We suppose that the billiard domain is D \ i=1 i , O T2 (cid:16) (cid:17) i S where the s atterers are open onvex subsets of , the losures of whi h are pairwise disjoint C3 and the boundaries of whi h are smooth with non-null urvature. We use the parametrisation (r,ϕ) d by introdu ed by Sinai in [15℄ and we denote by the natural orresponding metri . η > 0 g K(1) g K(2) g g Let . We an de(cid:28)ne 7→ and 7→ su h that hypothesis 2 is true and su h that, for any g :M C K(1) K(2) C(η) g η g g g bounded → , and are dominated by the Hölder onstant of of order (eventually multiplied by some onstant). 3 C(η) g In the ase (iii), this is still true if we repla e by : g(x) g(y) C(η,m) := sup sup | − | , g max(d(Tk(x),Tk(y));k = m,..,m)η C∈Cmx,y∈C, x6=y − m 0 = A B; A ξu, B ξs ξu ξs for some integer k≥=, wmit,h...C,mm { ∩ Tk ∈Cm1 ∈ m} with m and m as in [5℄ (page 7). (We m re all that, for any − , the map si on ea h atom of C ). η >0 Proof. Let . Γ(s,e) Γu • Inthe ases(i) and (ii), wedenoteγuby Γu thesetofstable- entralmandifuoldsand byγ(s,et)he sΓe(ts,oe)f unstable manifolds. In [12℄, ead (sh,e) ∈ is endowed witc˜h s>om0eδmet]r0i ;1[ andβe>a 0h ∈ 0 0 is endowed wnith0some metrγi u Γu su h thatγ(tsh,ee)re eΓx(iss,te) , ∈ and su h that, for any integer ≥ , for any ∈ and any ∈ , we have : y,z γu du(y,z) d(y,z) y ,z γ(s,e) d(s,e)(y ,z ) d(y ,z ) ′ ′ ′ ′ ′ ′ (cid:21) For any ∈ , ≥ and for any ∈ , ≥ . y,z γu γu T n(y) T n(z) γu (cid:21) Forany ∈ , there exists (n) su hthat − and − belong to (n) and wehave: du(T n(y),T n(z)) c˜ (δ )ndu(y,z) − − 0 0 ≤ . y,z γ(s,e) γ(s,e) Tn(y) Tn(z) γ(s,e) (cid:21) For any ∈ , there exists (n) su h that and belong to (n) and we d(s,e)(Tn(y),Tn(z)) c˜ (1+nβ)d(s,e)(y,z) 0 have : ≤ . Let us de(cid:28)ne : f(y) f(z) f(y) f(z) K(1) := sup sup | − | K(2) := sup sup | − |. f γu Γuy,z γu:y=z (du(y,z))η and f γ(s,e) Γ(s,e)y,z γ(s,e):y=z (d(s,e)(y,z))η ∈ ∈ 6 ∈ ∈ 6 κ = nβ n Hen e, the points 2, 3, 4 and 5 of hypothesis 2 are satis(cid:28)ed with . Moreover, these two η f quantities are less than the Hölder onstant of order of . In[12℄,thepoint1ofhypothesis2isprovedintheparti ular ase(ii). Thesameproof anbeused (ϕ ) n n in the ase (i). We get a sequen e de reasing exponentially fast ( f. lemme 1.3.1 in [12℄). m 0 Γs • Let us now onsiderthe ase (iii). Let uΓsu onsideran integer ≥ . Let us onsider the set of homogeneous stable urves and the set of homogeneous unstable urves (see [5℄ page 7 for the c >0 δ ]0;1[ 1 1 de(cid:28)nitionofthese urves). Were allthatthereexisttwo onstants and ∈ su hthat: y z (cid:21) nlet 0anTd n(by)elonginTg tno(zt)he same homogeneous unstable urve. Then, for any integer − − d(T≥ n(,y),T n(za))nd c δ n. belong to a same homopgene0ouys unstzable urve and we have : − − 1 1 ξu ≤y z Moreover,foranyinteger ≥ξs , andTm(bye)long tTomth(ez)sameatom p m of . Moreover, if and belong to the same atom of , then and belong to a same homogeneous unstable urve. y z n 0 Tn(y) (cid:21) let Tannd(z)belongingtothesamehomogeneousstable urve. Then,forda(nTyni(nyt)e,gTenr(z)≥) ,c δ n. 1 1 and belongtoasampehom0oygeneouzsstable urveandwehave: ξs ≤ y Mz oreover, for any integer ≥ξu, and Tbemlo(yn)g to thTe sma(mze) atom of p. Moreover, if and m − − belong to the same atom of , then and belong to a same homogeneous stable urve. y,z s (x,y):=min n 0 : y ξs(x) s (x,y):=min n 0In:[5y℄, forξua(nxy) , , Cherξnso(vx)de(cid:28)nes:ξu(+x) { ≥ξs 6∈ ξnu } and − x{ ≥ 6∈ n } where n (resp. n ) is the atom of n (resp. n) ontaining the point . Following Chernov in [5℄ (page 15), let us introdu e the following quantities : f(y) f(z) K˜(1) := sup sup | − | f γu Γuy,z γuy=z (δ1)ηs+(y,z) ∈ ∈ 6 and f(y) f(z) K˜(2) := sup sup | − |. f γs Γsy,z γsy=z (δ1)ηs−(y,z) ∈ ∈ 6 4 In the de(cid:28)nition of [5℄, the suprema are taken over all unstable and stable urves instead of ho- mogeneous unstable and stable urves. However, in the proofs of theorems 4.1, 4.2 and 4.3 of [5℄, wCehehranvoev:onK˜lyf(i)u≤ses2kHfökld∞eδr1 −oηnmti+nuKityf(i)o,nwhitohm:ogeneousstable and unstable urves. We observethat f(y) f(z) K(1) := sup sup | − | f γu∈Γuy,z∈γu;y6=z;s+(y,z)≥m+1 (δ1)ηs+(y,z) and f(y) f(z) K˜(2) := sup sup | − |. f γs Γsy,z γs;y=z;s (y,z) m+1 (δ1)ηs−(y,z) ∈ ∈ 6 − ≥ With these de(cid:28)nitions, we have : K(1) (δ ) η(m+1)(c )ηC(η,m) K(2) (δ ) η(m+1)(c )ηC(η,m). f ≤ 1 − 1 f and f ≤ 1 − 1 f y z Let us prove the (cid:28)rst inse+qu(ya,lizt)y. Lmet+t1wo poinyts′ :=aTnsd+(y,zb)−el1o(nyg)ing tzo′t:=heTssa+m(ye,z)h−o1m(zo)geneous unstable urvesu hthat ≥ . Then and belong k = m,...,m to the same homogeneousunstable urve. Therefore, for any − , we have : d(Tk(y),Tk(z)) = d(T−(s+(y,z)−1−k)(y′),T−(s+(y,z)−1−k)(z′)) c1δ1s+(y,z)−1−k ≤ c1δ1s+(y,z)−(m+1). ≤ y z m Hen e, sin e and belong to the same atom of C , we have : |f(y)−f(z)|≤Cf(η,m)(c1)ηδ1ηs+(y,z)δ1−η(m+1). The proof of the se ond inequality is analogous. y z y z Let twonpoin0ts and s. I(fT ann(yd),Tbenlo(zn)g)t=osthe(ys,azm)+e hnomogeneous unstabley urvez, then, for any + − − + integer ≥ ,wehave n 0. Inthesasme(Twna(yy,)i,fTna(nzd))=beslo(nyg,zto)+thne samehomogeneousstable urve,thenforanyinteger ≥ ,wehave − − . κ =1 n Hen e, we get points 2, 3, 4 and 5 of hypothesis 2 with . c > 0 α ]0;1[ 3 3 nMore0over, Chernov estabClishes the existen efof g and of ∈ su h that, for any integer ≥ , for any bounded -valued fun tions and , we have : Cov(f,g Tn) c f g + f K(2)+ g K(1) (α )n | ◦ |≤ 3 k k∞k k∞ k k∞ g k k∞ f 3 (cid:16) (cid:17) ( f. theorem 4.3 in [5℄ and the remark after theorem 4.3 in [5℄). This gives the points 1 and 5 of our hypothesis 2, qed. f :M R Theorem 4 Let us suppose hypothesis 2. Let → be a bounded fun tion. f ν K(1) < + K(2) < + (a) Let us suppose that is - entered, that f ∞ and f ∞. We suppose that there c > 0 α K(1) c α exists some real number 1 su h that, for any real number , we have : exp(iαf) ≤ 1| | and Ke(x2)p(iαf) ≤c1|α|. Then (ξk :=f ◦Tk)k∈Z satis(cid:28)es the points 3, 4 and 5 of our theorem. f [0;1] c >0 1 (b) Letus suppose that takes itsvalues in . Moreover let us suppose thatthere exists some a,b C K(1) c a K(2) c a su h that, for any ∈ , we have af+b ≤ 1| | and af+b ≤ 1| |. Ω :=]0;1[Z, :=( (]0;1[)) Z,ν :=λ Z λ ]0;1[ 1 1 × 1 ⊗ Let F B where is the Lebesgue measure on . We (ξk)k Z (Ω2 :=M Ω1, 2 := 1,ν2 :=ν ν1) de(cid:28)n(cid:0)e ∈ on the produ t × F(cid:1) F ⊗F ⊗ as follows : ξk(ω,(zm)m∈Z):=2.1{zk≤f◦Tk(ω)}−1. (ξk)k Z Then ∈ satis(cid:28)es points 3, 4 and 5 of our theorem. 5 p 2 p θ ,...,θ θ := 0 p 1 p 0 ( ) Let us (cid:28)x an integer ≥ . Let us (cid:28)x real numbers (and ) and non-negative f ,...,f :M [0;1] (θ f +...+θ f )dν =0 f +...+f =1 fun tions 1 p → su h that M 1 1 p p and 1 p and su h c >0 a ,...,a ,b 2 1 p 1 that there exists su h that, for all R omplex numbers − , we have max(K(1) ,K(2) ) c (a +...+ a ). a1f1+...+ap−1fp−1+b a1f1+...+ap−1fp−1+b ≤ 2 | 1| | p−1| Ω :=]0;1[Z, :=( (]0;1[)) Z,ν :=λ Z λ ]0;1[ 1 1 ⊗ 1 ⊗ Let F B where is the Lebesgue measure on . We (ξk)k Z (Ω2 :=M Ω1, 2 := 1,ν2 :=ν ν1) de(cid:28)n(cid:0)e ∈ on the produ t × F(cid:1) F ⊗F ⊗ as follows : p ξk(ω,(zm)m∈Z)= (θl−θl−1)1{zk≤ lj=1fj(Tk(ω))}, l=1 X P (ξk)k Z Then ∈ satis(cid:28)es points 3, 4 and 5 of our theorem. ω M (ξ˜k(ω, ))k Z Let us make some omments on the point (b).1C;1onditioξn˜a(lωly, t)o ∈ , · ∈ is a sefqueTnk (eωo)f k independentrandomvariableswithvaluesin{− }and · isequalto1withprobability ◦ . This model is envisaged by Guillotin-Plantard and Le Ny in [8℄. ξ˜ p k ω TMhe ξ ˜a(sωe,( )) is a generaθlization of the asef(b)Ttok(tωh)e ase when takes values ( onditionally to k j j ∈ , · is equal to with probability ◦ ). A dire t onsequen e of proposition 3 and of theorem 4 is : (M, ,ν,T) η > 0 p 2 f,f ,...,f : M R 1 p Theorem 5 Let F be as in proposition 3. Let . Let ≥ . Let → be (p+1) η bounded Hölder ontinuous fun tion of order (or, in the ase (iii) of proposition 3, we suppose C(η,m) < + sup C(η,m) < + that these fun tions are bounded and su h that f ∞ and i=1,...,p fi ∞ for some m 0 integer ≥ ). f ,...,f f +...+f =1 1 p 1 p We suppose that are non-negative fun tions satisfying . f ν (ξk := f Tk)k Z (a) Let us suppose that is - entered. Then ◦ ∈ satis(cid:28)es points 3, 4 and 5 of our theorem. f [0;1] fdν = 1 (b) Let us suppose that takes its values in and that we have M 2. Ω1 :=]0;1[Z, 1 :=( (]0;1[))⊗Z,ν1 :=λ⊗Z λ R ]0;1[ Let F B where is the Lebesgue measure on . We (ξk)k Z (Ω2 :=M Ω1, 2 := 1,ν2 :=ν ν1) de(cid:28)n(cid:0)e ∈ on the produ t × F(cid:1) F ⊗F ⊗ as follows : ξ˜k(ω,(zm)m∈Z):=2.1{zk≤f◦Tk(ω)}−1. (ξk)k Z Then ∈ satis(cid:28)es points 3, 4 and 5 of our theorem. p θ ,...,θ θ = 0 (θ f +...+θ f )dν = 0 ( ) LΩet u:=s](cid:28)0x;1[Z,real:n=um( b(e]r0s;1[1)) Z,νp (:=anλd Z0 ) suλ h that M 1 1 p p ]0;1[ and Let 1 F1 B × 1 ⊗ where is the LRebesgue measure on . We de(cid:28)ne (ξk)k Z (Ω2 :=M Ω1, 2 := 1,ν2 :=ν ν1) (cid:0) ∈ on the produ t × F (cid:1) F ⊗F ⊗ as follows : p ξk(ω,(zm)m∈Z)= (θl−θl−1)1{zk≤ lj=1fj(Tk(ω))}, l=1 X P (ξk)k Z Then ∈ satis(cid:28)es points 3, 4 and 5 of our theorem. f LofetCmusfoorbsseormveetihnatetg,einr mthe≥ 0a.seF(oiriie)xoafmpprolekpfos=itio1nHk3≥,kw0eHk a−n1takk≥ekt0hHe−fkusna ttiiso(cid:28)nes t hoen satasent(ao)noefat hheaotroemm 0 Sk S t5afkoerpth=e S3,inθa1i=bil1li,aθrd2 =(w−it1h,tθh3e=n0o,tfa1ti=on1s k≥akn0dHk, f2o=f [51℄ pka≥gke0H5−).k,Inf3th=e1 a−sef(1 −) off2tihneotrheem a5s,ewoef tahne S S Sinai billiard (with again the notations of [5℄ page 5). 6 4 Proof of theorem 4 (a) (b) (c) (ξ ) k k In the ases , and , it is easy to see that is a stationary sequen e of bounded random variables 4.1 Proof of (a) We have : 1+pE[ξ ξ ] = 1+pE [f.f Tp] 0 p ν | | | ◦ | p 0 p 0 X≥ p X≥ p c f f +K(1)+K(2) 1+pϕ <+ . ≤ 0k k∞ k k∞ f f p ∞ (cid:16) (cid:17)Xp≥0p N 1 Let us onsider an integer ≥ . We have : 1 24 E[ξ ξ ξ ξ ] E[ξ ξ ξ ξ ] . N2 | k1 k2 k3 k4 |≤ N2 | k1 k2 k3 k4 | k1,k2,k3,kX4=0,...,N−1 0≤k1≤k2≤Xk3≤k4≤N−1 Letus onsiderthesetEN(1) of(k1,k2,k3,k4)su hthat0≤k1 ≤k2 ≤k3 ≤k4 ≤N−1andk4−k3 ≥N31 We have : |E[ξk1ξk2ξk3ξk4]| = Covν f ◦Tk1−k3f ◦Tk2−k3f,f ◦Tk4−k3 (k1,k2,kX3,k4)∈EN(1) (k1,k2,kX3,k4)∈EN(1)(cid:12)(cid:12) (cid:0) (cid:1)(cid:12)(cid:12) c N4 f 4 + f 3 (K(2)+3c K(1)) ϕ ≤ 0 k k∞ k k∞ f 0 f ⌈N13⌉ (cid:16) (cid:17) c N2 f 4 + f 3 (K(2)+3c K(1)) supn6ϕ . ≤ 0 k k∞ k k∞ f 0 f n 1 n (cid:16) (cid:17) ≥ Letus onsiderthesetEN(2) of(k1,k2,k3,k4)su hthat0≤k1 ≤k2 ≤k3 ≤k4 ≤N−1andk4−k3 <N31 k3 k2 rN31 and − ≥ . We have : |Cov(ξk1ξk2,ξk3ξk4)| = Covν f ◦Tk1−k2f,(f.f ◦Tk4−k3)◦Tk3−k2 (k1,k2,kX3,k4)∈EN(2) (k1,k2,kX3,k4)∈EN(2)(cid:12)(cid:12) (cid:0) (cid:1)(cid:12)(cid:12) c N4 f 4 +2c f 3 (K(2)+K(1)) (1+κ )ϕ ≤ 0 k k∞ 0k k∞ f f 1r rN31 rN13 (cid:16) (cid:17) l m l m c N2 f 4 +2c f 3 (K(2)+K(1)) supn6(1+κ )ϕ . ≤ 0 k k∞ 0k k∞ f f n 1 n rn (cid:16) (cid:17) ≥ Moreover,we have : 2 E[ξ ξ ]E[ξ ξ ] E[ξ ξ ] | k1 k2 k3 k4 | ≤  | k1 k2 | (k1,k2,kX3,k4)∈EN(2) 0≤k1≤Xk2≤N−1   2 N E [f.f Tk] ν ≤  ◦  k 0 X≥ (cid:12) (cid:12)  (cid:12) (cid:12) 2 N2 c f 2 + f (K(1)+K(2)) ϕ . ≤  0 k k∞ k k∞ f f k (cid:16) (cid:17)kX≥0   7 Letus onsiderthesetEN(3) of(k1,k2,k3,k4)su hthat0≤k1 ≤k2 ≤k3 ≤k4 ≤N−1andk4−k3 <N31 k3 k2 <rN31 k2 k1 r(1+r)N31 and − and − ≥ . By the same method, we get : c E[ξ ξ ξ ξ ] N2 0 f 4 +3c f 3 (K(2)+K(1)) supn6(1+κ )ϕ . | k1 k2 k3 k4 | ≤ (1+r)6 k k∞ 0k k∞ f f n 1 n rn (k1,k2,kX3,k4)∈EN(3) (cid:16) (cid:17) ≥ (k ,k ,k ,k ) 0 k k k k N 1 1 2 3 4 1 2 3 4 Sin e the number of su h that ≤ ≤ ≤ ≤ ≤ − and that do not belong to E(1) E(2) E(3) N22(r+1)3 N ∪ N ∪ N is bounded by , we get : 1 sup E[ξ ξ ξ ξ ] <+ . N2 | k1 k2 k3 k4 | ∞ N 1 ≥ k1,k2,k3,kX4=0,...,N−1 n n n n 0 n n n n 1 2 3 4 1 2 3 4 Now, let us prove the point 5. Let , , and be four integers su h that ≤ ≤ ≤ ≤ . α ,..,α β ,...,β Let us onsider any real numbers n1 n2 and n3 n4. We have : Cov ei nk=2n1αkξk,ei nk=4n3βkξk = Covν ei nk=2n1αkf◦T−(n2−k), ei nk=4n3βkf◦Tk−n3 Tn3−n2 ◦ P P P P (cid:12) (cid:16) (cid:17)(cid:12) (cid:12) (cid:16) (cid:16) (cid:17) (cid:17)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) c 1+K(1) (cid:12) (cid:12) +K(2) ϕ (cid:12) ≤ 0(cid:18) exp i nk=2n1αkf◦T−(n2−k) exp i nk=4n3βkf◦Tk−n3 (cid:19) n3−n2 n2 (cid:16) P (cid:17) n4 (cid:16) P (cid:17) c 1+ K(1) + K(2) ϕ ≤ 0 kX=n1 exp(iαkf◦T−(n2−k)) kX=n3 exp(iβkf◦Tk−n3)! n3−n2 n2 n4 c 1+ c c α + c c β (1+κ ) ϕ . ≤ 0 0 1| k| 0 1| k| n4−n3 ! n3−n2 kX=n1 kX=n3 ϕ :=(1+κ )ϕ p,s s p We on lude by taking . 4.2 Proof of (b) and of ( ) p = 2 θ = 1 θ = 1 f = f 1 2 1 fLet=us1 onfsider ( ) whi h is an extensiongo:f=the paseθ(bf) (by taking , , g =−2f, 1 and 2 − ). Let us de(cid:28)ne the fun tion j=1 j j (in the ase (b), we have : − ). This (1) (2) ν K +K < + ω M g gP fun tion is - eξnt(eωr,ed)and satis(cid:28)esg Tk(ω) ∞. We observe that, onditionally to ∈ , the k Ωexpe tation of · is equal to ◦ k . Ul sing the FubEi[nξi ξth]e=oreEm[agndTskta.grtinTgl]by integrating over 1 k l ν , we observe that, for any integers and , we have : ◦ ◦ and that, for any integersk1,k2,k3,k4, we have: E[ξk1ξk2ξk3ξk4]=Eν 4j=1g◦Tkj . Hen e, we anprovethe point 4of h i theorem 1 as we proved it for (a). Q ω M of eNxpow(i,ulξekt(ωus,·p))roivsehtuhe◦pTokinwti5thof(hthueo:=rem1pl=.1Weieθloubfsl)e.rvTehthisatfu,n o ntidointio nanallbyetorewr∈itten, t:hehuex=pee itθaptuio+n pl=−11 eiθlu−eiθpu fl. The modulus of thPis fun tion is bounded by 1 and we have : P (cid:0) (cid:1) (1) (2) max K ,K c 2p max θ u. hu hu ≤ 2 j=0,...,p| j| | | (cid:16) (cid:17) n n n n 0 n n n n 1 2 3 4 1 2 3 4 Let , , and be four integers su h that ≤ ≤ ≤ ≤ . Let us onsider any real α ,..,α β ,...,β numbers n1 n2 and n3 n4. We have : Cov ei nk=2n1αkξk,ei nk=4n3βkξk = P P (cid:12) (cid:16) (cid:17)(cid:12) (cid:12)(cid:12) = Cov n2 h (cid:12)(cid:12)Tk, n4 h Tk (cid:12) ν αk ◦ βk ◦ !(cid:12) (cid:12) kY=n1 kY=n3 (cid:12) (cid:12) (cid:12) (cid:12) n2 (cid:12) n4 c(cid:12) 1+c c 2p max θ α +(cid:12) β (1+κ )ϕ . ≤ 0 0 2 j=0,...,p| j| | k| | k|!! n4−n3 n3−n2 kX=n1 kX=n3 8 5 Proof of theorem 1 To prove our result of onvergen e in distribution, we use hara teristi fun tions. Let us (cid:28)x some real t number . We will show that : n it lim E exp ξ =E exp it E[ξ ξ ]∆ . n→+∞ " n34 k=1 Sk!#   sp Z 0 p 1 X X∈    Let us noti e that we have ( f [13℄ lemma 5, for example) : u2 E[exp(iu∆ )]=E exp (L (x))2dx . 1 1 − 2 R (cid:20) (cid:18) Z (cid:19)(cid:21) Hen e, it is enough to prove that : it n t2 lim E exp ξ =E exp E[ξ ξ ] (L (x))2dx . n→+∞ " n34 k=1 Sk!#  −2 p Z 0 p ZR 1  X X∈    m 1 k In the following, for any integer ≥ and any integer , we de(cid:28)ne : N (k):=Card j =1,...,m : S =k . m j { } n 1 We noti e that, for any integer ≥ , we have : n ξ = ξ N (k). Sj k n j=1 k Z X X∈ In the step 1 of our proof, we will use the following fa ts : C :=supsupK2n 1P max S K <+ , 0 − m n≥1K>0 (cid:18)m=1,...,n| |≥ (cid:19) ∞ C1 :=supsupn−21 Nn(k) 6 <+ , n 1k Z k k ∞ ≥ ∈ N (ℓ) N (k) n n 2 C :=sup sup k − k <+ . 2 n 1k,ℓ Z 1+ ℓ k n41 ∞ ≥ ∈ | − | p The (cid:28)rst fa t omes from the Kolmogorovinequality. We refer to [13℄ lemmas 1, 2, 3 and 4 for the proof of the other fa ts. 5.1 Step 1 : Te hni al part n Thisisthebigpartofourproof. Inthis part,weprovethatthefollowingquantity goesto zeroas goes + to ∞ : it t2 E exp ξ N (ℓ) E exp E[ξ ξ ]N (ℓ)2 . (cid:12)(cid:12) " n34 ℓ Z ℓ n !#−  −2n23 ℓ,k Z ℓ k n (cid:12)(cid:12) (cid:12) X∈ X∈ (cid:12) (cid:12)   (cid:12) ε>0 (cid:12) n ε (cid:12) Let us (cid:28)x .(cid:12)We will prove that, if is large enough, this quantity is less than .(cid:12) Our proofis inspiredby a method usedby Janto establish entrallimit theoremwith rate of onver- gen e ( f. [11℄, [9℄, method also used in [14℄). More pre isely, we adapt the idea of the (cid:28)rst step of the indu tive method of Jan. 9 K 1 n 1 • For any ≥ and any integer ≥ , we have : C n C P max S K√n 0 = 0. m=1,...,n| m|≥ ≤ K2n K2 (cid:18) (cid:19) K 1 2C0 < ε Let us (cid:28)x ≥ su h that K2 10. Then, we have K√n it it ⌈ ⌉ C ε E exp ξ N (ℓ) E exp ξ N (ℓ) 2 0 < (cid:12)(cid:12)(cid:12) " n34 Xℓ∈Z ℓ n !#−  n43 ℓ=−X⌈K√n⌉ ℓ n (cid:12)(cid:12)(cid:12)≤ K2 10 (1) (cid:12)   (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) and : K√n t2 t2 ⌈ ⌉ ε E exp E[ξ ξ ]N (ℓ)2 E exp E[ξ ξ ]N (ℓ)2 < . (cid:12)(cid:12)(cid:12)  −2n23 ℓX,k∈Z ℓ k n −  −2n23 ℓ=−X⌈K√n⌉Xk∈Z ℓ k n (cid:12)(cid:12)(cid:12) 10 (cid:12)      (cid:12) (cid:12) (cid:12) (2) (cid:12) (cid:12) Hen e we have to estimate : K√n K√n it ⌈ ⌉ t2 ⌈ ⌉ A := E exp ξ N (ℓ) E exp E[ξ ξ ]N (ℓ)2 . n (cid:12)(cid:12)(cid:12)  n43 ℓ=−X⌈K√n⌉ ℓ n −  −2n32 ℓ=−X⌈K√n⌉Xk∈Z ℓ k n (cid:12)(cid:12)(cid:12) (3) (cid:12)      (cid:12) (cid:12) (cid:12) (cid:12) L n (cid:12) • In the following, will be some real number bigger than 8 and large enough and any integer 2K√n L K√n 2⌈K√n⌉+1 5K√n biggerthan1andlargeenoughsu hthat: L ≥ . Wewillhave: L ≤ L ≤ L . j k ⌈K√n⌉ L 2⌈K√n⌉+1 L • We split our sums ℓ= K√n in sums over L terms and one sum over less than −⌈ ⌉ 2 K√n +1 j k P ⌈ ⌉ terms and so over less than L terms. k =0,...,L 1 j k For any − , we de(cid:28)ne : t2 −⌈K√n⌉+(k+1) 2⌈K√Ln⌉+1 −1 a =exp j k E[ξ ξ ]N (ℓ)2 k,n,L −2n23 ℓ=−⌈K√n⌉X+k 2⌈K√Ln⌉+1 Xk∈Z ℓ k n   j k  and it −⌈K√n⌉+(k+1) 2⌈K√Ln⌉+1 −1 b =exp j k ξ N (ℓ) . k,n,L n43 ℓ n   ℓ=−⌈K√n⌉+Xk 2⌈K√Ln⌉+1   j k  Moreover, we de(cid:28)ne : K√n t2 ⌈ ⌉ a =exp E[ξ ξ ]N (ℓ)2 L,n,L −2n23 ℓ=−⌈K√n⌉+XL 2⌈K√Ln⌉+1 Xk∈Z ℓ k n   j k  and K√n it ⌈ ⌉ b =exp ξ N (ℓ) . L,n,L n43 ℓ n   ℓ=−⌈K√n⌉+XL 2⌈K√Ln⌉+1   j k  k=0,...,L Let us noti e that, for any , we have : a 1 b 1. k,n,L k,n,L | |≤ and | |≤ 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.