A Level Set Based Flamelet Model for the Prediction of Combustion in Spark Ignition Engines JensEwald,NorbertPeters Institutfu¨rTechnischeMechanik,RWTHAachenUniversity Templergraben64,D–52056Aachen,Germany E-Mail: [email protected] Abstract A Flamelet Model based on the Level Set approach for turbulent premixed combustion is presented. The original model [11, 12] is enhanced in order to consistently model the evolution of the premixed flame from laminar into a fullydevelopedturbulentflame.Thisisaccomplishedbyestablishingalinearrelationshipbetweenthethicknessofthe turbulentflamebrushandtheturbulentburningvelocity. Startingfromthereamodelfortheinitialflamepropagation ofasphericalsparkkernelimmediatelyafterignitionandfortheflamepropagationin3Dspaceisderived. Incontrast toothermodels,thesamephysicalmodelingassumptionsareemployedforthephaseinitiallyaftersparkignitionand forthelaterphasesofflamepropagation. ThemodelisappliedtoatestcaseinanhomogeneouschargeSparkIgnition (SI)engine. Introduction immediatelythereafter, andtheotherforthepropagation ofthefullyturbulentdevelopedflameatlaterstagesofthe With respect to laminar premixed flames, Williams [19] combustion process were used. The spark ignition mod- postulated a kinematic equation for the advection of the elsinbothcasespredictlowerturbulentburningvelocities laminar flame based on the scalar G. The laminar ap- for the developing turbulent flame kernel than the turbu- proachthenwassubsequentlyextendedbyPeters[10]to lentburningvelocityexpressionin[11]whichassumesa turbulent premixed flames. Due to the kinematic Level fullydevelopedflame. Afterausergiventimeperiod,the Setapproachemployed,theturbulentburningvelocitysT modelsareswitchedtothelattermodelequation. ismodelinputintothekinematicequationandnotareac- Inthiswork,aunifiedapproachfortheflamepropaga- tionratedefinedperunitvolume.Thisapproachtherefore tion during the phase immediately after ignition and one overcomes problems in case that the (laminar or turbu- theturbulentflameisdevelopedispresented.Thekeyidea lent)flamethicknessbecomessmallincomparisontothe istoconsistentlyrelatethethicknessoftheturbulentflame numericalgridusedintheproblemsimulationandinthat brushtotheturbulentburningvelocity. Immediatelyafter limit,thereactionratewouldbecomeadeltapeak,which ignitionthethicknessoftheturbulentflamebrushiszero is difficult to be integrated numerically. Furthermore the – except for the laminar flame thickness – and laminar interaction of the different physical phenomena of diffu- flamepropagationispredicted. sion and reaction that establish the structure of the pre- The unified approach then is cast into two different mixed flame are physically correctly represented by em- numericalrepresentations, oneforthenumericalintegra- ployingtheburningvelocitywhichisaneigenvalueofthe tion in 3D space on the numerical grid of the problem. premixedproblemposed[9]. The other representation assumes the spark kernel to be Thefirstturbulentcombustionmodelwasthenrefined sphericalwhichallowsforagrid-independentdescription [11]bysub-dividingtheflameletcombustionregimeinto of the developing spark, therefore overcoming to a cer- thecorrugatedflameletsregime,inwhichlargescaletur- tain extent the necessity to refine the computational grid bulence is active and the thin reaction zones regime, in at the position of ignition. Also, due to the geometry of which small scale turbulence dominates. In the latter re- thesparkkernelassumed,effectsofkernelcurvaturecan gime,thesmallestturbulentscalesactonthelaminarflame- easilybeassessed. let. This is the cause of the so-called bending effect, by whichadecreaseoftheturbulentburningvelocityispre- UnsteadyPremixedCombustionModel dictedforsmallerDamko¨hlernumbers. The turbulent G-Equation concept was already suc- cessfullyusedforSparkIgnition(SI)Engineapplications, TheturbulentpremixedcombustionflameletmodelbyPe- cf.Dekenaetal.[5]orTanetal.[16,15]. Intheseworks, ters[11,12]isbasedonthreequantitieswhichareGe,the twodifferentmodels,oneforsparkignitionandthephase meanflamefrontposition,thevarianceoftheflamebrush 1 Gg002 = ‘2 whichisrelatedtotheturbulentflamethick- Symbol Value definition/origin f,t ness‘ ,andtheturbulentflamesurfacearearatioσ . a 0.37 Bray[3] f,t et 4 At the mean flame front position Ge = G0, the kine- b1 2.0 experimentaldata[1] maticequation b3 1.0 experimentaldata[4] c 0.44 =C −1,[11] 0 ε1 hρi∂∂Get +hρi∇Ge·~ue=hρiDt0κe|∇Ge|+(^ρsT)|∇Ge| (1) c1 4.63 DNrS,3[c18c] c b2 c 1.01 = µ s 1 3 is applied while outside of this surface the distance con- 2 4Sc b t 1 straint |∇Ge| = 1 is imposed. Since eqn. (1) is pertinent c3 4.63 =c1b23 to the class of Level Sets, appropriate numerical solving cs 2.0 [10,11] techniques need to be employed, cf. [2, 13, 8]. The two Sct 0.7 termsonther.h.s.areduetothemodelingoftheturbulent flame propagation. The last term describes the averaged ^ Table 1: Constants for the level set based turbulent premixed turbulentmassburningrate(ρs )andthefirstinfluences T combustionmodel. duetocurvatureκe≡∇·(∇Ge/|∇Ge|)ofthemeanfront. The equation for the variance is modeled in analogy a) b) Q˙ Q˙ tothevarianceequationforapassivescalar[12] spk ht ⇓ ⇑ Gˆ =G0 hρi∂G∂gt002 +hρi∇Gg002·~ue=∇·(cid:16)hρiDt∇Gg002(cid:17) (2) rK⇐hum˙K rK ε +2hρiDt(∇Ge)2−cshρiGg002k mTK((tt)) (x0,y0,z0) K with the last two terms on the r.h.s. being the turbulent Figure1: a)Energybalancebetweenthesparkplugelectrodes productionanddissipation,respectively. andthesparkkernel.b)Connectionbetweensparkkernelradius Therelationshipbetweentheturbulentburningveloc- rK andfilteredGb-field. ity s and the flame propagation of the laminar flamelet T s isestablishedbyσ as: L et Theturbulentdiffusivityinthecurvaturetermofeqn. s =(1+σ )s . (3) (1)inthisworkisexpressedinanalogytoamixinglength T et L approachas Here,σetisdeterminedbyanalgebraicequationtobe D0 =rcµcs‘ k1/2 , (6) ‘ ( b2 r3c c t 2Sct f,t σ = f,t − 3 µ s et ‘ 4b Sc thereforethemagnitudeofthemodificationoftheturbu- f 1 t s ) (4) lent burning velocity due to curvature of the mean flame + b43 3cµcs + csb23 ‘f ε , frontisdependentonthethicknessoftheturbulentflame. 16b21 Sct 2 sLk The constants in eqn. (6) again are chosen such that for a state of equilibrium with the turbulent flow, the stan- which establishes a linear relationship between the ratio dard relationship for the turbulent diffusivity of a scalar, oftheturbulenttolaminarflamethickness‘ /‘ andthe f,t f D =ν /Sc ,isobtained. t t t turbulent flame surface area ratio. The term in braces is onlydependentonpropertiesofthelaminarflameletand Sparkignitionmodeling theturbulenttimescaleoftheflow.Theexpression(4)has been chosen such that for ‘ being in equilibrium with f,t For the spark ignition model, the same physical model- theintegrallengthscaleofthesurroundingflow,turbulent ingassumptionsareusedasforturbulentpremixedflame burningvelocityexpressionsaspresentedin[12]againare propagationin3Dspacewithrespecttotheturbulentburn- recovered. The laminar flame thickness is defined with ingvelocityandtheexpressionforthevariance(2). Ad- respect to the ratio of the thermal conductivity and the ditionally,kernelexpansioneffectsduetoelectricalspark heatcapacityoftheflame,evaluatedatthepositionatthe energyandtheeffectofkernelcurvaturewillbeaccounted innerlayeroftheflame: for. The thermodynamical analysis is carried out similar (cid:12) toTan[17]. Asafirstapproximationofthemodelitisas- 1 λ(cid:12) ‘f = ρ s c (cid:12)(cid:12) , (5) sumedthattheinitialsparkkernelissphericalwithagiven u L p 0 initialpositionandradius. Duringthegrowthofthisker- where ρ indicates the unburnt gas mixture density and nel to a fully turbulent flame the kernel will be assumed u ‘0’referstotheinnerlayerposition. tobesubjectedtoconvectionofthebackgroundflow. 2 Theenergybalancedepictedinfigure1areads dH dp Q˙ +Q˙ −Q˙ = −h m˙ −V , (7) spk chem ht dt u K dt whereHrepresentsthesparkthermalandplasmaenthalpy. Q˙ denotesthegrosselectricalenergytransferfromthe spk electrodesandQ˙ theheatlosstotheelectrodes. Q˙ ht chem accounts for the heat release caused by combustion. h u denotes the specific enthalpy of the unburnt gas mixture whichisaddedtothesparkby(laminarorturbulent)flame propagationthroughthemassstreamm˙ . K The effect of spark energy deposited into the kernel andheatlossestotheelectrodesarerelatedtoeachother thusforminganeffectivitycoefficientη ,inthefollow- eff ingassumedtobeapproximately0.3: Figure2:Unstructuredcomputationalgridoftheclosedengine geometryhighlightingthemodeledsparkplug.Thismeshcom- Q˙ ≈(1−η )Q˙ . (8) ht eff spk prises302,000gridcells. The equation of continuity gives the following ordi- Bore 86mm narydifferentialequationfortheincreaseofsparkkernel Stroke 86mm mass: Displacement 0.5L dm dtK =m˙K =4πrK2 ρusT,κ . (9) CompressionRatio 10.3 Enginespeed 2000rpm Herer istheradiusofthekernelands anexpression K T,κ MAP 95kPa fortheflamepropagationwhichtakesintoaccountthetur- Intakemixture: propane/airw.φ=0.6 bulentburningvelocityandtheeffectoflaminarandtur- SparkTiming 40◦BTDC bulentkernelcurvatureasdoneinequation(1).Theradius SparkEnergy 60J/s canbereadilyobtainedby InitialSparkRadius r =1mm K,0 r 3m r = 3 K ; (10) K 4πρ b Table2:Operatingparametersoftheengine however, the density of the gas in the spark ρ needs to b be known which is – depending on ignition conditions – profiles: lowerthanthedensityofadiabaticallyburnedgasdueto ] pcrleaasmseadekfeferncteslotefmthpeerealetucrteri.caInleonredregrytowhapicphrocxaiumseataenthinis- dGd0st0p2k =2Dˆt,spk−cskˆε G]0s0p2k (14) temperatureT eqn.(7)needstobefurthermodified. spk K Thederivativeofthekernelenthalpygives ] For engine combustion Gg002 = G002 = 0 as initial spk dH condition.Thesparkonlyseesonlythoseturbulenteddies dt =m˙KhK +h˙KmK (11) whicharesmallerequaldiameteroftheeddyitself.When theflamekernelreachesaspecifiedsizer ,themodel K,end and the heat release due to premixed combustion can be isswitchedtothe3Dequations. expressedas Q˙ =m˙ (h −h ). (12) Results spk K ad u Theburningvelocitys –modifiedbycurvatureef- T,κ Basis of the model computation is a optical test engine fects–canbededucedfrom(1),inwhichthecurvatureof operatedinhomogeneouschargemodefueledwithalean thesphericalkernelamountstoκ=2/r . K propane/air mixture [6]. The operating parameters are listed in table 2. The numerical computations were car- 2 sT,κ =sT − r Dt0 (13) riedoutbythecodeAC-FluXbyAdvancedCombustion K GmbH, a Finite Volume based CFD simulation tool that An equation describing the thickness of the flame brush operates on unstructured meshes and is able to perform can be deduced from (2) by assuming uniform turbulent adaptivelocalgridrefinementduringcalculation. 3 ] 6000 2 4 0.3 m s] Pa] 5000 ESximpeurilmatieonnt −30 3.5 maassrebau(rGenin=gGra0te) 0.25 kg/ p[kpressure 34000000 [1ontsurface 12..2355 00..125 [burningrate nder 2000 mefr 1 0.1 mass yli fla 0.5 0.05 al C 1000 b n o ea 0 0 gl -40 -20 0 20 40 m -40-30-20-10 0 10 20 30 40 50 CrankAngle[deg] CrankAngle[deg] Figure3:Comparisonofcylinderpressures Figure4:Plotofthemeanflamefrontsurface(measuredonthe leftordinate)andtheglobalmassburningrate(measuredonthe rightordinate)duringthecombustionphase. Thesimulationwascarriedoutemployingtwomeshes, onewiththeintakeportsmodeled. Afterintakevalveclo- 22 140 ssuorlue,titohneactatlhciuslatitmioenswteapswinatsermruapptpeeddaotn9t0o◦aBnTeDwCgarinddftehae- [−] 1280 m˙σe0t0 120 2ms)] turingaclosedgeometrywhichisshowninfigure2. atio 16 100 g/( veloFcoitrythceorlraemlaitnioanrsflaamcceolredtincaglctoulaMtiuo¨lnl,erlaemtianla.r[7b]urwnienrge arear 1124 80 [kate employedwithacorrectionoftheburntgastemperaturein ce 10 60 gr a 8 n ocyrdceler,twohaiccchowunatsfaosrsuthmeeedffheecrtesootfhreerswtigsaesaisnintheertp.rFeovriothues surf 6 40 urni e 4 b flame diffusivity λ/c , the correlation for hydrocarbons m 20 s dueto[14]wasusedapsbasis. fla 2 mas 0 0 Infigure3,acomparisonofmeasuredandcalculated -40 -30 -20 -10 0 10 20 30 40 50 cylinder pressure is depicted. In figure 4 both the evolu- CrankAngle[deg] tionofthemeanflamefrontsurfaceandtheglobalmass burning rate are plotted. It can be seen, even although Figure5:Qualitativecomparisonofturbulentflamesurfacearea bothquantitiescannotbedirectlycomparedtoeachother ratioσet areaweightaveragedontheGe = G0 surface(leftor- quantitatively,theincreaseinmassburningisprecededby dinate) and the area weight averaged flame surface area mass theincreaseinsurfaceofthemeanflamefront. Thiscan burningratem˙00(rightordinate). be explained by the fact that initially, flame propagation isclosetolaminarandittakesapproximately5◦CAafter ignitiontodevelopturbulentflamepropagation. Thearea area(Ge = G0)plotinfigure4,whichshowsatthesame of the mean flame front surface Ge = G0 increases un- timeasteepdecrease. tilabout-3◦CAwhiletheheatreleaseincreasesuntilap- These observations are also supported by the results prox. 2◦CA ATDC. This can be explained by most parts displayedinfig.5. Thequantitym˙00 isequaltothemass oftheflamecomingintocontactwiththewallregion. Af- burningrate(ρsT),averagedonthetotalmeanflamesur- terthat,anotherincreaseofmeanflamefrontsurfacecan face area. Also the turbulent flame surface area ratio σet be observed, which does not contribute to a repeated in- isaveragedoverthetotalmeanflamesurfacearea. Itcan crease in flame surface because the flame propagates in beseenthattheprofileofσet predictstheevolutionofthe thesquishregion.ShortlyafterTDC,asharppeakinmass laminarflamekernelintoamoderatelyturbulentflameto burningrateisobserved. 3Dimageanalysisofthesimu- take place within 5◦CA. As a comparison, the turbulent lationshowsthatatTDC(seefigure8b)inthein-cylinder timescalek/εatthesparkplugimmediatelypriortoig- region opposing the spark plug a substantial area of the nition spans for this engine speed 13◦CA. Immediately meanflamefrontsurfaceisvisiblethatisrapidlyreduced after Top Dead Center (TDC), both maximum values of byflamepropagationwhentheflameburnsoutinthisre- averagedσetandmassburningratesarereachedwhichco- gionandcontinuestopropagateintothesquishregionfur- incidewiththelocationofmaximumheatrelease. ther.Thisobservationisalsosupportedbytheslopeofthe The main mechanism that drives the development of 4 5 101 4.5 ‘f,t ‘ −11.5◦CA 4 t m] 3.5 −31.2◦CA −1.2◦CA m [ 3 −] s h [ lengt 2.25 0v/sL 50.0◦C4A2.3◦CA b. 1.5 r u 1 t 0.5 0 100 -40 -30 -20 -10 0 10 20 30 40 50 101 102 103 104 CrankAngle[deg] ‘ /‘ [−] f,t,alg f Figure 6: Comparison of turbulent flame brush thickness ‘ Figure7: Combustionregimediagram. Thedashedlineindi- f,t and turbulent length scale ‘ averaged on the mean flame catestheboundarybetweenthecorrugatedflameletswhichison f,t,alg frontsurface. the lower right section of the plot and the thin reaction zones regimeattheupperleft. theturbulentflamecanbeexplainedbythecomparisonof theturbulentflamebrushthickness‘ withtheturbulent f,t length scale. In order to facilitate the comparison, a tur- a) bulent length scale is defined for this purpose assuming production=dissipation and neglecting the temporal and spatialderivativesineqn.(2). Theresultisthe“algebraic flamebrushthickness” r 2c k3/2 ‘ ≡ µ . (15) f,t,alg c Sc ε s t Boththeturbulentlengthscaleandtheflamebrushthick- ness are again averaged over the mean flame front sur- face area and therefore describe the turbulent scale that the flame sees. Both quantities are increasing in time, while the turbulent flame brush thickness due to the ini- a) tial condition starts at zero and remains smaller than the turbulentlengthuntilimmediatelyafterTDC.Thisisex- plainedbythespatialdistributionoftheturbulentscales, which are small in vicinity to the wall and also in the region of the spark plug and increase towards the inner region of the combustion chamber. The flame therefore isignitedinregionswheresmallturbulenteddiesprevail and then later on expands into regions with larger turbu- lenteddies. Theturbulentflamebrushthicknessrequires timetofollowthatincreaseinturbulentlength. Thecombustionregimeinwhichtheengineoperates in that mode is depicted in figure 7. The ratios v0/s L and‘ /‘ arelogarithmicallyaveragedoverthemean f,t,alg f flame front surface. The average of these quantities in- Figure8: Twoplotsofthecombustionprogressintheengine dicate that the combustion predominantly takes place in each at two different crank angle degrees. On the left plots the corrugated flamelets regime [11]. Until TDC the di- a vertical cut through the center of the chamber, showing the mensionless turbulence intensity v0/s remains approxi- L spark plug geometry is displayed along with the color coded matelyconstant. Afterthispoint, thisquantitydecreases mean temperature. By solid white lines both the mean flame againsincetheflameburnsoutclosetothewallandprop- frontGe = G0 (thickline)andtheboundaryoftheflamebrush agatesinthesquishregion. region(thinlinesisdisplayed). 5 Acknowledgements [12] N.Peters. TurbulentCombustion. CambridgeUni- versityPress,2000. The authors gratefully acknowledge the contribution of the engine data by Andreas Lippert, Todd Fansler, and [13] J.A.Sethian.Fastmarchingmethods.SIAMReview, MichaelDrakeandthecomputationalmeshbyMarkHue- 41(2):199–235,1999. bler,allfromthePowertrainSystemsResearchLab,Gen- [14] M. D. Smooke and V. Giovangigli. Formulation eralMotorsR&DinWarren,MI. of the premixed and nonpremixed test problems. In M. D. Smooke, editor, Reduced Kinetic Mecha- References nismsandAsymptoticApproximationsforMethane- AirFlames,volume384ofLectureNotesinPhysics, [1] R.G.Abdel-GayedandD.Bradley.Atwo-eddythe- pages1–28.Springer-Verlag,1990. ory of premixed turbulent flame propagation. Phil. [15] Z.Tan,S.C.Kong,andR.D.Reitz. Modelingpre- Trans.oftheRoyalSoc.ofLondonA,301(1457):1– mixedanddirectinjectionSIenginecombustionus- 25,1981. ingtheG-equationmodel. SAETechnicalPaperSe- [2] D. Adalsteinsson and J. A. Sethian. The fast con- ries,no.2003-01-1843,2003. structionofextensionvelocitiesinlevelsetmethods. [16] Z. Tan and R. Reitz. Modeling ignition and com- JournalofComputationalPhysics,148:2–22,1999. bustion in spark-ignition engines using a level set [3] K.N.C.Bray. Studiesoftheturbulentburningve- method. SAETechnicalPaperSeries, no.2003-01- locity. Proc.Roy.Soc.Lond.,A431:315–335,1990. 0722,2003. [4] G. Damko¨hler. Der Einfluss der Turbulenz [17] Z.TanandR.D.Reitz. DevelopmentofG-Equation aufdieFlammengeschwindigkeitinGasgemischen. combustionmodelfordirectinjectionSIenginesim- Zeitschr.f.Elektrochemie,46(11):601–626,1940. ulations. In 13th Int. Multidim. Engine Modeling User’sGroupMeeting,Detroit,MI,March22003. [5] M. Dekena and N. Peters. Combustion modeling with the G-Equation. Oil & Gas Sci. Tech. – Rev. [18] H.Wenzel. DirektenumerischeSimulationderAus- IFP,54(2):265–270,1999. breitung einer Flammenfront in einem homogenen Turbulenzfeld. Dissertation,RWTHAachenUniver- [6] A.M.Lippert,T.D.Fansler,andM.C.Drake.High- sity,2000. speed imaging and CFD modeling of sprays and combustion in a spray-guided spark ignition direct [19] F.A. Williams. Turbulent combustion. InJ.Buck- injectionengine. In6thInt.Symp.onInternalCom- master, editor, The Mathematics of Combustion, bustion Diagnostics, Baden-Baden, Germany, June pages97–131.SIAM,Philadelphia,1985. 15–162004. [7] U.C.Mu¨ller,M.Bollig,andN.Peters. Approxima- tions for burning velocities and markstein numbers for lean hydrocarbon and methanol flames. Com- bust.Flame,108:349–356,1997. [8] S.OsherandR.Fedkiw. LevelSetMethodsandDy- namicImplicitSurfaces. Springer,2003. [9] N.Peters. FifteenLecturesonLaminarandTurbu- lentCombustion.ErcoftacSummerSchool,Septem- ber 14-28 1992. Institut fu¨r Technische Mechanik, RWTHAachen,1992. [10] N.Peters. Aspectralclosureforpremixedturbulent combustion in the flamelet regime. J. Fluid Mech., 242:611–629,1992. [11] N. Peters. The turbulent burning velocity for large scale and small scale turbulence. J. Fluid Mech., 384:107–132,1999. 6