ebook img

A-infinity Bialgebras of Type (m,n) PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A-infinity Bialgebras of Type (m,n)

A -BIALGEBRAS OF TYPE (m,n) ∞ AINHOABERCIANO1,SEANEVANS,ANDRONALDUMBLE2 0 1 0 Abstract. AnA∞-bialgebraoftype(m,n)isaHopfalgebraHequippedwith 2 a“compatible”operationωmn :H⊗m→H⊗nofpositivedegree. Wedetermine thestructurerelationsforA∞-bialgebrasoftype(m,n)andconstructapurely n algebraicexampleforeachm≥2andm+n≥4. a J 9 ] T A 1. Introduction . h Let Λ be a (gradedor ungraded)commutative ring with unity, and let m,n∈N t a with m+n ≥ 4. An A -bialgebra of type (m,n) is a graded Λ-Hopf algebra H ∞ m equippedwitha“compatible”multilinearoperationωn ∈Homm+n−3(H⊗m,H⊗n). m [ Thefirstexamplesoftype (1,3)weregivenby H.J.Bauesin[2]. Recently, the first and third authors observed that when p is an odd prime and n ≥ 3, examples 2 v of type (1,p) appear as a pair of tensor factors E ⊗Γ in the mod p homology of 4 an Eilenberg-Mac Lane space K(Z,n) [1]. Examples of type (m,1) and the first 7 “non-operadic” example of type (2,2) were constructed by the third author in [8]; 6 the firstexample of type (2,3), whichappears here as Example 2, was constructed 0 by the second author in his undergraduate thesis [3]. In this paper we determine . 8 the structure relations for A -bialgebras of type (m,n) and construct a purely ∞ 0 algebraic example for each (m,n) with m≥2 and m+n≥4. 9 The paper is organized as follows: In Section 2 we construct the components of 0 : the particular biderivative we need. In Section 3 we review M. Markl’s “fraction v product”definedin[5]anduseittocomputethe A -bialgebrastructurerelations. i ∞ X Finally, as a consequence of Theorem 1 in Section 4, we obtain the following ex- r amples: Let R be a commutative ring with unity, let m,n ∈ N with m ≥ 2 and a m + n ≥ 4, and let Λ = E(x) be an exterior R-algebra generated by x of de- gree 2m−3. Let H = E(y) be an exterior Λ-algebra generated by y of degree 1, let µ and ∆ denote the trivial product and primitive coproduct on H, and define ωn ∈ Homm+n−3(H⊗m,H⊗n) by ωn (y|···|y) = xy|y|···|y. Then (H,µ,∆,ωn) m m m is an A -bialgebra of type (m,n). ∞ Date:January6,2010. Key words and phrases. A∞-algebra, A∞-bialgebra, A∞-coalgebra, associahedron, bar and cobarconstructions,Hopfalgebra,S-Udiagonal. MSC2010:Primary18D50(operads); 57T30(barandcobarconstructions). 1Thisworkwaspartiallysupported by“Computational Topology andAppliedMathematics” PAICYTresearchprojectFQM-296,SpanishMECprojectMTM2006-03722. 2ThisresearchwasfundedinpartbyaMillersvilleUniversityfacultyresearchgrant. 1 2 AINHOABERCIANO1,SEANEVANS,ANDRONALDUMBLE2 2. The Biderivative Given a graded R-module H of finite type, consider the bigraded module M = {Mn =Hom(H⊗m,H⊗n)} and a family of R-multilinear operations m m,n≥1 ωn ∈Homm+n−3 H⊗m,H⊗n . m n,m≥1 (cid:8) (cid:0) (cid:1)(cid:9) Thesumω = ωn extendsuniquelytoitsbiderivative d ∈TTM,constructedby m ω SaneblidzeandPthe secondauthorin[7], andthereisa(non-bilinear)⊚-producton TM ⊂TTM, which extends Gerstenhaber’s ◦ -products on M1⊕M∗. The family i ∗ 1 {ωn} defines an A -bialgebra structure on H whenever d ⊚ d = 0, and the m ∞ ω ω structure relations are the homogeneous components of the equation d ⊚d =0. ω ω Consider a (biassociative) Hopf algebra (H,∆,µ) together with an operation ωn ∈ Homm+n−3(H⊗m,H⊗n) with m+n ≥ 4. Let us construct the component m of the biderivative d in TM when ω = ∆ − µ + ωn. Let ↑ and ↓ denote the ω m suspension and desuspension operators, which shift dimension +1 and −1, respec- tively. Let H¯ = H/H . For purposes of computing signs, we assume that H is 0 simply-connected; once the signs have been determined, the simple-connectivity assumption will be dropped. The bar construction of H is the tensor coalgebra BA = T ↑H¯ with differential induced by µ; the cobar construction of H is the tensor alg(cid:0)ebra(cid:1)ΩH = T ↓H¯ with differential induced by ∆ (for details see [4]). Given a map f : M →(cid:0)N of(cid:1)graded Λ-module modules, let fi,j denote the map 1⊗i⊗f ⊗1⊗j :N⊗i⊗M ⊗N⊗j →N⊗i+j+1. Freely extend the map ↓⊗2 ∆ ↑:↓ H¯ → ΩH as a derivation of ΩH, and dually, cofreelyextendthemap−↑µ↓⊗2:↑⊗2 H¯⊗2 →BH asacoderivationofBH.These extensions contribute the components k k δk = (−1)i+1∆ and −∂ = (−1)i+1µ i−1,k−i k i−1,k−i Xi=1 Xi=1 to the biderivative, where k ≥ 1 and the signs are the Koszul signs that appear when factoring out suspension and desuspension operators. Next, cofreely extend the map ↑ ∆ ↓:↑ H¯ → B H⊗2 as a coalgebra map; this extension (cid:0) (cid:1) (↑∆↓)⊗k :BH →B H⊗2 kX≥1 (cid:0) (cid:1) contributes the components (−1)⌊k/2⌋∆⊗k. kX≥1 Dually, freely extend the map − ↓ µ ↑:↓ H¯⊗2 → ΩH as an algebra map; this extension (−↓µ↑)⊗k :Ω H⊗2 →ΩH kX≥1 (cid:0) (cid:1) contributes the components (−1)⌊(k+1)/2⌋µ⊗k. kX≥1 Additional terms arise from various extensions involving ωn. When n = 2, the m components ω2 −ω2 ⊗∆+(−1)m∆⊗ω2 −ω2 ⊗ω2 +··· . m m m m m A∞-BIALGEBRAS OF TYPE (m,n) 3 arise from the cofree extension of ↑∆↓+↑ω2 ↓⊗m:↑H¯⊕↑⊗m H¯⊗m →B H⊗2 m as a coalgebra map BH →B H⊗2 ; and when m=2, the components (cid:0) (cid:1) ωn+µ⊗ω(cid:0)n−(−(cid:1)1)nωn⊗µ−ωn⊗ωn+··· 2 2 2 2 2 arise from the free extension of ↓⊗n ωn ↑−↓µ↑:↓H¯⊗2 →ΩH as an algebra map 2 Ω H⊗2 →ΩH. In particular, when m=n=2, the component of d in TM is ω (cid:0) (cid:1) d =δ∗−∂ +ω2−ω2⊗ω2+···+ (−1)⌊(k+1)/2⌋µ⊗k+(−1)⌊k/2⌋∆⊗k ω ∗ 2 2 2 Xk≥2h i +µ⊗ω2−ω2⊗µ+···−ω2⊗∆+∆⊗ω2+··· . 2 2 2 2 When m 6= 2 or n 6= 2, additional terms arise from extensions governed by the following generalization of an (f,g)-(co)derivation: Definition 1. Let (A,µ ) and (B,µ ) be graded algebras and let f,g : A → B A B be algebra maps. A map h : A → B of degree p is an (f,g)-derivation of degree p if hµ = µ (f ⊗h+h⊗g). There is the completely dual notion of an (f,g)- A B coderivation of degree p. Thus a (1,1)-(co)derivation of degree 1 is a classical (co)derivation and an (f,g)- (co)derivation of degree 1 is a classical (f,g)-(co)derivation. Define f1 = g = 1, 1 and for m,n≥2 define fn = ∆⊗1⊗n−2 ···(∆⊗1)∆= 1⊗n−2⊗∆ ···(1⊗∆)∆ and g =µ(cid:0) (µ⊗1)···(cid:1)µ⊗1⊗m−2 =µ(cid:0)(1⊗µ)··· (cid:1)1⊗m−2⊗µ . m (cid:0) (cid:1) (cid:0) (cid:1) Ifn>2,cofreelyextend(−1)⌊n/2⌋+1 ↑fn ↓:↑H¯ →B(H⊗n)asacoalgebramap BH →B(H⊗n) and obtain Fn = (−1)(⌊n/2⌋+1)k(↑fn ↓)⊗k; kX≥1 then cofreelyextend ↑ωn ↓⊗m:↑⊗m H¯⊗m →B(H⊗n) as an(Fn,Fn)-coderivation m BH →B(H⊗n) of degree n−2. This extension contributes the components ωn +(−1)⌊(n+1)/2⌋(ωn ⊗fn−(−1)mfn⊗ωn)+··· m m m to the biderivative, where we have applied the identity ⌊n/2⌋+n ≡ ⌊(n+1)/2⌋ (mod2). In particular, when m=2 we have d =δ∗−∂ +ωn−ωn⊗ωn+···+ (−1)⌊(k+1)/2⌋µ⊗k+(−1)⌊k/2⌋∆⊗k ω ∗ 2 2 2 kX≥2h i +(−1)⌊(n+1)/2⌋(ωn⊗fn−fn⊗ωn)+···+µ⊗ωn−(−1)nωn⊗µ+··· . 2 2 2 2 Dually,ifm>2,freelyextend(−1)⌊(m+1)/2⌋ ↓g ↑:↓H¯⊗m →ΩH asanalgebra m map Ω(H⊗m)→ΩH and obtain G = (−1)⌊(m+1)/2⌋k(↓g ↑)⊗k; m m kX≥1 then freely extend the map ↓⊗n ωn ↑:↓ H¯⊗m → ΩH as a (G ,G )-derivation m m m Ω(H⊗m)→ΩH of degree m−2. This extension contributes the components ωn −(−1)⌊m/2⌋(g ⊗ωn −(−1)nωn ⊗g )+··· . m m m m m 4 AINHOABERCIANO1,SEANEVANS,ANDRONALDUMBLE2 In particular, when n=2 we have d =δ∗−∂ +ω2 −ω2 ⊗ω2 +···+ (−1)⌊(k+1)/2⌋µ⊗k+(−1)⌊k/2⌋∆⊗k ω ∗ m m m kX≥2h i −ω2 ⊗∆+(−1)m∆⊗ω2 +···−(−1)⌊m/2⌋ g ⊗ω2 −ω2 ⊗g +··· . m m m m m m (cid:0) (cid:1) And finally, if m,n6=2 we have d =δ∗−∂ +ωn + (−1)⌊(k+1)/2⌋µ⊗k+(−1)⌊k/2⌋∆⊗k ω ∗ m kX≥2h i +(−1)⌊(n+1)/2⌋(ωn ⊗fn−(−1)mfn⊗ωn)+··· m m −(−1)⌊m/2⌋(g ⊗ωn −(−1)nωn ⊗g )+··· . m m m m This completes the construction of the component of d in TM. ω TodeterminetheA -bialgebrastructurerelations,wemustdefinethe⊚-product ∞ and extract the homogeneous components of the equation d ⊚d =0. ω ω 3. The ⊚-Product As mentioned above, a family of operations ω ={ωn} defines an A -bialgebra m ∞ structureonH wheneverd ⊚d =0,andthe structurerelationsappearashomo- ω ω geneouscomponentsofthe equationd ⊚d =0. The ⊚-productis arestrictionof ω ω thefraction product (cid:30):TM×TM →TM definedbyM.Marklin[5]andreviewed below. For α,β ∈TM define α(cid:30)β, if α and β are components of d α⊚β = ω (cid:26) 0, otherwise. Consider the submodule S of special elements in the free PROP M whose ad- ditive generators are either indecomposables θn ∈ Mn of dimension m+n−3 or m m monomials αy ∈TM ×TM expressed as “elementary fractions” of the form x αy1···αyq (3.1) αy = p p , x αq ···αq x1 xp where αq and αyj are additive generators of S and the jth output of αq is linked to the itxhiinput opf αyj. All elementary fractions define the fraction prodxuict. p In terms of a composition, let σ : (H⊗q)⊗p →≈ (H⊗p)⊗q be the standard per- q,p mutationoftensorfactorsandnotethatαyp1···αypq ∈Hom (H⊗p)⊗q,H⊗Σyi and (cid:16) (cid:17) αqx1···αqxp ∈Hom H⊗Σxj,(H⊗q)⊗p ;thenαyx =αyp1···αypq ◦σq,p ◦αqx1···αqxp ∈ (cid:16) (cid:17) Hom H⊗Σxj,H⊗Σyi .Whereasjuxtapositioninthe“numerator”and“denomina- tor” d(cid:0)enotes tensor p(cid:1)roduct in TM, dimαy = dimαq +dimαyj. x i,j xi p WepictureindecomposablesandfractionproPductstwoways. First,anindecom- posable generator θn is pictured as a double corolla with m inputs and n outputs m as in Figure 1, and a general elementary fraction αy is pictured as a connected x non-planar graph as in Figure 2. n θn = m m A∞-BIALGEBRAS OF TYPE (m,n) 5 Figure 1. An indecomposable pictured as a double corolla. α1α11 α12 = 3 12 = = 111 α2α2α2 1 1 1 Figure 2. A fraction product pictured as a non-planar graph. Second, identify the pair of isomorphic modules (H⊗q)⊗p ≈ (H⊗p)⊗q with the point (p,q)∈N2 and think of indecomposables and fraction products as operators on N2. An indecomposible ωn is pictured as a “transgressive arrow” (m,1) −→ m (1,n)andafractionproduct αy1···αyq (cid:30) αq ···αq asa“transgressivepath” (Σx ,1) −→ (q,p) −→ (1,Σ(cid:0)yp) (seepin(cid:1)Fig(cid:16)urxe13). xWp(cid:17)hile this representation is i j helpful conceptually, it is not faithful. For example, both α1 =ω1(cid:30) ω1⊗1 and 21 2 2 α1 =ω1(cid:30) 1⊗ω1 are represented by the path (3,1)→(2,1)→(1,(cid:0)1). (cid:1) 12 2 2 (cid:0) (cid:1) Hsn (1, n ) ( q , p )B (p , q ) (Hsq)spB (Hsp)sq (m,1) Hsm Figure 3. A fraction product as a composition of operators on N2. Uptosign,thehomogeneouscomponentofd ⊚d withminputsandnoutputs ω ω consists of ωn plus the sum of all fractions α⊚β thought of as paths (m,1) →β m α (q,p)→(1,n). 4. A -Bialgebras of Type (m,n) ∞ EverythingweneedtodeterminethedesiredA -bialgebrastructurerelationsis ∞ nowinplace. Inadditiontothe(co)associativityrelationsµ(µ⊗1)=µ(1⊗µ)and (∆⊗1)∆=(1⊗∆)∆,andtheclassicalHopfrelation∆µ=(µ⊗µ)σ (∆⊗∆), 2,2 the homogeneous components of d ⊚d = 0 with m+1 inputs and n outputs ω ω produce Structure Relation 1: δnωn =(g ⊗ωn −(−1)nωn ⊗g )σ ∆⊗m. m m m m m 2,m 6 AINHOABERCIANO1,SEANEVANS,ANDRONALDUMBLE2 Figure 4. Structure relation 1. Similarly, the homogeneous components of d ⊚d = 0 with m inputs and n+1 ω ω outputs produce Structure Relation 2: ωn∂ =(−1)⌊(n+1)/2⌋µ⊗nσ (ωn ⊗fn−(−1)mfn⊗ωn). m m n,2 m m Figure 5. Structure relation 2. AdditionalrelationsappearinDefinition2below. Whereasourexamplesdonot dependonthesignsinRelations3,4(a-c),and5(a-c),weomitthecomplicatedsign formulas. Note that Relation 3 is a classical A -(co)algebra relation when n = 1 ∞ (or m=1). Definition2. Given m,n∈Nwith m+n≥4,an A -bialgebraoftype (m,n)is a ∞ Λ-Hopfalgebra(H,∆,µ)togetherwithanoperationωn ∈Homm+n−3(H⊗m,H⊗n) m such that A∞-BIALGEBRAS OF TYPE (m,n) 7 1. δnωn =(g ⊗ωn −(−1)nωn ⊗g )σ ∆⊗m m m m m m 2,m 2. ωn∂ =µ⊗nσ (fn⊗ωn −(−1)mωn ⊗fn) m m n,2 m m 3. ωn ⊗g⊗n−1±g ⊗ωn ⊗g⊗n−2±···±g⊗n−1⊗ωn σ m m m m m m m n,m (cid:0) ωn ⊗(fn)⊗m−1±fn⊗ωn ⊗(fn)⊗m−2±···±((cid:1)fn)⊗m−1⊗ωn =0 m m m (cid:16) (cid:17) 4. If m=2, then a. (ωn⊗ωn)σ (∆⊗∆)=0 2 2 2,2 b. (ωn)⊗nσ (fn⊗ωn−ωn⊗fn)=0 2 n,2 2 2 c. µ⊗(ωn)⊗n−1±ωn⊗µ⊗(ωn)⊗n−2 2 2 2 h ±···±(ωn)⊗n−1⊗µ σ (fn⊗ωn−ωn⊗fn)=0 2 n,2 2 2 i . . . d. µ⊗n−1⊗ωn+µ⊗n−3⊗ωn⊗µ⊗2+··· 2 2 (cid:2) −(−1)n µ⊗n−2⊗ωn⊗µ+µ⊗n−4⊗ωn⊗µ⊗3+··· 2 2 σn,2(cid:0)(fn⊗ω2n−ω2n⊗fn)=0 (cid:1)(cid:3) 5. If n=2, then a. (µ⊗µ)σ ω2 ⊗ω2 =0 2,2 m m b. g ⊗ω2 −(cid:0)ω2 ⊗g (cid:1)σ ω2 ⊗m =0 m m m m 2,m m c. (cid:0)g ⊗ω2 −ω2 ⊗g (cid:1)σ (cid:0)∆⊗(cid:1) ω2 ⊗m−1±ω2 ⊗∆⊗ ω2 ⊗m−2 m m m m 2,m m m m (cid:0) ±···± ω2 ⊗m(cid:1)−1⊗∆h =0(cid:0) (cid:1) (cid:0) (cid:1) m (cid:0) .(cid:1) i . . d. g ⊗ω2 −ω2 ⊗g σ ∆⊗m−1⊗ω2 +∆⊗m−3⊗ω2 ⊗∆⊗2+··· m m m m 2,m m m (cid:0) −(−1)m ∆⊗m−2(cid:1)⊗ω2(cid:2)⊗∆+∆⊗m−4⊗ω2 ⊗∆⊗3+··· =0 m m 6. If m=n=2, then ω2⊗ω2 σ ω2⊗ω2 =0. (cid:3) 2 2 2,2 2 2 (cid:0) (cid:1) (cid:0) (cid:1) Example 1. When (m,n) = (2,3), the relations in Definition 2 are represented graphically as follows: Relation1: ∆⊗1⊗2−1⊗∆⊗1+1⊗2⊗∆ ω3 = µ⊗ω3+ω3⊗µ σ (∆⊗∆) 2 2 2 2,2 (cid:0) (cid:1) (cid:0) (cid:1) Relation 2: ω3(µ⊗1−1⊗µ)=µ⊗3σ (∆⊗1)∆⊗ω3−ω3⊗(1⊗∆)∆ . 2 3,2 2 2 (cid:0) (cid:1) Relation 3 (4d): ω3⊗µ⊗2+µ⊗ω3⊗µ+µ⊗2⊗ω3 σ (∆⊗1)∆⊗ω3−ω3⊗(1⊗∆)∆ =0. 2 2 2 3,2 2 2 (cid:0) (cid:1) (cid:0) (cid:1) 8 AINHOABERCIANO1,SEANEVANS,ANDRONALDUMBLE2 Example 2. Let H = hyi be a graded Z -module with |y| = −2. Let µ and ∆ be 2 the trivial product and primitive coproduct on H, i.e., µ(1|y) = µ(y|1) = y and ∆(y)=1|y+y|1. Then H is a Hopf algebra. Definean operation ω3 :H⊗2 →H⊗3 2 by ω3(y|y) = y|1|1 + 1|1|y and zero otherwise. Then ω3 satisfies the structure 2 2 relations in Definition 2 and H,∆,µ,ω3 is an A -bialgebra of type (2,3). We 2 ∞ verify Relation 1; verification o(cid:0)f the other(cid:1)relations is left to the reader. (µ⊗ω3+ω3⊗µ)σ (∆⊗∆)(y|y) 2 2 2,2 =(µ⊗ω3+ω3⊗µ)(y|y|1|1+y|1|1|y+1|y|y|1+1|1|y|y) 2 2 =(y|1|1+1|1|y)⊗1+1⊗(y|1|1+1|1|y) =y|1|1|1+1|1|y|1+1|y|1|1+1|1|1|y =(∆⊗1⊗2+1⊗∆⊗1+1⊗2⊗∆)ω3(y|y)=δ3ω3(y|y). 2 2 Before we present our general family of examples, we determine all possible dimensions for our generators. Let R be a commutative ring with unity. Proposition 1. Let p,q ∈N, let Λ =E(x) be an exterior R-algebra generated by x of degree p, and let H = hyi be a graded Λ-module generated by y of degree q. The operation ωn :H⊗m →H⊗n defined by m ωn (y|···|y)=xy|y|···|y m has degree m+n−3 if (i) m=n=2, p=1, and q ≥2; (ii) m≥2, n≥1, p=2m−3, and q =1; (iii) m≥3,m+1≤n≤3m−p−3,1≤p≤2m−4,andq =(p−m−n+3)/(m−n). Proof. In general, |ωn|=m+n−3 if and only if m (4.1) m(q+1)=n(q−1)+p+3. Thus p,q ≥1 implies m≥2. (i) If m=n=2, p=1, and q ≥2, equation 4.1 implies ω2 =1. 2 (cid:12) (cid:12) (ii) If m ≥ 2, n ≥ 1, p = 2m−3, and q = 1, equation(cid:12) 4.(cid:12)1 implies that |ωn| = m m+n−3. (iii) If m≥3, 1≤p≤2m−4, and q ≥2, equation 4.1 defines a rational function p−m−n+3 q(n)= , m−n which decreases from 2m−p−2 to 2 as n increases from m+1 to 3m−p−3 (see Figure6below). Consequently|ωn|=m+n−3 wheneverm+1≤n≤3m−p−3 m and q(n)∈N. (cid:3) A∞-BIALGEBRAS OF TYPE (m,n) 9 Figure 6. Our main result now follows. Note that when H is a module over an exterior R-algebraΛ=E(x),therelationyx|y =y|xy =(−1)|x||y|x(y|y)holdsinTH since we tensor over Λ. Thus x2 =0 implies yx|yx=0. Theorem 1. Let m, n, p, and q satisfy the hypotheses of Proposition 1, and let Λ=E(x) be an exterior R-algebra generated by x of degree p. Let H =E(y) be an exterior Λ-algebra generated by y of degree q, let µ and ∆ denote the trivial product and primitive coproduct on H, and define ωn : H⊗m → H⊗n by ωn (y|···|y) = m m xy|y|···|y. Then (H,∆,µ,ωn) is an A -bialgebra of type (m,n). m ∞ Proof. Theoperationωn hastherequireddegreebyProposition1. Wemustverify m that the structure relations in Definition 2 hold: Relation 1 is non-trivial on y|···|y: (g ⊗ωn −(−1)nωn ⊗g )σ ∆⊗m(y|···|y) m m m m 2,m =(g ⊗ωn −(−1)nωn ⊗g )σ [(1|y+y|1)|···|(1|y+y|1)] m m m m 2,m =g (1|···|1)⊗ωn (y|···|y)−(−1)nωn (y|···|y)⊗g (1|···|1|) m m m m =1|xy|y|···|y+(−1)n+1xy|y|···|y|1=δn(xy|y|···|y)=δnω(y|···|y). Relation 2 is non-trivial on y|y|···|y|1 and 1|y|···|y, for example, µ⊗nσ (fn⊗ωn −(−1)mωn ⊗fn)(y|y|···|y|1) n,2 m m =(−1)m+1µ⊗nσ (xy|y|···|y|1|···|1) n,2 =(−1)m+1xy|y|···|y =ωn∂ (y|y|···|y|1). m m Relations3,4,5and6holdtriviallysinceeachtermisacompositionoftwotensors, each with a factor of ωn whose non-vanishing values have coefficient x. (cid:3) m Since odd dimensional spheres are rational H-spaces, the module H = H S1;H S2m−3;Q admitsanon-trivialA -bialgebrastructureoftype(m,n). ∗ ∗ ∞ Thu(cid:0)s we ask(cid:0): Does th(cid:1)e(cid:1)re exist an H-space X, a coefficient ring Λ, and an induced operation ωn such that (H (X;Λ),∆,µ,ωn) is an A -bialgebra? m ∗ m ∞ Acknowledgement. We wish to thank Jim Stasheff for reading an early draft of this paper and offering many helpful suggestions. 10 AINHOABERCIANO1,SEANEVANS,ANDRONALDUMBLE2 References [1] A. Bercianoand R. Umble,Some naturallyoccurring examples of A∞-bialgebras.To appear J. Pure and Appl. Alg.,preprintarXiv.0706.0703. [2] H.J.Baues,ThecobarconstructionasaHopfalgebraandtheLiedifferential.Invent. Math., 132,467–489(1998). [3] S.Evans,2-In/3-OutA∞-Bialgebras.UndergraduateHonorsThesis,MillersvilleUniversityof PA,May2008. [4] S.MacLane,“Homology,”Springer-Verlag,Berlin/NewYork,1967. [5] M.Markl,Aresolution(minimalmodel)ofthePROPforbialgebras.J.Pure andAppl. Alg., 205341–374(2006). Preprintmath.AT/0209007. [6] S.SaneblidzeandR.Umble,Diagonalsonthepermutahedra,multiplihedraandassociahedra. J. Homology, Homotopy and Appl.,6(1)363–411(2004). [7] ————–, The biderivative and A∞-bialgebras. J. Homology, Homotopy and Appl., 7(2) 161–177 (2005). [8] R. Umble, Higher homotopy Hopf algebras found: A ten-year retrospective, to appear inthe volumehonoringM.Gerstenhaber andJ.Stasheff. Departamento de Dida´ctica de la Matema´tica y de las Ciencias Experimentales, Universidad del Pa´ıs Vasco-Euskal Herriko Unibertsitatea, Ramo´n y Cajal, 72., 48014- Bilbao(Bizkaia). SPAIN E-mail address: [email protected] Departmentof Mathematics,University ofPittsburgh,Pittsburgh,PA15260 E-mail address: [email protected] DepartmentofMathematics,MillersvilleUniversityofPennsylvania,Millersville, PA.17551 E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.