ebook img

A Hybrid Genetic Linkage Map of Two Ecologically and Morphologically Divergent Midas Cichlid Fishes (Amphilophus spp.) Obtained by Massively Parallel DNA Sequencing (ddRADSeq). PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Hybrid Genetic Linkage Map of Two Ecologically and Morphologically Divergent Midas Cichlid Fishes (Amphilophus spp.) Obtained by Massively Parallel DNA Sequencing (ddRADSeq).

INVESTIGATION A Hybrid Genetic Linkage Map of Two Ecologically and Morphologically Divergent Midas Cichlid Fishes Amphilophus ( spp.) Obtained by Massively Parallel DNA Sequencing (ddRADSeq) HansRecknagel,1KathrynR.Elmer,1andAxelMeyer2 LehrstuhlfürZoologieundEvolutionsbiologie,DepartmentofBiology,UniversityofKonstanz,78457Konstanz,Germany ABSTRACT Cichlid fishes are an excellent model system for studying speciation and the formation of KEYWORDS adaptive radiations because of their tremendous species richness and astonishing phenotypic diversity. Midascichlid Most research has focused on African rift lake fishes, although Neotropical cichlid species display much double-digest variabilityaswell.AlmostonedozenspeciesoftheMidascichlidspeciescomplex(Amphilophusspp.)have RADSeq been described so far and have formed repeated adaptive radiations in several Nicaraguan crater lakes. synteny Hereweapplydouble-digest restriction-site associatedDNA sequencingtoobtainahigh-densitylinkage segregation map of an interspecific cross between the benthic Amphilophus astorquii and the limnetic Amphilophus distortion zaliosus,whicharesympatricspeciesendemictoCraterLakeApoyo,Nicaragua.Atotalof755RADmarkers RADmarkers weregenotypedin343F hybrids.Themapresolved25linkagegroupsandspansatotaldistanceof1427cM mutationrate 2 with an average marker spacing distance of 1.95 cM, almost matching the total number of chromosomes (n=24)inthesespecies.Regionsofsegregationdistortionwereidentifiedinfivelinkagegroups.Basedon thepedigreeofparentstoF offspring,wecalculatedagenome-widemutationrateof6.6·1028mutations 2 pernucleotidepergeneration.Thisgeneticmapwillfacilitatethemappingofecomorphologicallyrelevant adaptive traits in the repeated phenotypes that evolved within the Midas cichlid lineage and, as the first linkage map of a Neotropical cichlid, facilitate comparative genomic analyses between African cichlids, Neotropical cichlidsandotherteleostfishes. Cichlidfishesareawell-knownevolutionarymodelsystemforstudy- 2007).Becauseofthismega-diversity,RiftLakeAfricancichlidshave ingthemechanismsofspeciationandtheformationofadaptiveradi- been the primary focus of genomic research in this family to date ations.AfricanRiftLakecichlidsinparticulardisplayanastonishing (reviewed in Fan et al. 2012), but the .60 million year divergent variabilityinphenotypesandcompriseanenormousnumberofspe- (Matschiner et al. 2011) Neotropical lineage of cichlids is pertinent cies, which makes Cichlidae one of the mostspecies-richfamiliesin if we are to understand cichlid diversity at the family level and in vertebrates (Fryer and Iles 1972; Salzburger and Meyer 2004; Berra a phylogenetic context. For example, the Neotropical Midas cichlid lineagealonefeaturessomeofthekeytraitsthatcharacterizeAfrican Copyright©2013Recknageletal. cichlidfishdiversity:polymorphismsincolor,jaw,lip,tooth,andbody doi:10.1534/g3.112.003897 shape(Meyer1990a,b;Elmeretal.2010b). ManuscriptreceivedAugust8,2012;acceptedforpublicationNovember5,2012 This is an open-access article distributed under the terms of the Creative Because of their geographic distribution, which includes the two CommonsAttributionUnportedLicense(http://creativecommons.org/licenses/ NicaraguanGreatLakesandtheindependentcolonizationsofatleast by/3.0/),whichpermitsunrestricteduse,distribution,andreproductioninany eightcraterlakesofNicaragua,Midascichlidcommunitiescomprise medium,providedtheoriginalworkisproperlycited. repeatedlyevolvedpopulationsatdifferentevolutionarystagesoflocal Supportinginformationisavailableonlineathttp://www.g3journal.org/lookup/ suppl/doi:10.1534/g3.112.003897/-/DC1. adaptation andspeciation (Wilson etal.2000; BarluengaandMeyer 1Present address: Institute of Biodiversity, Animal Health & Comparative 2010).Thetwooldestcraterlakeshousemostofthedescribedspecies Medicine, College of Medical, Veterinary & Life Sciences, University of (9of 11).Interestingly, someofthe youngercrater lakes harbor no- Glasgow,Glasgow,UK. 2Correspondingauthor:DepartmentofBiology,UniversityofKonstanz, tablydifferentecotypesinsympatrythataregeneticallynotdifferen- Universitätsstrasse10,78457Konstanz,Germany.E-mail:[email protected] tiated from each other (e.g., Elmer et al. 2010c). What makes this Volume3 | January 2013 | 65 systemsointerestingisthatsimilarmorphologies,suchaselongated general and perhaps cichlids in particular (Meyer and Schartl 1999; body shapes or hypertrophied lips, have evolved independently and KurakuandMeyer2008).Theevolutionofacichlid-specificphysical repeatedly in different crater lakes (Elmer et al. 2010b; Manousaki orderof particular genes along the chromosomes, and certain inter- et al. 2013). These two key aspects, (1) the crater lakes as “natural actionsbetweenthesegenes,mighthaveresultedinagenomicarchi- experiments” that contain replicates of cichlid evolution at various tecture in cichlid lineages that favored diversification (Salzburger stagesofdiversification,and(2)theecomorphologicalvariabilitythat 2009). As an alternative mechanism hypermutability of the genome evolvedindifferentenvironmentsinparallel,facilitatestheinvestiga- orspecificgenomicregionsmightalloworganismstoadaptatahigher tion of mechanisms and discovery of principles of how and which pacetochanging selectionpressures.Throughagreaterneutral mu- genetic materialunderliesadaptation and the formation of newspe- tation rate, the chance that beneficial mutations might emerge is cies(ElmerandMeyer2011).Forexample,knowingthegeneticsthat enhanced, therefore allowing neofunctionalization to occur faster, as leadtophenotypicchangesviaquantitativetraitloci(QTL)mapping has been proposed for the facilitation of morphological diversity in and association studies in closely and more distantly related species teleosts(RaviandVenkatesh2008). willultimatelyhelptoelucidatehowselectionhasledtotheastonish- The mechanisms responsible for the incomparable diversity of ingbiodiversityofAfricanandNeotropicalcichlidsobservedtoday. cichlidsareunknown.Onlyanaccumulationandcomparisonofmore In at least two instances, Midas cichlid radiations have formed andmoreanalyzedgenomicresources,suchastranscriptomes,whole repeatedly in Nicaraguan crater lakes; specifically the independent genomes,andlinkagemapsofcichlidsandrelatedorganismscanshed formationofseveralhigh-bodiedendemicspeciesthatoccupybenthic lightonthese unresolvedquestions.Someprogresshasalready been nicheandoneelongatedlimneticspecieseachintwolakes(Vivasand madeinthisdirection(Albertsonetal.2003;Leeetal.2005;Sanetra McKaye2001;Barluengaetal.2006;Elmeretal.2010b).Apartfrom et al. 2009; Elmer et al. 2010a; Fan et al. 2012; Cichlid Genome bodyshape,limneticandbenthicspeciesalsodifferindiet,pharyngeal Consortium, 2006). The present study seeks to contribute to this jawmorphology,behavior,andcoloration(BarlowandMunsey1976; much-needed resource and analysis with a Neotropical lineage and, Baylis1976a,b;VivasandMcKaye2001;Barluengaetal.2006;Elmer basedon the pedigreeof parentstoF offspring,give anestimateof 2 etal.2010b;Lehtonenetal.2011).InLakeApoyo,whichistheoldest agenome-widemutationrate. of all Nicaraguan crater lakes at 22,000 years of age, speciation into For decades, the analysis of genomic data were restricted to these two distinct ecotypes hasoccurredinsituin the form ofsym- a few model organisms and organisms of economical importance. patric species by ecological speciation (Barluenga et al. 2006). Evi- Next-generation sequencing platforms allow for the cost-effective dence suggests that benthic-limnetic divergence in Xiloa was also in sequencing of whole or partial genomes in a relatively short time; sympatry (Kautt et al. 2012). The linkage mapping analysis in this this is greatly accelerating genomic research in non-model study is based on a cross of the sympatrically occurring limnetic organisms(Stapleyetal.2010;ElmerandMeyer2011).Apartfrom AmphilophuszaliosusandbenthicAmphilophusastorquiifromcrater whole genome sequencing, with restriction site-associated DNA LakeApoyo. sequencing(RADSeq)apowerfulnewtooltoexaminethegenomes There is a paucity of evidence about the genetic basis of early of organisms has become available (Baird et al. 2008; reviewed in divergence between two lineages as they emerge from a common Davey andBlaxter2010). The advantage of RADSeq is the reduc- ancestor(reviewedinCoyneandOrr2004;NosilandSchluter2011). tion of the genomic information of an organism to a usable and Forspeciesthatarosethroughallopatricspeciationwithoutexchang- comparable fraction of homologous single nucleotide polymor- ing genetic material, the randomaccumulation of genetic incompat- phismsacrossasetofindividuals.Bychoosingenzymesthatdiffer ibilitiesbytimemight explain theirreproductiveisolation.However, intheircuttingfrequency,RADSeqallows forthedevelopmentof especiallyinstagesofspeciationwithgeneflow,itisofgreatinterestto variablenumbersofrepeatablegeneticmarkers(RADmarkers)to ask(1)whetherfewormany genesandwhere theyarelocated, e.g., be sequenced by Illumina next-generation sequencing technology clumped,inthegenome;and(2)whetherthesametypeofgenesare (Baird et al. 2008). RAD markers are polymorphic loci (i.e., involved in the processof speciation (Elmer and Meyer 2011; Feder sequenceswithatleastonesingle-nucleotidepolymorphism[SNP]) et al. 2012). In only a few wild vertebrate populations have these within or between individuals. Here, we apply a newly developed questionsbeenaddressedviagenemappingandQTLmappingstud- double-digest RADSeq (ddRADSeq) protocol (based on Peterson ies;thus,onlyveryfewcrucialgenesresponsibleforecologicaldiver- et al. 2012) to create a linkage map of various species of Midas gence (e.g., Colosimo et al. 2005; Chan et al. 2010) and speciation cichlids. (CoyneandOrr2004;NosilandSchluter2011)havebeenidentified In the present study, we construct a linkage map with the F 2 sofar.ThedevelopmentofaMidascichlidlinkagemapwillaidsub- progeny of an interspecific cross between the benthic A. astorquii stantially in identifying the genes that underlie phenotypically and andthelimneticA.zaliosusMidascichlidsasasteptowarduncover- ecologically important traits in fishes early during their adaptations ing the genetic basis of adaptive traits in this species complex. The tolocalconditionsandtheprocessofincipientspeciation. linkagemapwillimprovegenomicresourcesforcichlidfishesin Researchershave longquestionedwhy somecichlid fishesevolve general, and Neotropical cichlids in particular, and along with in such a diverse and fast manner compared with other vertebrate whole-genome sequencing, contribute to insights into how cichlids lineages (Meyer 1990a; Meyer 1993; Wittbrodt et al. 1998), or even achievedtheirastonishingphenotypic variability. otherfishesin the sameenvironment(Elmeretal.in press).Behav- ioral and morphological characters that have been proposed to be MATERIALSAND METHODS responsiblefortheelevatedspeciationrateofcichlidsincludeparental care,sexualselection,functionaldesign,andphenotypicplasticityand Pedigree polymorphisms (Meyer 1987; Stiassny and Meyer 1999; Salzburger A wild-caught male A. zaliosus (2007, Lake Apoyo, Nicaragua) and 2009). A particular genomic architecture, perhaps derived from awild-caughtfemaleA.astorquii(2007,LakeApoyo,Nicaragua)were whole-genome duplications, has been proposed as a driver of rapid reared separately in the laboratory until sexual maturity and then response to selection and higher diversification rates in fishes in crossedtoobtainF hybridprogeny.Theoffspringwereraisedtosexual 1 66 | H.Recknagel,K.R.Elmer,andA.Meyer maturity in a community tank to allow full-sib pairing. When a pair sorted by individual. Processing of the 347 F -offspring individuals 2 formed,theyweremovedtoaseparatetankandafterspawningnatu- wasperformedusingthedenvo_map.plscript,whichcreatesstacksof rallytheireggswereharvestedandrearedinanothertank.F offspring loci (i.e., RADSeq stacks) within individuals, followed by building 2 werekilledwhentheyreachedapproximately2cmtotallengthtoget a catalog of loci present in the two parents and then mapping all enough tissue for DNA extraction. The F pair that had the greatest stacks from the offspringtothe parentalcatalogandfinally creating 1 numberofF offspringwaschosenforconstructionofthelinkagemap. theoffspringgenotypesforthoseloci.MultipleSNPsinoneRADSeq 2 stack were treated as a single polymorphic marker (i.e., one RAD ddRADSeq librarypreparationandsequencing marker). The parameters were optimized and set as follows: GenomicDNAwasextractedfromthetwoparents(“Pgeneration”), the minimum amount of identical reads to create a stack in each theF hybridpairand347F individualsusingtheQIAGENDNeasy parent and progeny was set to three (2m 3, 2P 3) the number of 1 2 Blood&TissueKitfollowingthemanufacturer’sinstructionsinclud- mismatches allowed between loci from the parents was set to three ing RNase A treatment. Then, 1 mg of DNA template from each (2n 3), and highly repetitive RAD tags were removed or disjointed individual was double-digested using the restriction enzymes PstI- (2t),otherparametersweresettodefault. HF(20units/reaction)andMspI(20units/reaction)inonecombined JoinMap4(VanOoijen2006)wasusedtoperformlinkage-map- reaction for 3 hr at 37(cid:2). Subsequently, each fragmented sample was pinganalysis.GenotypeswereexportedfromStacksandwerefiltered purifiedusingtheQIAGENMinEluteReactionCleanupKit,elutedin toonlyincludethosemarkersforwhichthereweregenotypecallsinat 20 mL of Elution Buffer (EB), and quantified. Fragments were then least90F2individualswithacoverageofatleast5·.Linkageanalyses ligatedtoP1adaptersthatbindtoPstI-HFcreatedrestrictionsitesand wereperformedusingallmarkers(ofthetypeaa/bb,aa/ab,ab/aa,ab/ P2adaptersbindingtooverhangsgeneratedbyMspI(seeSupporting ab,ab/ac,ab/ccinthePgenerationasdefinedbyStacks)containing Information,TableS1foradaptersequences).Ineachreaction,~0.4mg allelesfromtheF1pairthatcouldbematchedwithconfidencetoeach ofDNA,1mLofP1adapter(10mM),1mLofP2adapter(10mM), parentalunitanddidnotdeviatefromMendeliansegregationratios. 1 mL of T4 ligase(1,000 U/mL), 4mL of 10· T4ligation buffer,and Markers under segregation distortion (P = 0.0520.001) were added double-distilledwaterwerecombinedtoatotalvolumeof40mL.The stepbystepfromthelesssignificanttothemostandtheireffectonthe ligationwasprocessedonapolymerasechainreaction(PCR)machine map was checked. Marker groupings were calculated using an inde- usingthefollowingconditions:37(cid:2)for30min,65(cid:2)for10min,followed pendent logarithm of odds (LOD) score of 6.0, but the number of byadecreaseintemperatureby1.3(cid:2)perminuteuntilreaching20(cid:2). calculatedlinkagegroupsdidnotchangebetweenLODscoresof6.0 After we ligated each individual’s DNA to the adapters, samples toa more stringent LOD scoreof 10.0. Eachlinkage group was cal- were pooled and size-selected from an agarose gel. A preliminary culatedusingtheregressionmappingalgorithmandKosambi’smap- IlluminasequencingruncontainingtheparentalandF DNArevealed ping function (Kosambi 1943) with the following thresholds: 1 that the pilot analysis gel size range of 2502500 bp resulted in se- recombination frequency of 0.400, LOD value of 1.0, and a good- quencingtoomanyfragmentsandthereforearangeof~3302400bp ness-of-fitjumpof5.00.Markerorderwasoptimizedbyperforming waschosenforsubsequentlibraries.Manualsizeselectionfromaga- aripplefunctionaftereachaddedlocus. rose gelelectrophoresiswasperformedonthe library containingthe parental and F samples and samples were then cleaned using the Comparativeanalysis 1 QIAGEN MinElute Gel Purification Kit and eluted in 10 mL of EB. All RAD markers used in the linkage map were indexed with the Fifty F individuals were pooled per library and size selected using respectivelinkagegroupandpositionandcomparedwiththegenomes 2 Pippin Prep technology (Sage Science, Beverly, MA). Seven PCRs of the fishes tilapia (Oreochromis niloticus; version from 25.01.2012), (severalarenecessarytominimizePCRbias)wereperformedinrep- stickleback(Gasterosteusaculeatus;versionBROADS1.61),andmedaka licateonsize-selectedfragments[(Petersonetal.2012)Figure1].Each (Oryzias latipes; version MEDAKA1.48) using blastn searches and an PCRcontained10220ngoflibraryDNAtemplate, 4mL of dNTPs e-value cut-off of 10215 for tilapia (a basal cichlid) and 10210 for (100mM),4.0mLof5·PhusionHFbuffer(NEB),0.2mLofPhusion sticklebackandmedaka.Tilapiawasusedasarepresentativeofthe Taq polymerase (NEB), 1.0 mL of each RAD primer (10 mM), and African cichlid lineage, whereas stickleback and medaka were used filled up to 20 mL with double-distilled water. PCR conditions were asphylogeneticallycloseteleostoutgroupstothecichlids.Ifamarker performed as follows 98(cid:2) (30 sec), [98(cid:2) (10 sec), 65(cid:2) (30 sec), 72(cid:2) mapped to more than one locus it was either excluded or, if the (30 sec)] · 10, 72(cid:2) (300 sec). Gel electrophoresis was performed on differenceinthebitscorebetweenbesthitandsecond-besthitwas pooled products to remove remaining oligo dimers and other con- more than 20, the best hit was retained. Markers that mapped to taminants.Fragmentsrangingfrom330to400bpwereexcisedfrom unlinkedscaffoldswereexcludedfromthesyntenyanalyses.Synteny a gelafter electrophoresis and cleaned usingthe QIAGENMinElute wascalculatedinpercentageofmarkersmappingtoasingleorthol- GelExtractionKitandelutedin10mLofEB.Theeightlibraries(one ogouslinkagegroupincontrasttothosemappingtodifferentlink- containing the parental and F DNA and the remainder seven each agegroups.Markersthatsolelymaptoasinglelinkagegroup,i.e.,ifno 1 containing 50 F individuals) were diluted to 1 nM and sequenced othermarkersmappedtothatsamelinkagegroup,wereexcluded. 2 singleend to150 bp lengthwiththe IlluminaTruSeq SBS Kit v5in eightlanesonanIlluminaGenomeAnalyzerIIx(GeCKo:Genomics Mutationrateestimation CenterUniversityofKonstanz)overtwoconsecutiveruns,eachcon- Denovomutationsareexpectedtoberecognizedashigh-confidence tainingasinglePhiXcontrollane. SNPs present in one or a few offspring but not in the parents. Loci from two F individuals and eight randomly chosen F individuals 1 2 Linkagemappinganalysis with high coverage were compared to the parental (P) loci and Bioinformatic processing of the reads (i.e., RADSeq tags) was per- checkedforSNPsonlypresentintheprogeny.Thecoverageforalocus formed using Stacks (Catchen et al. 2011). Reads were trimmed to tobeincludedintheanalysiswassettoatleast8·(minimally4·per alengthof110bp,cleanedfromerroneousandlow-qualityreads,and alleletoreducethechanceofcandidatenewmutationsbeingsequencing Volume3 January2013 | MidasCichlidLinkageMap | 67 Figure1 SchematicoftheddRADSeqprotocol.Arrows indicate restriction sites for a rare-cutting enzyme in green and a frequent-cutting enzyme in orange. P1 adapters specifically bind to the rare-cutting enzyme (green) and P2 adapters bind to the frequent-cutter (orange)restrictionsites.Eachindividualcontainsadif- ferentbarcodeoffivenucleotidebasesspecifiedbythe P1adapter.SequencedRADtagsstartwiththebarcode (individual one: red barcode, individual two: blue barcode). The bioinformatic software Stacks allows for the detection of single nucleotide polymorphisms between individuals (outlined by red box in sequence alignment). errors).Inaddition,anempiricaldistributionofallele-to-allelecoverage analyses.Oftheseloci,755wereinformative(allelesthatsegregatedin ratio was estimatedfrom allheterozygous RAD markers in the F a1:2:1segregationratiointheF generation)andcouldserveforthe 2 2 generation. New mutation candidates in the progeny were checked constructionofthelinkagemap(Figure2).Becausedifferentlibraries against this distribution, and only those mutations that had an allele didnotexactlycontainthesamelociandsomeofthelocididnotpass ratio within the 95% confidence interval of the loci present in the thecoveragethreshold,weobtained~25%missingdata.Almost50% empiricallyestimateddistributionwereretained.Thisstepyieldedloci ofthelociwerepresentinmorethan300individuals(FigureS1). witharatiolowerthan0.5orgreaterthan2.0tobediscardedandwas performedtoexcludecandidatelociwithoddallele-to-alleleratios(e.g., Linkagegroups repetitivesequencesconfoundedwithalleles).Forexample,alocuswith Of the 347 F2 individualsgenotyped with ddRADSeq,four were ex- amutationcandidateand10readsintotal,includingsevenreadsofthe cludedbecauseoflowcoverage(,6·perindividual;seeTableS3for originalalleleandthreereadsoftheallelewiththenewmutation,would genotype data). From linkage mapping analysis, 25 linkage groups beexcludedbecausetheallele-to-alleleratioislowerthan0.5. were identified with a total size of 1427 cM and an average marker spacingdistanceof1.95cM(Figure2,TableS4).Linkagegroupswere RESULTS between51.5and77.1cMinlengthexceptforthetwosmalllinkage groups LG24 and LG25 with 2.5 and 2.0 cM, respectively. With the SNPandmarkerdetection exceptionoftwosmalllinkagegroupswithonlytwoandthreelinked Atotalof254millionreadswereused,withanaverageof31.8million markers, all linkage groups consisted of at least 10 markers (mini- reads per library (SD: 3.1 million reads). Onaverage,approximately mum: 10 markers, maximum: 54 markers). On average, a typical 588,000readswereobtainedperindividual(SD:201,454reads)with linkagegroupcomprised30markers(TableS4).Atotalof17markers 15· coverage per read (SD: 5.1·). Within the parental A. astorquii (2.3%ofallmarkers)werecompletelylinked(norecombinationwas individual,aSNPfrequencyof0.80SNPs/kb(11,172SNPsin139,109 observed between them). The maximum distance between two loci)andforA.zaliosus0.89SNPs/kb(12,764SNPsin142,740loci) markersonasinglelinkagegroupwas30.7cMonLG20. were detected (Table S2). Of 118,213 loci that were scored in both parents,12,429werepolymorphicwithonetothreeSNPs,withatotal Segregation distortion of 15,035 SNPs and a frequency of 1.2 SNPs/kb. Of those loci that Almost 10% of all markers (74 of 755 markers) deviated from were polymorphic, 18.5% were fixed between parents. A total of Mendeliansegregation ratios witha P-value between0.05and 0.001 38,203lociweredetectedintheparentsandwerepresentin atleast (TableS3).MarkersthatweredistortedsignificantlywithP,0.0001 90 of the 343 F individuals. The number of loci shared between werenotconsideredbecauseratiosthataretooskewedmightcreate 2 parents and F progeny was smaller than that between parents and inaccurate distances and false linkages (Cervera et al. 2001). Closely 2 F becausetheF progenygelsizerangewasnarrowerandtherefore linkedmarkerswithsimilarpatternsofsegregationdistortionproba- 1 2 included fewer fragments. A total of 3,184 loci that were shared be- bly can be attributed to biological causes, rather than genotyping tweenparents,F andF swerepolymorphicandretainedforfurther error. Of these 74 markers, in fact 19 could be found on LG1 (39% 1 2 68 | H.Recknagel,K.R.Elmer,andA.Meyer genome, excluding those markers that mapped to a single linkage groupwithonlythisonesyntenicmarker),abasalAfricancichlidthat last shared a common ancestor at least 60290 million years ago (SalzburgerandMeyer2004).Fourlinkagegroups intilapia (LGs 1, 4,10,and21)andsixlinkagegroupsinMidas(LGs8,12,16,23,24, and25)arenot representedby morethan two markers thatmap to anyorthologouslinkagegroup.Midascichlidlinkagegroup23map- pedto14lociofdifferentscaffoldsinthetilapiagenome.Fortheother five Midas linkage groups that did not map to orthologous linkage groupsintilapia,thisiscausedbyaninsufficientnumberofmarkers usedtoanchorthetilapiagenome(TableS5)orsmalllinkagegroup sizes(duetoinsufficientdataintilapiagenomicresources)intilapia. In addition to the linkage groups that share homologous markers (conservedsynteny),therespectivepositionofthesemarkers(linkage order) is mostly the same,suggesting retained syntenic relationships among those loci(Figure 3). However, divergent marker orders, pre- sumablycausedbyintrachromosomalrearrangements,canbedetected tosomeextentbetweentheMidascichlidandtilapia(e.g.,LGs13,15, and21intheMidascichlid).Ingeneral,however,itisclearthatoverall levels of synteny between these two cichlid lineages are quite highly conserved, with 86% of all markers mapping to a single orthologous linkage group when those linkage groups containing two or more markersareconsidered. Asexpected,fewerhomologousmarkerswerefoundforstickleback (44markers)andmedaka(38markers)comparedwithtilapiaandthe Midascichlid(Figure3).Thesticklebackshowsmanymarkersofcon- servedsynteny(78%)withtheMidascichlid.Incontrast,fewermarkers showconservedsynteny(38%)betweenmedakaandMidascichlids. Mutationrate TwonewmutationsintheF progenyandfivenewmutationsinthe 1 F progeny were found. The same mutation was observed in two 2 differentF individualsandwasthereforeonlycountedasonemuta- 2 tion.TheF mutationratewascalculatedto7.4·1028andtheF 5.8 1 2 ·1028,leadingtoanaveragemutationrateof6.6·1028mutations pernucleotidepergeneration. DISCUSSION Figure 2 Linkage groups constructed with 755 RAD markers and Here,wereportthefirstlinkagemapofaNeotropicalcichlidspecies. ordered by size. Blocks of segregation distortion are indicated by Itwillserveasimportantadditiontothegenomicresourcesforcichlid brackets.Markersusedforsyntenyanalysesareshowninorange.For fishesandfacilitateinsearchingforgenesthatcontributetoecological furtherinformationonmarkerIDs,position,segregationdistortionand andphenotypicdiversityin Midascichlids inparticular andcichlids markersusedinsyntenyanalysessee,TableS3. moregenerally.Withatotalof25linkagegroups,thepresentlinkage map closely matches the number of chromosomes (n = 24) in the distortedmarkersonLG1)withmostofthemdirectlystrungtogether. Midascichlid(Feldbergetal.2003).ThesmallgroupsLG24andLG25 Inallthesemarkerstheratiowasskewedtowardahigherfrequencyof mightrepresentlargerlinkagegroupsorcollapsewithanotherlinkage the paternal allele. Apartfrom the large segregationdistortion block groupwhenfurthermarkerscanbeincorporated.Alternatively,inthe onLG1,fourothersmallerblocksofsegregationdistortionwereiden- caseofLG24,markersingreaterdistancemightnothavebeeniden- tified:fiveadjacentmarkersonLG6,threemarkersincloseproximity tifiedbecauseofhighlydistortedsegregationratiosratherthanmiss- atthedistalpartofLG15,sevenmarkersonLG23spanningadistance ing genotypes. Significant parts of a linkage group might be of~15 cMandallthree markersonLG24.LG6 andLG24distorted completely missing if it contains distorted regions (Cervera et al. markers exhibit a higher ratio of the maternally inherited allele, 2001;Doucleff et al.2004).Alternatively,the distortedmarkers con- whereasdistortedmarkersbothonLG7andLG23displayanexcess stitute false linkages (e.g., Nelson et al. 2010), though at least in the of heterozygotes. Thus, half of all distorted markers (37 of 74) are caseofLG24thisseemsimprobablegiventhatallthreemarkersarein placedonthesefiveblocks(Figure2,TableS3). very close proximity and a small number of recombination events haveoccurredbetweenthem. Comparative genomics Severalgenesassociatedwithphenotypicdivergencebetweencichlid The vast majority of markers present in any given particular Midas species have been identified to date (Kijimoto et al. 2005; Kobayashi cichlidlinkagegroupalsomaptoasingleorthologouslinkagegroup etal.2006;AlbertsonandKocher2006;Salzburgeretal.2007;Roberts in tilapia (92 of 107 markers that uniquely mapped to the tilapia et al. 2009; Fan et al. 2011; Roberts et al. 2011). In African cichlids, Volume3 January2013 | MidasCichlidLinkageMap | 69 Figure 3 Oxford grid showing relationship between Midas cichlidandotherteleostfishes. Eachlinkagegroup(inthecase of medaka each chromosome) issize-normalizedtoequalone and marker positions were placedrelativetotheirrespective linkage group (or chromosome) size.Oxfordgridsshowingmarker relationships between (A) tilapia andMidascichlid,(B)stickleback and Midas cichlid, and (C) me- daka and Midas cichlid. Color refers to markers found on a Midaslinkagegroup. a specific linkage group (LG5) has been proposed to constitute a of loci, more missing data are accepted, which might result in in- “speciation chromosome” containing genes responsible for sex deter- correct distances in linkage map construction and in QTL analyses mination,toothshape,visualsensitivity,andcolorpattern(Streelman (HackettandBroadfoot2003). and Albertson 2006). This linkage group is orthologous to the Midas To perform synteny analyses and achievea high marker density, LG4.Itwillbeinterestingtotestwhetherthesegenesandthisparticular we allowed more missing data for the purpose of this study. linkagegrouparealsoimportantfortraitsunderselectioninNeotrop- Compared with the five other linkage maps that have been icalcichlids. constructed with RADSeq technology so far (Amores et al. 2011; As the number of genetic markers that can be quickly generated Baxter etal. 2011; Chutimanitsakun etal. 2011; Pfender etal. 2011; hasexplodedwithnewsequencingtechnology,thelimitingfactorfor Parnell et al. 2012), the map of the present study has the second constructingahigh-resolutionlinkagemapisthebiologicalresources: highestnumberofprogenygenotypedformarkersandhenceahigh the number of individuals and recombination events. Thousands of number of recombinations. The gar linkage map consisted of more markerscanbeproducedinashorttime withddRADSeqbut high- markers(~5500),althoughitwasbasedonfewerindividuals(Amores resolutionmappingcanonlybeachievedbymaximizingthenumber et al. 2011). The average spanning distance between two markers is ofrecombinations, i.e., the individuals. Underlaboratory conditions, 1.95cMinourstudy,whichisthelowestvaluepublishedtodatefor Midascichlidscanspawnnaturallyalmostoncepermonthwithmore a RADSeq study. In comparison with the published cichlid linkage than a 300 offspring per clutch, which allows for harvesting a high maps from A. burtoni (Sanetraet al. 2009), tilapia(Lee etal. 2005), number of individuals. Because of the Midas cichlids’ amenable life andLakeMalawicichlids(Albertsonetal.2003;Parnelletal.2012), history,wewereabletocreateageneticmapbasedonmorethan340 thepresentMidascichlidlinkagemaphasthesecondhighestnumber F individualsfromoneF family.Thenumberofmarkersthatcanbe of individuals, the highest number of markers, and lowest average 2 1 generatedandtheamountofmissingdatathatisacceptedconstitute distance between two markers. This result highlights the promise of a trade-off. When minimizing missing data, markers that are not next-generation sequencing based genotyping, and especially the present in all individuals (e.g., through library effects or coverage ddRADSeqprotocol,for linkage mapping experiments whenbiolog- thresholds) will be lost. Accordingly, while maximizing the number icalmaterialissufficient. 70 | H.Recknagel,K.R.Elmer,andA.Meyer AlthoughA. astorquiiandA. zaliosus haveclearly distinct ecolo- ofconservedsyntenywiththesespeciesislowerthancomparedwith gies,their divergence timeisveryrecent[shouldbe lessthan 10,000 tilapia and (2) medaka shares considerably less conserved synteny years (Barluenga et al. 2006) and maximally 20,000 years (Kutterolf with the Midas cichlid compared with stickleback. As chromosomal etal.2007)].Forthisreason,only(cid:1)10.5%ofourmarkerswerepoly- rearrangements leading to linkage and synteny disruptions accumu- morphic and of those 18.5% were fixed between species. Given this late with time, stickleback (divergence time ~140 mya, Matschiner young divergence, it is of great interest how these species developed et al. 2011) and medaka (divergence time ~100 mya, Matschiner and maintain reproductive isolation. Besides premating isolation, et al. 2011) display less conserved synteny to the Midas cichlid, as chromosomal rearrangements or genetic incompatibilities might act expected,comparedwiththeyoungersplitofAfricanvs.Neotropical as isolating barriers to gene flow in postzygotic reproduction cichlids. However, synteny disruption seems to be greater between (reviewed in Coyne and Orr 2004). As the species are young and medaka and the Midas cichlid compared with stickleback, which can be crossed easily, incompatible loci seems more probable than wasunexpectedbecausemostphylogeniesplacethesticklebackbasal large genomic rearrangements (Moyle and Graham 2005). Genetic tocichlidsandmedaka(Chenetal.2003;Mabuchietal.2007;Azuma incompatibilitiesbetweenspeciesdetectedonthebasisofsegregation etal.2008,Matschineretal.2011).Incorrecthomologydetermination distortionhavebeensuggestedinmanycases,includinglakewhitefish or mapping errors might account for a lower degree of conserved (RogersandBernatchez2007;Rogersetal.2007),Drosophila(Phadnis synteny between the Midas cichlid and medaka. Alternatively, the andOrr2009),Nasonia(Gadauetal.1999;Niehuisetal.2008),and medaka lineage has undergone considerable more rearrangements someplantspecies(Fooladetal.1995;Whitkus1998;Fishmanetal. comparedwithcichlidsandstickleback,and/orphylogeneticrelation- 2001;Myburgetal.2004). ships are incorrect, as relationships between these teleosts remain Inourlinkagemappinganalysis,wefoundthat10%ofthemarkers controversial(Chenetal.2003;Steinkeetal.2006). deviated(P,0.05)fromexpectedMendeliansegregationratio.Single The mutation rate(u) estimation of 6.6 · 1028 persiteper gen- markersdeviatingfromtheexpectedratiomightresultfromgenotyp- erationinMidascichlidsindicatesasomewhatelevatedmutationrate ingerrors,thoughblocksofdeviatinglinkedmarkersasonLGs1,6, compared to estimates from other vertebrates [mouse: 3.8 · 1028, 15,23,and24probablyhaveabiologicalbasisandmightbecausedby human: 3.0 · 1028 (Lynch 2010)]. A mutation rate based on the segregation distortion genes (e.g., Lyttle 1993) or genetic incompati- synonymous substitution rate and UTRs from pooled Midas cichlid bilitiesbydifferentialfixationofallelesbetweenparents(Dobzhansky expressedsequencetagsyieldedanestimate(~1.25·1026persiteper 1937;Muller1942;FishmanandWillis2001).Ifgenomicincompat- year)higherthanthatofthepresentstudy,althoughitwasthoughtto ibilities between species exist, chromosomal regions should consis- be elevated by population-level polymorphism (Elmer et al. 2010a). tentlyexhibitsegregationdistortion.Asourdataonlyoriginatesfrom FormitochondrialDNAcontrolregion,thesubstitutionratehasbeen a single family, further testing in laboratory bred or wild A.astorquii estimatedas7.1·1028persiteperyear(BarluengaandMeyer2004), andA.zaliosushybridswillbenecessary(DanzmannandGharbi2001) which,despitethefactthatcontrolregionshouldhaveahighmuta- torevealwhetherthefivelinkagegroupsexhibitingblocksofdistorted tion rate, is fairly well in agreement with our current genome-wide markersresultfrominterspecificgeneticincompatibilities. mutationrateestimate.However,allcalculationsofmutationorsub- Genomic architecture has been suspected of being a main factor contributingtothecichlids’evolutionarysuccessintermsofbiodiver- stitutioninrecentlydivergedpopulationsdifferbecauseoftheroleof lineage sortingindecreasingrates withtime(i.e., pedigreevs. popu- sity(Salzburger2009).Thecomparativegenomicanalysisbetweenthe lation vs. phylogenetic rates) [see e.g., (Ho et al. 2005; Subramanian Midascichlidandthetilapiarevealsahighlyconservedsyntenywith etal.2009)].Althoughvertebrateestimatesonlyincludemodelspecies 86% of the markers mapping to a single orthologous linkage group. Thisfindingpointstowardahighlevelofconservedsyntenybetween such as human, mouse, and rat, this finding is congruent with in- terspecific comparisons of mutation rates in teleost compared with Neotropical and African cichlids, in spite of their relatively ancient mammalianlineagesthatrevealedthatteleostsexhibitahigherneutral split(60myaaccordingtoVencesetal.2001;Matschineretal.2011; mutationrate(RaviandVenkatesh2008).Itmightbearguedthatan but see Farias et al. 1999; Salzburger and Meyer 2004; Azuma et al. elevatedmutationratemightexplaintheteleostmorphologicaldiver- 2008).Arelativelyhighlevelofconservatisminnumberofchromo- sityandspeciesrichness,sincethechancethatabeneficialmutation somesacrosscichlidgeneraandspeciesisobserved(seeFeldbergetal. arises on which selection can act is increased. More estimates of 2003), indicating that interchromosomal rearrangements are rare. Thisobservationandourresultssuggestthatatleastlarge-scalechro- vertebrate mutation rates are needed in order to ascertain whether mosomalrearrangementsareprobablynotamainfactorcontributing thecichlidlineage,andspecies-richlineagesingeneral,exhibithigher tothespeciesrichnessincichlidsandalsoagreewithpreviousstudies mutationrates. demonstrating a high degree of conserved synteny between cichlid Cichlidfishesrepresentwonderfulexamplesforphenotypicdiversity genomes(Sanetraetal.2009).Asacomparison,thehumanandlemur and convergence, rapid speciation, and adaptive radiation (Fan et al. lineages diverged~74 mya (e.g., Huchon etal. 2007), althoughtheir 2012).Yet,wehavestilltounderstandhowtheunderlyinggeneticsof numberofchromosomesdiffersconsiderably(Homosapiens:23chro- thisdiversityoperatetotranslateintotheubiquitousphenotypicrichness mosomes; Microcebus murinus: 33 chromosomes), including several of this evolutionary lineage. The present linkage map adds valuable interchromosomal rearrangements that occurred after their split genomic information to tackle these fundamental questions in evolu- (Dutrillaux1979). tionary biology. Future genome-wide analyses on the level of popula- Medaka and stickleback show less conserved synteny with the tions,species,andamongdistantlyrelatedlineagesincichlidfisheswill Midascichlid(medaka:38%,stickleback:78%markerswithconserved profitfromthisresourceanditwillhelptoshedlightonthegenomicsof synteny). Although the data for genomic comparisons between the adaptationinthisextraordinarilydiverseevolutionarylineage. Midascichlidandthenoncichlidfishspeciessticklebackandmedaka are limited because of the large phylogenetic distance of more than ACKNOWLEDGMENTS 100millionyearssincetheselineageslastsharedacommonancestor WethankF.Henningforhelpfulconversations.WethankS.Selent, (Matschineretal.2011),itallowsfortwoconclusions:(1)thedegree C.Chang-Rudolf,andL.Beckforlaboratoryassistance.Wealsothank Volume3 January2013 | MidasCichlidLinkageMap | 71 P.FranchiniandS.FanforbioinformaticsupportandtheGeCKofor CichlidGenomeConsortium,2006 Availableat:http://www.cichlidgenome. sequencing. We are grateful for helpful suggestions from J. Weber org.Accessed:November28,2012. duringtheddRADSeqlibrarypreparation.Thisworkwassupported Colosimo,P.F.,K.E.Hosemann,S.Balabhadra,G.Villarreal,M.Dickson bytheUniversityofKonstanz,theEuropeanResearchCouncil(ERC) etal.,2005 Widespreadparallelevolutioninsticklebacksbyrepeated fixationofectodysplasinalleles.Science307:1928–1933. advanced grant 293700 Genadapt and Deutsche Forschungsgemein- Coyne,J.A.,andH.A.Orr,2004 Speciation.SinauerAssociates,Sunder- schaft(DFG)grantstoA.M. land,MA. Danzmann,R.,andK.Gharbi,2001 Genemappinginfishes:ameanstoan LITERATURE CITED end.Genetica111:3–23. Albertson,R.C.,andT.D.Kocher,2006 Geneticanddevelopmentalbasis Davey,J.W.,andM.L.Blaxter,2010 RADSeq:next-generationpopulation ofcichlidtrophicdiversity.Heredity97:211–221. genetics.Brief.Funct.Genomics9:416–423. Albertson,R.C.,J.T.Streelman,andT.D.Kocher,2003 Directionalse- Dobzhansky,T.,1937 GeneticsandtheOriginofSpecies.ColumbiaUni- lectionhasshapedtheoraljawsofLakeMalawicichlidfishes.Proc.Natl. versityPress,NewYork. Acad.Sci.USA100:5252–5257. Doucleff,M.,Y.Jin,F.Gao,S.Riaz,A.F.Krivaneketal.,2004 Agenetic Amores,A.,J.Catchen,A.Ferrara,Q.Fontenot,andJ.H.Postlethwait, linkagemapofgrape,utilizingVitisrupestrisandVitisarizonica.Theor. 2011 GenomeevolutionandmeioticmapsbymassivelyparallelDNA Appl.Genet.109:1178–1187. sequencing:spottedgar,anoutgroupfortheteleostgenomeduplication. Dutrillaux,B.,1979 Chromosomalevolutioninprimates:Tentativephy- Genetics188:799–808. logenyfromMicrocebusmurinus(Prosimian)toman.Hum.Genet.48: Azuma,Y.,Y.Kumazawa,M.Miya,K.Mabuchi,andM.Nishida,2008 Mito- 251–314. genomicevaluationofthehistoricalbiogeographyofcichlidstowardreliable Elmer,K.R.,andA.Meyer,2011 Adaptationintheageofecological datingofteleosteandivergences.BMCEvol.Biol.8:215. genomics:insightsfromparallelismandconvergence.TrendsEcol.Evol. Baird,N.A.,P.D.Etter,T.S.Atwood,M.C.Currey,A.L.Shiveretal., 26:298–306. 2008 RapidSNPdiscoveryandgeneticmappingusingsequencedRAD Elmer,K.R.,S.Fan,H.M.Gunther,J.C.Jones,S.Boekhoffetal.,2010a Rapid markers.PLoSONE3:e3376. evolutionandselectioninferredfromthetranscriptomesofsympatriccrater Barlow,G.W.,andJ.W.Munsey,1976 Thereddevil–Midas-arrowcichlid lakecichlidfishes.Mol.Ecol.19:197–211. speciescomplexinNicaragua,pp.359–369inInvestigationsoftheIch- Elmer,K.R.,H.Kusche,T.K.Lehtonen,andA.Meyer,2010b Localvar- thyologyofNicaraguanLakes,editedbyT.B.Thorson.Universityof iationandparallelevolution:morphologicalandgeneticdiversityacross NebraskaPress,Lincoln, NE. aspeciescomplexofneotropicalcraterlakecichlidfishes.Philos.Trans. Barluenga,M.,andA.Meyer,2004 TheMidascichlidspeciescomplex: R.Soc.BBiol.Sci.365:1763–1782. incipientsympatricspeciationinNicaraguancichlidfishes?Mol.Ecol.13: Elmer,K.R.,T.K.Lehtonen,A.Kautt,C.Harrod,andA.Meyer,2010c Rapid 2061–2076. sympatricecologicaldifferentiationofcraterlakecichlidfisheswithinhis- Barluenga,M.,andA.Meyer,2010 Phylogeography,colonizationand torictimes.BMCBiol.8:60. populationhistoryoftheMidascichlidspeciescomplex(Amphilophus Elmer,K.R.,T.K.Lehtonen,S.Fan,andA.Meyer,2013 Craterlakecolo- spp.)intheNicaraguancraterlakes.BMCEvol.Biol.10:326. nizationbyNeotropicalcichlidfishes.Evolution(inpress)DOI:10.111/ Barluenga,M.,K.N.Stölting,W.Salzburger,M.Muschick,andA.Meyer, j.1558–5646.2012.01755.x. 2006 SympatricspeciationinNicaraguancraterlakecichlidfish.Nature Fan,S.,K.R.Elmer,andA.Meyer,2011 PositiveDarwinianselectiondrives 439:719–723. theevolutionofthemorphology-relatedgene,EPCAM,inparticularly Baxter,S.W.,J.W.Davey,J.S.Johnston,A.M.Shelton,D.G.Heckel species-richlineagesofAfricancichlidfishes.J.Mol.Evol.73:1–9. etal.,2011 Linkagemappingandcomparativegenomicsusingnext- Fan,S.,K.R.Elmer,andA.Meyer,2012 Genomicsofadaptationand generationRADsequencingofanon-modelorganism.PLoSONE6: speciationincichlidfishes:recentadvancesandanalysesinAfricanand e19315. Neotropicallineages.Philos.Trans.R.Soc.BBiol.Sci.367:385–394. Baylis,J.R.,1976a Aquantitativestudyoflong-termcourtship:I.Etho- Farias,I.P.,G.Ortí,I.Sampaio,H.Schneider,andA.Meyer,1999 Mito- logicalisolationbetweensympatricpopulationsoftheMidascichlid, chondrialDNAphylogenyofthefamilyCichlidae:monophylyandfast Cichlasomacitrinellum,andthearrowcichlid.Behaviour59:59–69. molecularevolutionoftheNeotropicalassemblage.J.Mol.Evol.48:703– Baylis,J.R.,1976b Aquantitativestudyoflong-termcourtship:II.A 711. comparativestudyofthedynamicsofcourtshipintwoNewWorld Feder,J.L.,S.P.Egan,andP.Nosil,2012 Thegenomicsofspeciation-with- cichlidfishes.Behaviour59:117–140. gene-flow.TrendsGenet.28:342–350. Berra,T.,2007 FreshwaterFishDistribution,UniversityofChicagoPress, Feldberg,E.,J.I.R.Porto,andL.A.C.Bertollo,2003 Chromosomalchanges Chicago. andadaptationofcichlidfishesduringevolution,pp.285–308inFish Catchen,J.M.,A.Amores,P.Hohenlohe,W.Cresko,andJ.H.Postlethwait, Adaptation,editedbyA.L.Val,andB.G.Kapoor.SciencePublishersInc, 2011 Stacks:buildingandgenotypinglocidenovofromshort-read Enfield, NH. sequences.G3(Bethesda)1:171–182. Fishman,L.,andJ.H.Willis,2001 EvidenceforDobzhansky-Mullerin- Cervera,M.T.,V.Storme,B.Ivens,J.Gusmão,B.H.Liuetal.,2001 Dense compatibilitiescontributingtothesterilityofhybridsbetweenMimulus geneticlinkagemapsofthreePopulusspecies(Populusdeltoides,P.nigra guttatusandM.nasutus.Evolution55:1932–1942. andP.trichocarpa)basedonAFLPandmicrosatellitemarkers.Genetics Fishman,L.,A.J.Kelly,E.Morgan,andJ.H.Willis,2001 Ageneticmapin 158:787–809. theMimulusguttatusspeciescomplexrevealstransmissionratiodistor- Chan,Y.F.,M.E.Marks,F.C.Jones,G.Villarreal,M.D.Shapiroetal., tionduetoheterospecificinteractions.Genetics159:1701–1716. 2010 Adaptiveevolutionofpelvicreductioninsticklebacksbyrecurrent Foolad,M.,S.Arulsekar,V.Becerra,andF.Bliss,1995 Ageneticmapof deletionofaPitx1enhancer.Science327:302–305. Prunusbasedonaninterspecificcrossbetweenpeachandalmond.Theor. Chen,W.J.,C.Bonillo,andG.Lecointre,2003 Repeatabilityofcladesas Appl.Genet.91:262–269. acriterionofreliability:acasestudyformolecularphylogenyofAcan- Fryer,G.,andT.D.Iles,1972 TheCichlidFishesoftheGreatLakesof thomorpha(Teleostei)withlargernumberoftaxa.Mol.Phylogenet.Evol. Africa:TheirBiologyandEvolution.OliverandBoyd,Edinburgh. 26:262–288. Gadau,J.,R.E.Page,andJ.H.Werren,1999 Mappingofhybridincom- Chutimanitsakun,Y.,R.W.Nipper,A.Cuesta-Marcos,L.Cistue,A.Corey patibilitylociinNasonia.Genetics153:1731–1741. etal.,2011 ConstructionandapplicationforQTLanalysisofaRe- Hackett,C.,andL.Broadfoot,2003 Effectsofgenotypingerrors,missing strictionSiteAssociatedDNA(RAD)linkagemapinbarley.BMCGe- valuesandsegregationdistortioninmolecularmarkerdataonthecon- nomics12:4. structionoflinkagemaps.Heredity90:33–38. 72 | H.Recknagel,K.R.Elmer,andA.Meyer Ho,S.Y.W.,M.J.Phillips,A.Cooper,andA.J.Drummond,2005 Time Nelson,M.N.,P.M.Moolhuijzen,J.G.Boersma,M.Chudy,K.Lesniewska dependencyofmolecularrateestimatesandsystematicoverestimationof etal.,2010 AligninganewreferencegeneticmapofLupinusangusti- recentdivergencetimes.Mol.Biol.Evol.22:1561–1568. foliuswiththegenomesequenceofthemodellegume,Lotusjaponicus. Huchon,D.,P.Chevret,U.Jordan,C.W.Kilpatrick,V.Ranwezetal., DNARes.17:73–83. 2007 Multiplemolecularevidencesforalivingmammalianfossil.Proc. Niehuis,O.,A.K.Judson,andJ.Gadau,2008 Cytonucleargenicincom- Natl.Acad.Sci.USA104:7495–7499. patibilitiescauseincreasedmortalityinmaleF hybridsofNasoniagir- 2 Kautt,A.,K.R.Elmer,andA.Meyer,2012 Genomicsignaturesofdivergent aultiandN.vitripennis.Genetics178:413–426. selectionandspeciationpatternsina“naturalexperiment”,theyoung Nosil,P.,andD.Schluter,2011 Thegenesunderlyingtheprocessofspe- parallelradiationsofNicaraguancraterlakecichlidfishes.Mol.Ecol.21: ciation.TrendsEcol.Evol.26:160–167. 4770–4786. Parnell,N.F.,C.D.Hulsey,andJ.T.Streelman,2012 Thegeneticbasisof Kijimoto,T.,M.Watanabe,K.Fujimura,M.Nakazawa,Y.Murakamietal., acomplexfunctionalsystem.Evolution66:3352–3366. 2005 cimp1,anovelastacinfamilymetalloproteinasegenefromEast Peterson,B.K.,J.N.Weber,E.H.Kay,H.S.Fisher,andH.E.Hoekstra, Africancichlids,isdifferentiallyexpressedbetweenspeciesduring 2012 DoubledigestRADseq:aninexpensivemethodfordenovoSNP growth.Mol.Biol.Evol.22:1649–1660. discoveryandgenotypinginmodelandnon-modelspecies.PLoSONE7: Kobayashi,N.,M.Watanabe,T.Kijimoto,K.Fujimura,M.Nakazawaetal., e37135. 2006 magp4genemaycontributetothediversificationofcichlid Pfender,W.,M.Saha,E.Johnson,andM.Slabaugh,2011 Mappingwith morphsandtheirspeciation.Gene373:126–133. RAD(restriction-siteassociatedDNA)markerstorapidlyidentifyQTL Kosambi,D.D.,1943 Theestimationofmapdistancesfromrecombination forstemrustresistanceinLoliumperenne.Theor.Appl.Genet.122: values.Ann.Hum.Genet.12:172–175. 1467–1480. Kuraku,S.,andA.Meyer,2008 Genomicanalysisofcichlidfish‘natural Phadnis,N.,andH.A.Orr,2009 Asinglegenecausesbothmalesterility mutants’.Curr.Opin.Genet.Dev.18:551–558. andsegregationdistortioninDrosophilahybrids.Science323: Kutterolf,S.,A.Freundt,W.Pérez,H.Wehrmann,andH.-U.Schmincke, 376–379. 2007 LatePleistocenetoHolocenetemporalsuccessionandmagnitudes Ravi,V.,andB.Venkatesh,2008 Rapidlyevolvingfishgenomesandteleost ofhighly-explosivevolcaniceruptionsinwest-centralNicaragua.J.Vol- diversity.Curr.Opin.Genet.Dev.18:544–550. canol.Geotherm.Res.163:55–82. Roberts,R.B.,J.R.Ser,andT.D.Kocher,2009 Sexualconflictresolvedby Lee,B.Y.,W.J.Lee,J.T.Streelman,K.L.Carleton,A.E.Howeetal.,2005 A invasionofanovelsexdeterminerinLakeMalawicichlidfishes.Science second-generationgeneticlinkagemapoftilapia(Oreochromisspp.).Ge- 326:998–1001. netics170:237–244. Roberts,R.B.,Y.Hu,R.C.Albertson,andT.D.Kocher,2011 Craniofacial Lehtonen,T.K.,B.B.M.Wong,K.Lindström,andA.Meyer,2011 Species divergenceandongoingadaptationviathehedgehogpathway.Proc.Natl. divergenceandseasonalsuccessioninratesofmatedesertionin Acad.Sci.USA108:13194–13199. closelyrelatedNeotropicalcichlidfishes.Behav.Ecol.Sociobiol.65: Rogers,S.,andL.Bernatchez,2007 Thegeneticarchitectureofecological 607–612. speciationandtheassociationwithsignaturesofselectioninnaturallake Lynch,M.,2010 Evolutionofthemutationrate.TrendsGenet.26:345–352. whitefish(Coregonussp.Salmonidae)speciespairs.Mol.Biol.Evol.24: Lyttle,T.W.,1993 Cheaterssometimesprosper:distortionofMendelian 1423–1438. segregationbymeioticdrive.TrendsGenet.9:205–210. Rogers,S.M.,N.Isabel,andL.Bernatchez,2007 Linkagemapsofthedwarf Mabuchi,K.,M.Miya,Y.Azuma,andM.Nishida,2007 Independentevo- andnormallakewhitefish(Coregonusclupeaformis)speciescomplexand lutionofthespecializedpharyngealjawapparatusincichlidandlabrid theirhybridsrevealthegeneticarchitectureofpopulationdivergence. fishes.BMCEvol.Biol.7:10. Genetics175:375–398. Manousaki,T.,P.Hull,H.Kusche,G.Machado-Schiaffino,P.Franchini Salzburger,W.,2009 Theinteractionofsexuallyandnaturallyselected etal.,2013 Parsingparallelevolution:ecologicaldivergenceanddif- traitsintheadaptiveradiationsofcichlidfishes.Mol.Ecol.18: ferentialgeneexpressioninthick-lippedMidascichlidfishesofNicara- 169–185. gua.Mol.Ecol.(inpress)DOI:10.1111/mec.12034. Salzburger,W.,andA.Meyer,2004 ThespeciesflocksofEastAfrican Matschiner,M.,R.Hanel,andW.Salzburger,2011 Ontheoriginand cichlidfishes:recentadvancesinmolecularphylogeneticsandpopulation triggerofthenotothenioidadaptiveradiation.PLoSONE6:e18911. genetics.Naturwissenschaften91:277–290. Meyer,A.,1987 PhenotypicplasticityandheterochronyinCichlasoma Salzburger,W.,I.Braasch,andA.Meyer,2007 Adaptivesequenceevo- managuense(Pisces,Cichlidae)andtheirimplicationsforspeciationin lutioninacolorgeneinvolvedintheformationofthecharacteristic cichlidfishes.Evolution41:1357–1369. egg-dummiesofmalehaplochrominecichlidfishes.BMCBiol.5:51. Meyer,A.,1990a Ecologicalandevolutionaryconsequencesofthetrophic Sanetra,M.,F.Henning,S.Fukamachi,andA.Meyer,2009 Amicrosatel- polymorphisminCichlasomacitrinellum(Pisces:Cichlidae).Biol.J.Linn. lite-basedgeneticlinkagemapofthecichlidfish,Astatotilapiaburtoni Soc.Lond.39:279–299. (Teleostei):acomparisonofgenomicarchitecturesamongrapidlyspe- Meyer,A.,1990b Morphometricsandallometryinthetrophicallypoly- ciatingcichlids.Genetics182:387–397. morphiccichlidfish,Cichlasomacitrinellum:alternativeadaptationsand Stapley,J.,J.Reger,P.G.D.Feulner,C.Smadja,J.Galindoetal., ontogeneticchangesinshape.J.Zool.(Lond.)221:237–260. 2010 Adaptationgenomics:thenextgeneration.TrendsEcol.Evol.25: Meyer,A.,1993 Phylogeneticrelationshipsandevolutionaryprocessesin 705–712. EastAfricancichlids.TrendsEcol.Evol.8:279–284. Steinke,D.,W.Salzburger,andA.Meyer,2006 Novelrelationshipsamong Meyer,A.,andM.Schartl,1999 Geneandgenomeduplicationsinverte- tenfishmodelspeciesrevealedbasedonaphylogenomicanalysisusing brates:theone-to-four(-to-eightinfish)ruleandtheevolutionofnovel ESTs.J.Mol.Evol.62:772–784. genefunctions.Curr.Opin.CellBiol.11:699–704. Stiassny,M.L.J.,andA.Meyer,1999 CichlidsoftheRiftlakes.Sci.Am. Moyle,L.C.,andE.B.Graham,2005 Geneticsofhybridincompatibility 280:64–69. betweenLycopersiconesculentumandL.hirsutum.Genetics169: Streelman,J.T.,andR.C.Albertson,2006 Evolutionofnoveltyinthe 355–373. cichliddentition.J.Exp.Zool.PartB306:216–226. Muller,H.,1942 Isolatingmechanisms,evolutionandtemperature.Biol. Subramanian,S.,D.R.Denver,C.D.Millar,T.Heupink,A.Aschrafietal., Symp.6:71–125. 2009 Highmitogenomicevolutionaryratesandtimedependency. Myburg,A.A.,C.Vogl,A.R.Griffin,R.R.Sederoff,andR.W.Whetten, TrendsGenet.25:482–486. 2004 GeneticsofpostzygoticisolationinEucalyptus:whole-genome VanOoijen,J.,2006 JoinMap4.Softwareforthecalculationofgenetic analysisofbarrierstointrogressioninawideinterspecificcrossofEu- linkagemapsinexperimentalpopulations.Availableat:http://www.kyazma. calyptusgrandisandE.globulus.Genetics166:1405–1418. nl/index.php/mc.JoinMap.Accessed:November28,2012. Volume3 January2013 | MidasCichlidLinkageMap | 73 Vences,M.,J.Freyhof,R.Sonnenberg,J.Kosuch,andM.Veith, anditsimplicationsforinterspecificbreedingbarriers.Genetics150: 2001 Reconcilingfossilsandmolecules:cenozoicdivergenceof 1209–1216. cichlidfishesandthebiogeographyofMadagascar.J.Biogeogr.28: Wilson,A.B.,K.Noack–Kunnmann,andA.Meyer,2000 Incipientspeci- 1091–1099. ationinsympatricNicaraguancraterlakecichlidfishes:sexualselection Vivas,R.,andK.R.McKaye,2001 Habitatselection,feedingecologyand vs.ecologicaldiversification.Proc.Biol.Sci.267:2133–2141. frysurvivorshipintheAmphilophuscitrinellusspeciescomplexinLake Wittbrodt,J.,A.Meyer,andM.Schartl,1998 Moregenesinfish?Bioessays Xiloá,Nicaragua.J.Aquacult.Aq.Sci.9:32–48. 20:511–512. Whitkus,R.,1998 GeneticsofadaptiveradiationinHawaiianandCook IslandsspeciesofTetramolopium(Asteraceae).II.Geneticlinkagemap Communicatingeditor:J.C.Fay 74 | H.Recknagel,K.R.Elmer,andA.Meyer

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.