ebook img

A History of Mathematics PDF

996 Pages·2008·9.76 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A History of Mathematics

A History of MATHEMATICS An Introduction This page intentionally left blank A History of MATHEMATICS An Introduction Third Edition Victor J. Katz University of the District of Columbia Addison-Wesley Boston SanFrancisco NewYork London Toronto Sydney Tokyo Singapore Madrid MexicoCity Munich Paris CapeTown HongKong Montreal To Phyllis, for her patience, encouragement, and love EditorinChief:DeirdreLynch SeniorAcquisitionsEditor:WilliamHoffman ExecutiveProjectManager:ChristineO’Brien ProjectEditor:ElizabethBernardi AssociateEditor:CarolineCelano SeniorManagingEditor:KarenWernholm SeniorProductionSupervisor:TracyPatruno MarketingManager:KatieWinter MarketingAssistant:JonConnelly SeniorPrepressSupervisor:CarolineFell ManufacturingManager:EvelynBeaton ProductionCoordination,Composition,andIllustrations:WindfallSoftware,usingZzTeX SeniorDesigner:BarbaraT.Atkinson TextandCoverDesign:LeslieHaimes Coverphoto:TychoBraheandOtherswithAstronomicalInstruments,1587,“LeQuadranMural” 1663. Blaeu, Joan (1596–1673 Dutch). Newberry Library, Chicago, Illinois, USA © Newberry Library/SuperStock. Manyofthedesignationsusedbymanufacturersandsellerstodistinguishtheirproductsareclaimed astrademarks.Wherethosedesignationsappearinthisbook,andAddison-Wesleywasawareofa trademarkclaim,thedesignationshavebeenprintedininitialcapsorallcaps. LibraryofCongressCataloging-in-PublicationData Katz,VictorJ. Ahistoryofmathematics/VictorKatz.—3rded. p. cm. Includesbibliographicalreferencesandindex. ISBN0-321-38700-7 1.Mathematics—History. I.Title. QA21.K.332009 510.9—dc22 2006049619 Copyright©2009byPearsonEducation,Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, ortransmitted, inanyformorbyanymeans, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.Forinformationonobtainingpermissionforuseofmaterialinthiswork,pleasesubmita writtenrequesttoPearsonEducation,Inc.,RightsandContractsDepartment,501BoylstonStreet, Suite900,Boston,MA02116,faxyourrequestto617-671-3447,ore-mailathttp://www.pearsoned .com/legal/permissions.htm. 1 2 3 4 5 6 7 8 9 10—CRW—12 11 10 09 08 Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . xi PART ONE Ancient Mathematics Chapter 1 EgyptandMesopotamia 1 1.1 Egypt . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Mesopotamia . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 27 Exercises . . . . . . . . . . . . . . . . . . . . . . . 28 ReferencesandNotes . . . . . . . . . . . . . . . . . . 30 Chapter 2 TheBeginningsofMathematicsinGreece 32 2.1 TheEarliestGreekMathematics . . . . . . . . . . . . . . 33 2.2 TheTimeofPlato . . . . . . . . . . . . . . . . . . . . 41 2.3 Aristotle . . . . . . . . . . . . . . . . . . . . . . . . 43 Exercises . . . . . . . . . . . . . . . . . . . . . . . 47 ReferencesandNotes . . . . . . . . . . . . . . . . . . 48 Chapter 3 Euclid 50 3.1 IntroductiontotheElements . . . . . . . . . . . . . . . . 51 3.2 BookIandthePythagoreanTheorem . . . . . . . . . . . . 53 3.3 BookIIandGeometricAlgebra . . . . . . . . . . . . . . 60 3.4 CirclesandthePentagonConstruction . . . . . . . . . . . . 66 3.5 RatioandProportion . . . . . . . . . . . . . . . . . . . 71 3.6 NumberTheory . . . . . . . . . . . . . . . . . . . . . 77 3.7 IrrationalMagnitudes . . . . . . . . . . . . . . . . . . 81 3.8 SolidGeometryandtheMethodofExhaustion . . . . . . . . 83 3.9 Euclid’sData . . . . . . . . . . . . . . . . . . . . . . 88 Exercises . . . . . . . . . . . . . . . . . . . . . . . 90 ReferencesandNotes . . . . . . . . . . . . . . . . . . 92 vi Contents Chapter 4 ArchimedesandApollonius 94 4.1 ArchimedesandPhysics . . . . . . . . . . . . . . . . . 96 4.2 ArchimedesandNumericalCalculations . . . . . . . . . . . 101 4.3 ArchimedesandGeometry . . . . . . . . . . . . . . . . 103 4.4 ConicSectionsbeforeApollonius . . . . . . . . . . . . . . 112 4.5 TheConicsofApollonius . . . . . . . . . . . . . . . . . 115 Exercises . . . . . . . . . . . . . . . . . . . . . . . 127 ReferencesandNotes . . . . . . . . . . . . . . . . . . 131 Chapter 5 MathematicalMethodsinHellenisticTimes 133 5.1 AstronomybeforePtolemy . . . . . . . . . . . . . . . . 134 5.2 PtolemyandtheAlmagest . . . . . . . . . . . . . . . . . 145 5.3 PracticalMathematics . . . . . . . . . . . . . . . . . . 157 Exercises . . . . . . . . . . . . . . . . . . . . . . . 168 ReferencesandNotes . . . . . . . . . . . . . . . . . . 170 Chapter 6 TheFinalChaptersofGreekMathematics 172 6.1 NicomachusandElementaryNumberTheory . . . . . . . . . 173 6.2 DiophantusandGreekAlgebra . . . . . . . . . . . . . . . 176 6.3 PappusandAnalysis . . . . . . . . . . . . . . . . . . . 185 6.4 HypatiaandtheEndofGreekMathematics . . . . . . . . . . 189 Exercises . . . . . . . . . . . . . . . . . . . . . . . 191 ReferencesandNotes . . . . . . . . . . . . . . . . . . 192 PART TWO Medieval Mathematics Chapter 7 AncientandMedievalChina 195 7.1 IntroductiontoMathematicsinChina . . . . . . . . . . . . 196 7.2 Calculations . . . . . . . . . . . . . . . . . . . . . . 197 7.3 Geometry . . . . . . . . . . . . . . . . . . . . . . . 201 7.4 SolvingEquations . . . . . . . . . . . . . . . . . . . . 209 7.5 IndeterminateAnalysis . . . . . . . . . . . . . . . . . . 222 7.6 TransmissionToandFromChina . . . . . . . . . . . . . . 225 Exercises . . . . . . . . . . . . . . . . . . . . . . . 226 ReferencesandNotes . . . . . . . . . . . . . . . . . . 228 Chapter 8 AncientandMedievalIndia 230 8.1 IntroductiontoMathematicsinIndia . . . . . . . . . . . . 231 8.2 Calculations . . . . . . . . . . . . . . . . . . . . . . 233 8.3 Geometry . . . . . . . . . . . . . . . . . . . . . . . 237 Contents vii 8.4 EquationSolving . . . . . . . . . . . . . . . . . . . . 242 8.5 IndeterminateAnalysis . . . . . . . . . . . . . . . . . . 244 8.6 Combinatorics . . . . . . . . . . . . . . . . . . . . . 250 8.7 Trigonometry . . . . . . . . . . . . . . . . . . . . . . 252 8.8 TransmissionToandFromIndia . . . . . . . . . . . . . . 259 Exercises . . . . . . . . . . . . . . . . . . . . . . . 260 ReferencesandNotes . . . . . . . . . . . . . . . . . . 263 Chapter 9 TheMathematicsofIslam 265 9.1 IntroductiontoMathematicsinIslam . . . . . . . . . . . . 266 9.2 DecimalArithmetic . . . . . . . . . . . . . . . . . . . 267 9.3 Algebra . . . . . . . . . . . . . . . . . . . . . . . . 271 9.4 Combinatorics . . . . . . . . . . . . . . . . . . . . . 292 9.5 Geometry . . . . . . . . . . . . . . . . . . . . . . . 296 9.6 Trigonometry . . . . . . . . . . . . . . . . . . . . . . 306 9.7 TransmissionofIslamicMathematics . . . . . . . . . . . . 317 Exercises . . . . . . . . . . . . . . . . . . . . . . . 318 ReferencesandNotes . . . . . . . . . . . . . . . . . . 321 Chapter 10 MathematicsinMedievalEurope 324 10.1 IntroductiontotheMathematicsofMedievalEurope . . . . . . 325 10.2 GeometryandTrigonometry . . . . . . . . . . . . . . . . 328 10.3 Combinatorics . . . . . . . . . . . . . . . . . . . . . 337 10.4 MedievalAlgebra . . . . . . . . . . . . . . . . . . . . 342 10.5 TheMathematicsofKinematics . . . . . . . . . . . . . . 351 Exercises . . . . . . . . . . . . . . . . . . . . . . . 359 ReferencesandNotes . . . . . . . . . . . . . . . . . . 362 Chapter 11 MathematicsaroundtheWorld 364 11.1 MathematicsattheTurnoftheFourteenthCentury . . . . . . . 365 11.2 MathematicsinAmerica,Africa,andthePacific . . . . . . . . 370 Exercises . . . . . . . . . . . . . . . . . . . . . . . 379 ReferencesandNotes . . . . . . . . . . . . . . . . . . 380 PART THREE Early Modern Mathematics Chapter 12 AlgebraintheRenaissance 383 12.1 TheItalianAbacists . . . . . . . . . . . . . . . . . . . 385 12.2 AlgebrainFrance,Germany,England,andPortugal . . . . . . 389 12.3 TheSolutionoftheCubicEquation . . . . . . . . . . . . . 399 viii Contents 12.4 Vie`te,AlgebraicSymbolism,andAnalysis . . . . . . . . . . 407 12.5 SimonStevinandDecimalFractions . . . . . . . . . . . . 414 Exercises . . . . . . . . . . . . . . . . . . . . . . . 418 References . . . . . . . . . . . . . . . . . . . . . . 420 Chapter 13 MathematicalMethodsintheRenaissance 423 13.1 Perspective . . . . . . . . . . . . . . . . . . . . . . . 427 13.2 NavigationandGeography . . . . . . . . . . . . . . . . 432 13.3 AstronomyandTrigonometry . . . . . . . . . . . . . . . 435 13.4 Logarithms . . . . . . . . . . . . . . . . . . . . . . 453 13.5 Kinematics . . . . . . . . . . . . . . . . . . . . . . . 457 Exercises . . . . . . . . . . . . . . . . . . . . . . . 462 ReferencesandNotes . . . . . . . . . . . . . . . . . . 464 Chapter 14 Algebra,Geometry,andProbabilityintheSeventeenthCentury 467 14.1 TheTheoryofEquations . . . . . . . . . . . . . . . . . 468 14.2 AnalyticGeometry . . . . . . . . . . . . . . . . . . . 473 14.3 ElementaryProbability . . . . . . . . . . . . . . . . . . 487 14.4 NumberTheory . . . . . . . . . . . . . . . . . . . . . 497 14.5 ProjectiveGeometry . . . . . . . . . . . . . . . . . . . 499 Exercises . . . . . . . . . . . . . . . . . . . . . . . 501 ReferencesandNotes . . . . . . . . . . . . . . . . . . 504 Chapter 15 TheBeginningsofCalculus 507 15.1 TangentsandExtrema . . . . . . . . . . . . . . . . . . 509 15.2 AreasandVolumes . . . . . . . . . . . . . . . . . . . 514 15.3 RectificationofCurvesandtheFundamentalTheorem . . . . . 532 Exercises . . . . . . . . . . . . . . . . . . . . . . . 539 ReferencesandNotes . . . . . . . . . . . . . . . . . . 541 Chapter 16 NewtonandLeibniz 543 16.1 IsaacNewton . . . . . . . . . . . . . . . . . . . . . . 544 16.2 GottfriedWilhelmLeibniz . . . . . . . . . . . . . . . . 565 16.3 FirstCalculusTexts . . . . . . . . . . . . . . . . . . . 575 Exercises . . . . . . . . . . . . . . . . . . . . . . . 579 ReferencesandNotes . . . . . . . . . . . . . . . . . . 580 PART FOUR Modern Mathematics Chapter 17 AnalysisintheEighteenthCentury 583 17.1 DifferentialEquations . . . . . . . . . . . . . . . . . . 584 17.2 TheCalculusofSeveralVariables . . . . . . . . . . . . . . 601 Contents ix 17.3 CalculusTexts . . . . . . . . . . . . . . . . . . . . . 611 17.4 TheFoundationsofCalculus . . . . . . . . . . . . . . . . 628 Exercises . . . . . . . . . . . . . . . . . . . . . . . 636 ReferencesandNotes . . . . . . . . . . . . . . . . . . 639 Chapter 18 ProbabilityandStatisticsintheEighteenthCentury 642 18.1 TheoreticalProbability . . . . . . . . . . . . . . . . . . 643 18.2 StatisticalInference . . . . . . . . . . . . . . . . . . . 651 18.3 ApplicationsofProbability . . . . . . . . . . . . . . . . 655 Exercises . . . . . . . . . . . . . . . . . . . . . . . 661 ReferencesandNotes . . . . . . . . . . . . . . . . . . 663 Chapter 19 AlgebraandNumberTheoryintheEighteenthCentury 665 19.1 AlgebraTexts . . . . . . . . . . . . . . . . . . . . . 666 19.2 AdvancesintheTheoryofEquations . . . . . . . . . . . . 671 19.3 NumberTheory . . . . . . . . . . . . . . . . . . . . . 677 19.4 MathematicsintheAmericas . . . . . . . . . . . . . . . 680 Exercises . . . . . . . . . . . . . . . . . . . . . . . 683 ReferencesandNotes . . . . . . . . . . . . . . . . . . 684 Chapter 20 GeometryintheEighteenthCentury 686 20.1 ClairautandtheElementsofGeometry . . . . . . . . . . . . 687 20.2 TheParallelPostulate . . . . . . . . . . . . . . . . . . 689 20.3 AnalyticandDifferentialGeometry . . . . . . . . . . . . . 695 20.4 TheBeginningsofTopology . . . . . . . . . . . . . . . . 701 20.5 TheFrenchRevolutionandMathematicsEducation . . . . . . 702 Exercises . . . . . . . . . . . . . . . . . . . . . . . 706 ReferencesandNotes . . . . . . . . . . . . . . . . . . 707 Chapter 21 AlgebraandNumberTheoryintheNineteenthCentury 709 21.1 NumberTheory . . . . . . . . . . . . . . . . . . . . . 711 21.2 SolvingAlgebraicEquations . . . . . . . . . . . . . . . . 721 21.3 SymbolicAlgebra . . . . . . . . . . . . . . . . . . . . 730 21.4 MatricesandSystemsofLinearEquations . . . . . . . . . . 740 21.5 GroupsandFields—TheBeginningofStructure . . . . . . . . 750 Exercises . . . . . . . . . . . . . . . . . . . . . . . 759 ReferencesandNotes . . . . . . . . . . . . . . . . . . 761 Chapter 22 AnalysisintheNineteenthCentury 764 22.1 RigorinAnalysis . . . . . . . . . . . . . . . . . . . . 766 22.2 TheArithmetizationofAnalysis . . . . . . . . . . . . . . 788 22.3 ComplexAnalysis . . . . . . . . . . . . . . . . . . . . 795

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.