ebook img

A High-Resolution Radio Continuum Study Of The Dwarf Irregular Galaxy IC 10 PDF

1.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A High-Resolution Radio Continuum Study Of The Dwarf Irregular Galaxy IC 10

MNRAS000,1–15(2016) Preprint17January2017 CompiledusingMNRASLATEXstylefilev3.0 A High-Resolution Radio Continuum Study Of The Dwarf Irregular Galaxy IC10 J. Westcott,1? E. Brinks,1 R.J. Beswick,2 V. Heesen,3,4 M.K. Argo,2,5 R.D. Baldi4, 7 D.M. Fenech,6 I.M. McHardy,4 D.J.B. Smith1 & D.R.A. Williams4 1 1CentreforAstrophysicsResearch,UniversityofHertfordshire,CollegeLane,Hatfield,AL109AB,UK 0 2JodrellBankCentreforAstrophysics,SchoolofPhysicsandAstronomy,TheUniversityofManchester,Manchester,M139PL,UK 2 3HamburgerSternwarte,UniversitätHamburg,Gojenbergsweg112,21029Hamburg,Germany 4SchoolofPhysicsandAstronomy,UniversityofSouthampton,SouthamptonSO171BJ,UK n 5JeremiahHorrocksInstitute,UniversityofCentralLancashire,PrestonPR12HE,UK a 6DepartmentofPhysics&Astronomy,UniversityCollegeLondon,GowerStreet,London,WC1E6BT,UK J 3 2 AcceptedXXX.ReceivedYYY;inoriginalformZZZ ] A G ABSTRACT Wepresenthigh-resolutione–MERLINradiocontinuummapsoftheDwarfIrregu- . h lar galaxy IC10 at 1.5GHz and 5GHz. We detect 11 compact sources at 1.5GHz, 5 p of which have complementary detections at 5GHz. We classify 3 extended sources o- ascompactHII regionswithinIC10,5sourcesascontaminatingbackgroundgalax- ies and identify 3 sources which require additional observations to classify. We do r t not expect that any of these 3 sources are Supernova Remnants as they will likely s a be resolved out at the assumed distance of IC10 (0.7Mpc). We correct integrated [ fluxdensitiesofIC10fromtheliteratureforcontaminationbyunrelatedbackground sources and obtain updated flux density measurements of 354 11mJy at 1.5GHz 1 and199 9mJyat4.85GHz.Thebackgroundcontaminationdoe±snotcontributesig- v nificantl±ytotheoverallradioemissionfromIC10,sopreviousanalysisconcerning 1 itsintegratedradiopropertiesremainvalid. 7 5 Keywords: galaxies:dwarf–galaxies:ISM–ISM:supernovaremnants–ISM:HII 6 regions–techniques:highangularresolution–techniques:interferometric 0 . 1 0 7 1 INTRODUCTION part,toaddressthisbystudyingcompactSFproductsand 1 their relation to large scale radio emission across a wide : Radio emission within normal galaxies originates from the v range of galaxy type. The project is made up of two com- evolution and death of massive stars ( 8M ) and hence i ≥ (cid:12) plementarysurveysofnearbygalaxies;astatisticalsurveyof X effectively traces recent star formation (SF; Condon 1992). 280galaxiestakeninsnapshotmode,comprisingtheentire Since it is not subject to extinction by dust, radio emission r Palomarspectroscopicbrightgalaxysamplenorthofdecli- a shouldbeanidealtracerofSFwhichwouldbevalidoutto nation+20degrees,andadeepsurveyof6galaxies,thelatter thehighestredshifts.Atthetimeofwriting,radioluminos- reachinganrmssensitivityof8and3µJybeam−1at1.5GHz ityiscalibratedasaSFRindicatorviatheradio–FIRrelation and5GHzrespectively.Thestatisticalsurveywilldetectand (Bell2003),atightcorrelationwhichlinksbothFIRandra- resolve radio emission from supernovae (SNe) and super- dio emission to massive SF. Yet the physical origin of this nova remnants (SNR) to provide a complete census of en- correlationisnotfullyunderstood,withmanyseeminglyin- ergeticSFproductsinthelocalUniverse.Athighersensitiv- dependentfactorsbalancingouttoforma‘cosmicconspir- ities,thedeepsurveywillalsobeabletodetectfaintradio acy’ (Condon 1992; Appleton et al. 2004; Lacki et al. 2010). emissionfromPlanetaryNebulae,HIIregionsandsuperstar Thisthenmakesitdesirabletocalibratetheradio–SFrelation clusters.Together,thesesurveyswillbeusedtocalibratethe withoutrecoursetotheFIRdata. SFrate(SFR)innearbygalaxiesonthebasisofcompactra- TheLegacye–MERLINMulti–bandImagingofNearby diosourcepopulations,independentofobscurationbydust. Galaxies(LeMMINGs;Beswicketal.2014)surveyaims,in ThenearbydwarfirregulargalaxyIC10(seeFigure1)was observedduringthecommissioningphaseoftheupgraded e–MERLINarrayandisthefirstgalaxytobeobservedaspart ? E-mail:[email protected] oftheLeMMINGsdeepsurvey. ©2016TheAuthors 2 J.Westcottetal. Table1.KeyIC10properties Table2.JournalofIC10e–MERLINobservations Property Value Reference ObsDate ObsFrequency TotalBandwidth Time (yyyymmmdd) (MHz) (MHz) (h) αJ2000 002017.34 – δJ2000 +591813.6 – 2013Feb09 1510.65 512 7.64 GalaxyType IBm 1 2013Nov22 1526.65 512 16.24 Distance 0.7Mpc 2 2015Apr18 5072.50 512 21.06 SFRHα 0.039±0.001M(cid:12)yr−1 3 2016Feb21 5072.50 512 9.24 AngularSize(MajorAxis) 11.068 4 Notes:ObsFrequencyisthecentralobservedfrequencyandTimeis AngularSize(MinorAxis) 7.012 4 thetotaltimeonsource. PositionAngle 132◦ 4 ReferenceList:1:Nilson(1973),2:Sakaietal.(1999),3:Hunteretal. 2 OBSERVATIONSANDDATAREDUCTION (2012),4:Jarrettetal.(2003). Observations of IC10 were made using e–MERLIN (the upgraded Multi–Element Radio Linked Interferometer Network, an array consisting of 7 radio telescopes spread acrosstheUK1)aspartofLeMMINGs(Beswicketal.2014), ane–MERLINlegacyproject.Thedataweretakenat2wave- bands; 1.5GHz (L–Band) and 5GHz (C–Band) in 4 observ- IC10isthoughttobecurrentlyundergoingastarburst ing runs summarized in Table 2. The Lovell Telescope was phase(Leroyetal.2006),withopticalstudiesrevealingnu- only available for the February 2016 observation, resulting merous HII regions (Hodge & Lee 1990) and the highest inasmallerfieldofviewbuthighersensitivitywhencom- density of WR–stars observed in the Local Group (Massey paredtotheotherobservingruns.Thecalibrationanddata et al. 1992; Crowther et al. 2003). Moreover, stellar popula- tionanalysisrevealsaburstySFhistorywiththemostrecent reductionwascarriedoutusingAIPS2,followingthecalibra- tionstepsdetailedinthee–MERLINcookbook3. burstfinishing 10Myrago(Hunter2001;Vaccaetal.2007; ∼ Sannaetal.2009).AbriefsummaryofthepropertiesofIC10 ispresentedinTable1. 2.1 InitialFlagging&Inspection Recentradioinvestigationsintothelarge–scalegasmo- tionsofIC10revealacomplexnature,consistingofalarge Beforeanycalibrationtookplace,weusedSERPent(Peck& HIenvelopewithaninnerrotatingdiskandcounter–rotating Fenech2013)withdefaultsettingstoremoveanyobviousra- component(Shostak&Skillman1989;Wilcots&Miller1998; dio frequency interference (RFI). SERPent is auto–flagging Ashleyetal.2014).Theleadingexplanationforthesediffer- software developed in ParselTongue (Kettenis et al. 2006) entkinematicalsubsystemsisthatIC10isstillaccretingpri- principally for use in the e–MERLIN pipeline (Argo 2015). mordialgas(Wilcots&Miller1998),althoughnewevidence Wealsoconductedfurthermanualflaggingtoremoveother hints towards a recent merger or interaction being respon- obviousRFIthatSERPenthadmissed.Thevisibilitiesfrom sible for the unusual gas kinematics and current starburst eachdatasetwerethenvisuallyinspectedusingtheAIPStask (Nidever et al. 2013; Ashley et al. 2014). Furthermore, nu- IBLED to further identify and flag time periods when the merous bubbles and shells are observed in the large scale datawascorrupted.Weestimatethatoverall,weareflagging HI distribution(Shostak&Skillman1989;Wilcots&Miller 52%ofthedataat1.5GHzand 10%at5GHz. ∼ ∼ 1998),hintingthatIC10iscomingtowardstheendofitscur- rentstarburstphase(seethebottom–rightpanelinFigure1). Anumberofradiocontinuumstudiesfocusedonthenon– 2.2 1.5GHzData thermalsuperbubbletowardstheSouth–EastofIC10(Yang Both1.5GHzobservationsfollowedthesameobservational &Skillman1993;Heesenetal.2015),whichisthoughttobe set–up, which we describe here. The total bandwidth was theresultofeitheracollectionofsupernovaremnants(Yang splitinto8IFs(intermediatefrequencies),eachwith128in- &Skillman1993)orasinglehypernovaevent(Lozinskaya& dividualchannelsofbandwidth0.5MHz.Theprimaryflux Moiseev2007).AtitscentreresidestheX–raybinarysystem, calibrator, 3C286, was used to set the flux scale, the point– IC10X–1,whichislikelyrelatedtothebirthandevolution like source, OQ208, was used to determine the passbands ofthesuperbubble(Bauer&Brandt2004;Brandtetal.1997). and relative antenna gains and 0027+5958 was used as the IC10islocatedatalowgalacticlatitude( -3◦),making ∼ phasecalibrator.Theobservationsstartedwith30minscans distance measurements challenging with estimates ranging ofboththeprimaryfluxcalibratorandpointsource,andthen from0.5Mpcto3Mpc(Demersetal.2004;Kimetal.2009). wentontoalternatebetweenobservationsofIC10andthe Inthispaper,wewillassumeadistancetoIC10of0.7Mpc phasecalibrator,spending5minonIC10and1minonthe (1arcsec 3.4pc),aslistedinHunteretal.(2012);wescale ’ allliteraturemeasurementsusedheretothisdistance. Thepaperisstructuredasfollows;inSection2wede- 1 A basic overview of the array can be found at http://www. scribe our observations, data reduction and imaging meth- e-merlin.ac.uk/summary.html ods;inSection3wedescribeandanalyseoursourcedetec- 2 AIPS,theAstronomicalImageProcessingSoftware,isfreesoftware tionmethodandpresentourresults;inSection4wedescribe availablefromtheNRAO. thedetectedsourcesanddiscussouranalysisandwesum- 3 Available at: http://www.e-merlin.ac.uk/data_red/ marizeourresultsinSection5. tools/e-merlin-cookbook_V3.0_Feb2015.pdf MNRAS000,1–15(2016) High–ResolutionRadioContinuumStudyofIC10 3 Figure1.IC10atmultiplewavelengths.TopLeft:HαcontinuumsubtractedmaptakenfromHunter&Elmegreen(2004).TopRight:MapofIC10 at70µmtakenwithHerschelaspartoftheDwarfGalaxySurvey(Maddenetal.2013).BottomLeft:5GHzVLAC&DarraymapofIC10taken fromHeesenetal.(2015).BottomRight:NaturallyweightedHImapofIC10takenaspartofLITTLETHINGS(Hunteretal.2012).Notehowthe large-scaleholesandshellsintheHIdistributioncanbeeasilyidentifiedacrossmultiplewavelengths. phase calibrator each iteration. We followed standard cali- because no reliable flux density measurement for OQ208 brationproceduretodeterminethecomplexgainsolutions couldbeobtainedduetoexcessiveRFI. to apply to the data. The first and last 15channels in each Both 1.5GHz observations were calibrated indepen- IFwereflaggedbecausetheyareintheleastsensitiveareas dently and then combined. We verified that both datasets ofthepassbandandcontributemostlynoise.Severalrounds hadthesamefluxscalebyimaging8brightsourceswithin ofphaseonlyself–calibrationwerecarriedoutonthephase the primary beam but outside IC10 (identified in prelimi- referencesourceandonIC10itselftoimprovethequalityof naryimaging)andcheckingthatthefluxdensitymeasure- thefinalmaps.Eachcalibrateddatasetwasweightedtogive ments agreed to within 10 percent error. The flux densities moreweighttotelescopeswithalargercollectingarea,im- agreedfor7sources,showingthatourfluxscaleissatisfac- provingsensitivity. torilyconsistentbetweentheobservations.Weconcludethat The Cambridge antenna was not available for the theoutliermustbedowntovariabilitybetweentheobserva- November 2013 observation, resulting in a slightly larger tiondates.AstheNovemberdatasetwastakenataslightly synthesizedbeamasthisantennamakesupthelongestbase- higherfrequencythantheFebruarydataset,weusedtheAIPS linesinthee–MERLINarray.Additionally,IF1wasflagged task BLOAT to ensure that both observations covered the MNRAS000,1–15(2016) 4 J.Westcottetal. (a) (b) Figure2.Distributionsofvisibillitiesintheuv–planesforthee–MERLINobservations.(a)showsthecombined1.5GHzuv–planeand(b)shows thecombined5GHzuv–plane. samefrequencyrangebeforecombiningbothdatasetsusing imagedandanaturalweightingschemewasusedtomax- thetaskDBCON.Thecombineduv–planeisdisplayedinFig- imisesensitivity.Asmallfieldcentredonthebrightsource ure2(a). NVSS002108+591132wasaddedtothislisttoremoveitscon- taminatingsidelobes.Theindividualsubfieldswerecleaned downto2.5timesthermsnoiselevelofeachmapandwere 2.3 5GHzData thenmosaickedtogetherusingtheAIPStaskFLATNtopro- duce a single widefield map of the entire disk. This wide- The5GHzobservationsfollowedasimilarobservingsetup fieldmapwasusedtosearchforsources(seesection3.1)and tothe1.5GHzobservations.Thetotalbandwidthwassplit blanksubfieldswithnoapparentsourceswereusedtotest into 4 IFs, each with 128 individual channels 1MHz wide. the widefield maps completeness (see section 3.6). We im- Theprimaryfluxcalibrator,3C286,wasusedtosettheflux age the detected sources separately at 5GHz to save time, scale, the point source, OQ208, was used to determine the also using a natural weighting scheme to maximise sensi- passbands and relative antenna gains and 0027+5958 was tivity.Wecorrecteachdetectedsourcefortheprimarybeam used as the phase calibrator. IC10 and the phase reference individuallyusingthemodelsdescribedinsection3.2.This were observed alternatingly, with 5min on IC10 to 3min wasdonetosavetimeaseachdetectedsourcewassufficently onthephasecalibrator,finishingwith30minscansofboth smalltobecharacterisedbyasingleprimarybeamcorrection theprimaryfluxandpointsourcecalibrators.Thefirstand factor. last5channelswereflaggedbecausethisiswherethepass- Ourfinalmapsreachanoiselevelof26µJybeam−1 at bandrapidlylosessensitivity.Oneroundofphaseonlyself– 1.5GHzand12µJybeam−1at5.0GHz.Thesenoiselevelsare calibration on IC10 was performed to further improve the significantlyhigherthantheLeMMINGstargetsensitiviesof dynamic range of the final maps. Again, both calibrated 8µJybeam−1and3µJybeam−1at1.5GHzand5GHzrespec- datasetswereweighted. tively.ThiscanmainlybeattributedtothelackoftheLovell TherewereseveralissueswiththeFebruary2016obser- telescopeinthemajorityofthepresentedobservationsasits vation.TheMk2antennawasnotavailablefortheduration inclusionresultsinafactorof2improvementinsensitivity ofthisobservationandreliablegainsolutionscouldnotbe (see e–MERLIN technical capabilities). Additionally, as the found for the Darnhall antenna. The remaining data were arraywasstillinthecomissioningphaseformostoftheob- combinedwithdatatakeninApr2015tofurtherreducethe servations,someantennaswerenotpresentfortheentiredu- noiselevelinthefinalmaps.Thecombined5GHzuv-plane ration of an observation. It is also likely that the increased isdisplayedinFigure2(b). noiselevelisduetotheconsiderableflaggingcarriedout(see Section2.1)andthatlowlevelsofunflaggedRFIfurthercon- tribute to the noise level in the final maps. Together, these factorslargelyexplainthehighernoiselevel.Thesensitivity 2.4 Imaging targetsarelikelytobehitinfutureLeMMINGsdeepobser- IC10’sstarformingdiskwasimagedat1.5GHzwithamoa- vations provided the Lovell telescope will be included for sicof19subfields,witheachsubfieldcovering0.03aside.The theentiredurationoftheseobservationsandthee–MERLIN AIPStaskSETFCwasusedtogeneratethelistoffieldstobe arraywillbeoperatingatfullcapacity. MNRAS000,1–15(2016) High–ResolutionRadioContinuumStudyofIC10 5 Figure3.1.5GHzRadiocontoursofIC10.TopRight:CombinedVLAC+DarraymapofIC10at1.5GHz,takenfromHeesenetal.(2015).The contoursaresetto-3,5,10,20,40,80,150,300,600xthe13µJybeam−1noiselevel.Therednumbersrepresentthelocationsofthedetected e–MERLINsources,thebluesquaresrepresentspectroscopicallyconfirmedWRstarsfromCrowtheretal.(2003),theblackstarsrepresent Chandra(resolution300)pointsourcedetectionsandtheblackupwardstrianglesrepresentXMM(resolution1300)pointsourcedetections.All X–raydataaretakenfromWangetal.(2005).ThegridlinesarethesameasinFigure1.Surroundingplots:Naturallyweighted1.5GHze–MERLIN detectionsfromthisstudy.Thebeamsizeforeachimageis00.036x00.024andisdisplayedinthebottom-leftofeachmap.Thecontoursoneach sourcearesetto-3,3,6,10,20,40xthe26µJybeam−1noiselevel.Thecontoursalsocorrespondtobrightnesstemperaturessetat690,1400, 2300,4600and9200K.Eachfieldmeasures600aside.Anidentifyingsourcenumberislocatedinthetop–leftcornerofeachcontourmap. 3 RESULTS sionwithinobservedgalaxies,essentiallyhighlightingcom- pactstar–formingproductsandcontaminatingbackground Radio emission from star–forming galaxies originates from sources.Inthissectionwepresentoure–MERLINdetections two main sources, thermal emission from HII regions and withinIC10andtesttherobustnessofourdetections. non–thermalemissionfromCosmicRayelectrons(CRe)that havebeenacceleratedinSNRshockfronts.Itisunlikelythat anydetectionsarerelatedtoX–raybinariesorPlanetaryNeb- 3.1 SourceDetection ulae(Fender&Hendry2000;Leverenzetal.2016)asatthe distanceofIC10,thesesourceswouldhavefluxdenstiesof We used the widefield maps described in Section 2.4 to order 1µJy. Very long baseline interferometers, such as e– searchforcompactradiosources.Weusethemapat1.5GHz MERLIN, effectively resolve out nearly all extended emis- to search for sources because not only does this map have MNRAS000,1–15(2016) 6 J.Westcottetal. Figure3.(Continued.)AdditionalNotes:ThemapofSource7hasbeenconvolvedtoaresolutionoftwicethesynthesizedbeamtoshowthelow surfacebrightnessemission.Thecontoursonsource7aresettothesamelevelsasintheothercontourmaps,butthenoiselevelinthiscaseis 53µJybeam−1.Thecontourscorrespondtobrightnesstemperaturessetat170Kand340Kinthiscaseonly. Table3.PropertiesofSourcesDetectedinIC10 SourceNo IAUDesignation αJ2000 δJ2000 S1.5GHz S5.0GHz PeakTB SpectralIndex (hhmmss) (ddmmss) (mJy) (mJy) (K) 1∗ WBBHJ002017+591839.7 002017.390 +591839.68 8.06±0.82 1.02±0.11 5200 −0.3±0.1 2∗ WBBHJ002027+591728.7 002026.952 +591728.66 3.39±0.35 2.28±0.24 7700 −0.1±0.1 3∗ WBBHJ002015+591853.9 002014.988 +591853.88 2.23±0.25 - 2600 −1.0±0.1 4∗ WBBHJ002027+591706.1 002027.160 +591706.12 1.83±0.20 0.36±0.06 4900 −0.4±0.1 5 WBBHJ002008+591540.2 002008.348 +591540.21 1.29 0.14 0.28 0.04 >11000 1.3 0.2 ± ± − ± 6 WBBHJ002027+591843.7 002026.807 +591843.69 0.99 0.11 - >8500 1.9 ± ≤− 7∗ WBBHJ002018+591740.9 002018.249 +591740.92 0.93±0.14 - 700 −0.4±0.1 8 WBBHJ002019+591802.3 002019.334 +591802.33 0.87 0.16 - >7700 2.0 ± ≤− 9 WBBHJ002033+591942.9 002033.390 +591942.89 0.49 0.11 - >4100 1.0 ± ≤− 10 WBBHJ002008+591955.2 002008.137 +591955.23 0.37 0.07 0.14 0.03 >3200 0.8 0.3 ± ± − ± 11 WBBHJ001951+591644.2 001951.498 +591644.20 0.26 0.06 - >2000 1.1 ± ≤− Notes:Sourceswitha*areextendedsourcesandtheirspectralindices(italicized)arederivedfromthelow–resolutionspectralindexmaps presentedinHeesenetal.(2011).Allotherspectralindicesarederivedfromthee–MERLINobservations.Thepeakbrightnesstemperatures havebeenderivedfromthe1.5GHzobservations. awiderfieldofview,itismoresensitivetoextendedemis- cross-matchedtheseremainingcandidateswithlowerreso- sionthanthecorresponding5GHzmaps(seeFigure2).Fur- lutionfeaturesfromKarlG.JanskyVeryLargeArray(VLA) thermore,anysourcesdominatedbynon–thermalemission maps at 1.5GHz (Heesen et al. 2015; see Figure 3) to iden- mechanisms will be brighter at 1.5GHz due to the power– tifyspuriousdetections.Thelowerresolutionmapshavea lawradiospectrathesesourcesexhibit.WeusedAegeanas 13µJybeam−1 rmsnoiselevel,andso,wewouldexpectto oursourceextractor(Hancocketal.2012)withapeakflux observea5σe–MERLINdetectioninthesemaps.Wedeter- densitythresholdof5timesthermsnoiselevel,σrms,tofind mine2ofthee–MERLINdetectionstobespuriousandend candidates.Thesourceextractorretrieved26sourcesinto- upwithasampleof13sourceswhichwedisplayinFigure tal, of which 15 are coincident with IC10’s main disk. We MNRAS000,1–15(2016) High–ResolutionRadioContinuumStudyofIC10 7 Figure4.Naturallyweighted5GHze–MERLINdetectionsfromthisstudy.Thebeamsizeforthisimageis00.014x00.006andisdisplayedinthe bottom–leftofeachcontourplot.Thecontoursoneachsourcearesetto-3,3,6,10,20,40xthe12µJybeam−1noiselevel.Eachfieldmeasures 200onaside.Anidentifyingsourcenumberislocatedinthetop-leftcornerofeachcontourmap. 3.Wediscussthecompletenessandreliabilityofoursource with a FWHM of 30’ for the 1.5GHz observations (exclud- detectionmethodinSection3.6. ingtheLovellantenna)andaFWHMof5.6’forthe5GHz observations(includingtheLovellantenna). 3.2 SourceFluxMeasurement 3.3 BrightnessTemperature We determine integrated flux densitites for the unresolved and resolved sources using 2 different methods. For unre- Assuming an optically thick source, the expected observed solvedsourceswefitGaussiansthroughtheuseoftheAIPS brightness temperature for free–free emission from HII re- taskJMFIT.Forresolvedsources,wegenerateamaskbyonly gions is of order 10000K. Electrons radiating via non– considering emission associated with each source above a thermalmechanisms,however,leadtoobservedbrightness 3σrmslevel,whereσrmsisthelocalmaprmsnoiselevel(mea- temperaturesthatcanbemuchhigher(e.g.,1012K);bright- suredoffsource).Wethenintegratethemaskedemissionto ness temperatures could therefore be used to aid in source findtheintegratedfluxdensity. classification. Theerrorsfortheintegratedfluxdensitymeasurements Assuming a Rayleigh–Jeans black–body curve, we cal- aredeterminedusing: culate the brightness temperature, T , for each detected B sourceusing: σ = (σ )2+(σ )2 (1) Total Map Scale c2 S q T ν (2) JMFIwThfoerreuσnMreaspoilsveedithsoeurrecqeusaolrtiotitsheequfiatletroro√rNreσturmrsnfeodrrbey- B≈W2hνe2rkeBΩk(cid:18)is10t2h6eJyBWolt−z1mma2nnHzco(cid:19)nstant, c is the speed of solvedsources(N isthenumberofindependentbeamsthat B light, ν is the central frequency of the combined 1.5GHz fitwithinthemaskedimage).σ istheuncertaintyinthe Scale observations (1518MHz), Ω is solid angle that the synthe- fluxscalewhichistakentobe10percent. Wecorrecttheintegratedfluxdensityfromeachsource sized beam subtends and Sν is the measured flux density inJy.Thederivedbrightnesstemperatureisonlycorrectfor forprimarybeamattenuationindividuallybyassumingthe sourcesthatareresolved,i.e.,whenthesynthesizedbeamis e-MERLINprimarybeamcanbeparameterizedbyaGaus- sian,asdisplayedinthee–MERLINtechincalcapabillities4, completelyfilledwiththeemittingsource.Asitstands,our brightnesstemperatureforextendedsourcesislikelytobean underestimate,duetousmissingfluxasaresultofthelack 4 Availableathttp://www.e-merlin.ac.uk/tech/ ofshortbaselinesintheseinterferometricobservations.The MNRAS000,1–15(2016) 8 J.Westcottetal. To find spectral indices for resolved sources, we make Table4.AngularSizesofExtendedandResolvedSourcesat1.5GHz use of the spectral index maps provided in Heesen et al. (2011).Thesemapsaretakenatamuchlowerresolutionthan SourceNo MajorAxis MinorAxis Positionangle thepresentede–MERLINobservations,andhencecanonly (00) (00) (◦) giveusageneralideaaboutthespectralindexoftheresolved 1* 3.34+0.30 1.85+0.26 138.96+13.37 sourcescombinedwithemissionfromtheirimmediatesur- 0.63 0.34 10.99 2* 1.86−+0.12 1.21−+0.12 14.93+−17.18 roundingenvironment. 0.34 0.27 19.65 3* 2.49 −0.38 0.96−+0.14 71.35−+9.16 4* 1.46±+0.09 0.90−+00..0249 9.51+−116..4796 0.33 0.17 10.32 7* 1.80+−0.07 1.25+−0.06 48.93−+12.46 0.21 0.20 11.37 8 0.694 −0.094 0.590 −0.080 123.65−33.87 ± ± ± Notes:Thesuperscript*intheSourceNocolumnindicatesthatthe 3.6 Completeness&Reliability sourceisextended.Thepositionangleofeachsourceismeasured anti-clockwisefromtheNorth. WecarriedoutMonte–Carlosimulationsat1.5GHztoassess thecompleteness,C,andreliability,R,ofoursourcedetec- brightnesstemperatureobservedforunresolvedsourceswill tionmethod.Ateachband,wetookablankfieldfromthe alsobeanunderestimateasthesynthesizedbeamislarger widefield imaging (i.e., a noise map) and randomly added thanthetrueangularsizeofthesource.Furthermore,ourra- 400 Gaussian sources, each the same size as the naturally dioobservationsareprobingopticallythinconditions,result- weighted synthesized beam. We assigned a flux density to inginafurtherreductionoftheobservedbrightnesstemper- eachofthesesources,drawnfromacontinous,uniformprob- atures.Therefore,thebrightnesstemperaturesderivedboth ability distribution between 2 and 12 times the rms noise forallsourcesshouldbetreatedaslowerlimits.Wepresent levelofthemaps.WethenusedAegeantorecovertheplaced thepeakbrightnesstemperatureforeachdetectedsourcein sources, setting a detection threshold at 3 times the map Table3anddisplaybrightnesstemperaturecontoursforthe rmsnoiselevel.Asinouranalysis,onlysourcesexceeding resolvedsourcesinFigure3. athresholdof5σareusedtodeterminethestatisticalcom- pletenessofoursourcedetectionmethod.Thisprocesswas repeated1000timestoensureastaticallyrobustanswer. 3.4 AngularSizes Wesplitourdataintofluxbins,eachofwidth0.5times themaprmsnoise.Wedefinethecompleteness&reliability We measure the angular size, position angle and sky co- foreachfluxbinas: ordinates of each extended source by fitting an ellipse to the3σrmscontour.Weoptimizethefitbyminimizingtheχ2 statistic,assumingtheerrorateachpointonthecontouris thesame.Weobtainerrorsinthefitviathe∆χ2method,i.e., C = NM (3) bymodifyingeachindividualparametertogainχ2asafunc- NP tionofsaidparameterwhilstfixingallotherparametersto thebestfit.Thequoted1σerrorsaredefinedbytheintersect where∆χ2fromtheminimizedχ2isequalto1. N For marginally resolved and unresolved sources, we R= M (4) N R fit 2–D Gaussian functions using the AIPS task JMFIT to determine the angular size, position angle and sky co- WhereN isthenumberofmatchedsources(amatch M ordinates.Theangularsizepropertiesforextendedandre- is counted when the recovered source is spatially located solvedsourcesat1.5GHzaresummarizedinTable4andthe within 1 synthesized beam of the placed source), NP is skyco-ordinatesarepresentedinTable3. the number of placed sources and N is the total number R of matched sources recovered by the source extractor that 3.5 SpectralIndices alsowithinmatchedinflux(within1σrms uncertainty).The completenessisessentiallyameasureofthefractionofreal Ideally,forunambiguoussourceclassification,werequirea sources our source extractor detects and the reliability is a combination of reliable spectral indices (Sν ∝ να), to gain measureofhowoftenspuriousdetectionsmaybemistaken ameasureofthespectralenergydistributionforeachcom- forrealsources. pactsource,andmapsmadeatmultipleepochswithalong TheresultsfromthisanalysisaresummarisedinFigure enoughtimebaselinetomeasureSNRexpansion( 10yrs: 5.Wearecompletedowntoapproximately7σandreach50% ∼ McDonaldetal.2001;Beswicketal.2006;Fenechetal.2008). completenessatapproximately5σ.Thereliabilityplottellus These current observations are the highest resolution thatour5σdetectionsareveryrobustanditisunlikelythat mapsofIC10yet,andhence,wehavenopreviousobserva- anyofthesesourcesarespuriousdetections.Modifyingthe tionstoobserveanyexpansion.Furthermore,torecoverre- detectionthresholdresultsinatranslationofthecomplete- liablespectralindicesforresolvedsources,werequireboth ness distribuion presented in the upper panel of Figure 5, observationstohavesignificantlyoverlappinguv-planes.For wherethechosenthresholdbroadlymatcheswherethecom- ourcurrente–MERLINobservationshowever,thisisnotthe pletenessreaches50%.Changingthethresholdto,forexam- case(seeFigure2)andwecanonlygainreliablespectralin- ple3σ,increasesthecompletenessatlowfluxlevels,how- dices for sources that are unresolved at both 1.5GHz and ever,thisdoesnotresultinanincreaseinthereliability,as 5GHz. additionalsourcesmaybespurious. MNRAS000,1–15(2016) High–ResolutionRadioContinuumStudyofIC10 9 Figure5.Completenesssandreliabilityplotsforthecombined1.5GHzobservationsofIC10.Theuncertaintyinallbinsis<5%.Inthelower plot,averticalreddashedlinerepresentsthelowerfluxlimittowhichwecaninvestigatethereliability. 4 DISCUSSION gion.Thebrightnesstemperatureforthissourceisoforder 8000K,whichisroughlywhatisexpectedforanHIIregion. 4.1 IndividualSourceNotes Therefore,itislikelythatthissourceisacompactHIIregion Inthissectionwebrieflydiscusseachsourceinturn,high- withinIC10. lightingrelevantinformationtoaidinitsclassification. Source3(WBBHJ002015+591853.9):Thissourceispar- Source1(WBBHJ002017+591839.7):Thisisthebright- ticularly interesting. It has an unusual extended morphol- estsourcethatwedetectinoure–MERLINobservationsand ogy, no counterpart in either the Hα or 70µm maps and italsohasthelargestangularsize.Thereisevidenceinthe doesnotappeartobeassociatedwithanydiffuseHI emis- presentedcontourmapsfora‘cleanbowl’,hintingthatwe sion.Thissourcedoesnotappeartoberelatedtoanystar- aremissingfluxfromthissourceduetothelackofshortspac- forming regions within IC10, but it is spatially coincident ingsinthee–MERLINarray.Wefindthatthissourceisspa- withaChandraX–raysource.Asthissourcealsohasasteep tiallycoincidentwithemissionpeaksintheHα,70µmmaps low–resolutionspectralindex(α 1.0),determinedfrom ∼ − andlowerresolution5GHzand1.5GHzmaps.Thissource lowerresolutionmapsintheliterature,itislikelytobeacon- alsofallsbetween2holesinthelarge-scaleHIemission(see taminatingbackgroundgalaxy.Thissourcehasalowerthan Figure 1). We derive a brightness temperature of approxi- expected brightness temperature of roughly 3000K, which matly5000Kforthissource,whichislowerthanexpected. couldbeduetohighopticalthicknessalongthelineofsight Itisunlikelythatthisisduetoahighopticalthicknessalong to this source or due to missing flux from short baselines. thelineofsighttothesource,andisprobablyduetomissing Future VLA A–Array 10GHz observations would provide flux.Thelowresolutionspectralindexfromtheliteratureis areliablespectralindexforthissourceandhelpdetermine flat(α 0.3).Inviewoftheabove,weclassifythissource whetheritresideswithinIC10. ∼− asacompactHIIregionwithinIC10. Source4(WBBHJ002027+591706.1):LikeSource2,this Source2(WBBHJ002027+591728.7):Thissourceisspa- source is coincident with emission in the Hα and 70µm tiallycoincidentwithpeaksofemissionintheHαand70µm maps,thelowerresolution5GHz,and1.5GHzmapsaswell mapsaswellaslowerresolution5GHz,and1.5GHzmaps. aswithapeakintheHIdistribution.Source4islocatedon Itisalsospatiallycoincidentwithacurrentmajorstarform- theoutskirtsoftheNon–Thermalsuperbubble(seeSection ingregionwithinIC10(Heesenetal.2015),withnumerous 4.5),andtherearemanyWRstarsinthisgeneralregionofthe WRstarsnearby.Moreover,thissourceislocatedwithinthe galaxy. We determine a brightness temperature of roughly highestpeakoftheHIdistribution,indicatingthatSFispos- 5000K,whichislowerthanexpectedandcouldbeduetothe siblybeingfuelledatthislocation.Thelow-resolutionspec- samereasonsasdiscussedforsource1.Thissourcehasarel- tralindexfromtheliteratureforthissourceis-0.1,whichis ativelyflatlowresolutionspectralindex(α 0.4)andis ∼ − consistantwithadominatingthermalcontributioninthisre- likelytobeacompactHIIregionwithinIC10. MNRAS000,1–15(2016) 10 J.Westcottetal. Source5(WBBHJ002008+591540.2):Thissourceisun- North–East of IC10’s main disk. The source appears to be resolvedandlocatedtowardsthesouthernoutskirtofIC10’s extendedtotheEastinFigure3,butvisualinspectionsug- main disk. There are no corresponding sources at Hα or gests this to be a noise peak. This source appears isolated 70µm.Asthissourceisunresolved,thederivedbrightness fromIC10’smaindisk,withnocorrespondingemissionin temperature must be treated as a lower limit and the true eithertheHαor70µmmaps.Thissourceisfaintwithalower brightnesstemperaturemustbegreaterthan10000K.Ifthis limittothebrightnesstemperatureof4000K,whichisprob- sourceisofnon-thermalorigin,weexpectthatitmusthave ablyduetothesourcefillingasmallfractionofthesynthe- an angular size much smaller than the synthesized beam. sizedbeam.Duetoitsisolation,weclassifythissourceasa Furthermore, this source has a steep spectral index (α backgroundgalaxy. ∼ 1.3)asdeterminedfromoure–MERLINobservationsand Source10(WBBHJ002008+591955.2):Thissourceisan- − itisalsocoincidentwithaChandraX–raysource.Itislikely otherunresolvedsourcelocatedtowardstheNorth–Westof thatthissourceisabackgroundAGN. IC10’smaindisk.Thissourcelookslikeitcouldbeassoci- Source6(WBBHJ002027+591843.7):Thissourceisun- atedwiththenorthernringintheHIdistribution(seeFigure resolvedandlocatedtowardstheNorth-EastofIC10’smain 1)butitappearstobeoffset.Thereisnocorrespondingemis- disk.SimilarlytoSource5,thereisnocorrespondingemis- sionineitherHαor70µmmaps.Wederivealowerlimitto sion in either Hα or 70µm maps. We derive a lower limit thebrightnesstemperatureof3000Kwhichispossiblydue forthebrightnesstemperatureof8000K,butthisislikelyto tothesourcefillingasmallfractionofthesynthesizedbeam. be due to the source filling a small fraction of the synthe- This source appears to be coincident with a low resolution sizedbeam.Thissourceisspatiallylocatedclosetobutsepa- XMMX–raysource,butduetothelowresolution(1300,Wang ratefromaChandraX–raysource.Itissurprisingthatwedo etal.2005)wecannotsaywithcertaintythatthissourceisthe notdetectthisbrightsourceinthepresented5GHzobserva- originoftheX–rayemission.Thiscurrentevidencesuggests tions,resultinginanextremelysteepspectralindexestimate thatthissourceisafaintbackgroundsource. (α 1.9).Fromthisevidence,itislikelythatthissourceis Source11(WBBHJ001951+591644.2):Thissourceisan- ≤− abackgroundsource. other faint, unresolved source that is located towards the Source7(WBBHJ002018+591740.9):Thissourcehasa WestofIC10’smaindisk.Thissourcefallswithinextended resolved,diffusestructurewithasharppeakabovethe5σrms emissioninthe70µmmapbuttheHαmapdoesnotextend threshold.InFigure3wedisplayacontourmapthatwecon- thisfar.Thissourceislikelytobeabackgroundgalaxyasit volvedtoaresolutionoftwicethenaturallyweightedsyn- hasasteepspectralindex(α< 1.1)andtherearenocoinci- − thesisedbeamtohighlightthisdiffuseemission.Wecarried dentcompactsourcesatanyotherwavelength.Itcouldalso out the same analysis as for the other sources but with a be a peak in a more diffuse HII region but this is unlikely beamthatwastwicethesize.Thepeakbrightnesstemper- given the spectral index. The lower limit to the brightness ature for this source was found to be just 700K, and this temperature is still quite low ( 2000K) which is possibly ∼ should be treated as a lower limit. This source is located duetothesourcefillingasmallfractionofthesynthesized roughlyinthecentreofIC10’smaindisk,withcorrespond- beam.Furtherinvestigationwillberequiredtoproperlyclas- ingpeaksofemissionintheHα,70µmandthelowresolu- sifythissource,butcurrentevidenceindicatesitislikelyto tionradiocontinuummaps.Moreover,thissourcehasaflat beabackgroundgalaxy. low–resolutionspectralindex,suggestingthatthissourceis possibly an HII region within IC10 although more investi- gationwillberequiredtofullyclassifythissource.Thereis 4.2 ExpectedBackgroundSourceCount eemasitssoifonthaistaso3uσrcrmes. Ilefvtehlisloecmatiesdsio∼n2i.s500altsoowaasrsdosctihateedsowutihth– Wederivetheexpectednumberofbackgroundsourcescoin- source7,itispossiblethatthissourceisayoungSNRandwe cidentwithIC10byanalysingsourcecountsfromthelitera- areobservinghighbrightnessfeaturesintheexpandingshell ture.WefitthesourcecountsfromMassardietal.(2010)with (seeSection4.4).Future,moresensitive,e–MERLIN1.5GHz a 4th order polynomial5. This was chosen as it is the low- andVLA1.5GHzA–Arrayobservationswillberequiredto estorderpolynomialthatrepresentsthedatawell.Wethen determine if this source has an extended component. VLA applycorrectionsforcompleteness(seeSection3.6)andend 10GHzA–Arrayobservationscouldalsobeusedtoderivea upwithanestimateforthebackgroundcountof14.8 3.8 ± resolvedspectralindextoaidinclassifyingthissource. sources in a circular field of radius 5’. It is likely that this estimate is a slight overestimate as any nearby extended Source8(WBBHJ002019+591802.3):Thissourceispar- sourceswillberesolvedout,butthisisexpectedtoonlyaffect tiallyresolvedandlocatedtowardsthecentreofIC10.This sourceiscoincidentwithdiffuseemissionintheHαmapand brightersourceswhichcontributelittletotheoverallcounts. InaregionofthesamesizecentredonIC10(seeSection3.1) withpeaksinthe70µmandlowresolutionradiomaps.We wedetect15sourceswhichisconsistentwiththehypothe- do not detect this source in the presented 5GHz maps, re- sultinginaverysteepinferredspectralindex(α 2.0).We sisthatalldetectedsourcesarebackgroundgalaxies.Asdis- ≤− cussed in Section 4.1, it is clear from comparison with Hα present a lower limit for the brightness temperature of or- and70µmmapsthatatleast3ofourdetectionsresidewithin der8000K.Thissourcecouldeitherbeabackgroundsource IC10,butitisobviousfromthisexercisethatthemajorityof orapeakinamoreextendedHIIregion.Deepere–MERLIN thedetectedsourcesareprobablybackgroundgalaxies. 5GHz observations would be required to obtain a reliable spectralindexforthissourceandtodetermineitsmember- shiptoIC10. Source 9 (WBBH J002033+591942.9): This source is 5 The raw data is available from http://web.oapd.inaf.it/ another compact, unresolved source located towards the rstools/srccnt/srccnt_tables.html. MNRAS000,1–15(2016)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.