MNRAS000,1–15(2016) Preprint17January2017 CompiledusingMNRASLATEXstylefilev3.0 A High-Resolution Radio Continuum Study Of The Dwarf Irregular Galaxy IC10 J. Westcott,1? E. Brinks,1 R.J. Beswick,2 V. Heesen,3,4 M.K. Argo,2,5 R.D. Baldi4, 7 D.M. Fenech,6 I.M. McHardy,4 D.J.B. Smith1 & D.R.A. Williams4 1 1CentreforAstrophysicsResearch,UniversityofHertfordshire,CollegeLane,Hatfield,AL109AB,UK 0 2JodrellBankCentreforAstrophysics,SchoolofPhysicsandAstronomy,TheUniversityofManchester,Manchester,M139PL,UK 2 3HamburgerSternwarte,UniversitätHamburg,Gojenbergsweg112,21029Hamburg,Germany 4SchoolofPhysicsandAstronomy,UniversityofSouthampton,SouthamptonSO171BJ,UK n 5JeremiahHorrocksInstitute,UniversityofCentralLancashire,PrestonPR12HE,UK a 6DepartmentofPhysics&Astronomy,UniversityCollegeLondon,GowerStreet,London,WC1E6BT,UK J 3 2 AcceptedXXX.ReceivedYYY;inoriginalformZZZ ] A G ABSTRACT Wepresenthigh-resolutione–MERLINradiocontinuummapsoftheDwarfIrregu- . h lar galaxy IC10 at 1.5GHz and 5GHz. We detect 11 compact sources at 1.5GHz, 5 p of which have complementary detections at 5GHz. We classify 3 extended sources o- ascompactHII regionswithinIC10,5sourcesascontaminatingbackgroundgalax- ies and identify 3 sources which require additional observations to classify. We do r t not expect that any of these 3 sources are Supernova Remnants as they will likely s a be resolved out at the assumed distance of IC10 (0.7Mpc). We correct integrated [ fluxdensitiesofIC10fromtheliteratureforcontaminationbyunrelatedbackground sources and obtain updated flux density measurements of 354 11mJy at 1.5GHz 1 and199 9mJyat4.85GHz.Thebackgroundcontaminationdoe±snotcontributesig- v nificantl±ytotheoverallradioemissionfromIC10,sopreviousanalysisconcerning 1 itsintegratedradiopropertiesremainvalid. 7 5 Keywords: galaxies:dwarf–galaxies:ISM–ISM:supernovaremnants–ISM:HII 6 regions–techniques:highangularresolution–techniques:interferometric 0 . 1 0 7 1 INTRODUCTION part,toaddressthisbystudyingcompactSFproductsand 1 their relation to large scale radio emission across a wide : Radio emission within normal galaxies originates from the v range of galaxy type. The project is made up of two com- evolution and death of massive stars ( 8M ) and hence i ≥ (cid:12) plementarysurveysofnearbygalaxies;astatisticalsurveyof X effectively traces recent star formation (SF; Condon 1992). 280galaxiestakeninsnapshotmode,comprisingtheentire Since it is not subject to extinction by dust, radio emission r Palomarspectroscopicbrightgalaxysamplenorthofdecli- a shouldbeanidealtracerofSFwhichwouldbevalidoutto nation+20degrees,andadeepsurveyof6galaxies,thelatter thehighestredshifts.Atthetimeofwriting,radioluminos- reachinganrmssensitivityof8and3µJybeam−1at1.5GHz ityiscalibratedasaSFRindicatorviatheradio–FIRrelation and5GHzrespectively.Thestatisticalsurveywilldetectand (Bell2003),atightcorrelationwhichlinksbothFIRandra- resolve radio emission from supernovae (SNe) and super- dio emission to massive SF. Yet the physical origin of this nova remnants (SNR) to provide a complete census of en- correlationisnotfullyunderstood,withmanyseeminglyin- ergeticSFproductsinthelocalUniverse.Athighersensitiv- dependentfactorsbalancingouttoforma‘cosmicconspir- ities,thedeepsurveywillalsobeabletodetectfaintradio acy’ (Condon 1992; Appleton et al. 2004; Lacki et al. 2010). emissionfromPlanetaryNebulae,HIIregionsandsuperstar Thisthenmakesitdesirabletocalibratetheradio–SFrelation clusters.Together,thesesurveyswillbeusedtocalibratethe withoutrecoursetotheFIRdata. SFrate(SFR)innearbygalaxiesonthebasisofcompactra- TheLegacye–MERLINMulti–bandImagingofNearby diosourcepopulations,independentofobscurationbydust. Galaxies(LeMMINGs;Beswicketal.2014)surveyaims,in ThenearbydwarfirregulargalaxyIC10(seeFigure1)was observedduringthecommissioningphaseoftheupgraded e–MERLINarrayandisthefirstgalaxytobeobservedaspart ? E-mail:[email protected] oftheLeMMINGsdeepsurvey. ©2016TheAuthors 2 J.Westcottetal. Table1.KeyIC10properties Table2.JournalofIC10e–MERLINobservations Property Value Reference ObsDate ObsFrequency TotalBandwidth Time (yyyymmmdd) (MHz) (MHz) (h) αJ2000 002017.34 – δJ2000 +591813.6 – 2013Feb09 1510.65 512 7.64 GalaxyType IBm 1 2013Nov22 1526.65 512 16.24 Distance 0.7Mpc 2 2015Apr18 5072.50 512 21.06 SFRHα 0.039±0.001M(cid:12)yr−1 3 2016Feb21 5072.50 512 9.24 AngularSize(MajorAxis) 11.068 4 Notes:ObsFrequencyisthecentralobservedfrequencyandTimeis AngularSize(MinorAxis) 7.012 4 thetotaltimeonsource. PositionAngle 132◦ 4 ReferenceList:1:Nilson(1973),2:Sakaietal.(1999),3:Hunteretal. 2 OBSERVATIONSANDDATAREDUCTION (2012),4:Jarrettetal.(2003). Observations of IC10 were made using e–MERLIN (the upgraded Multi–Element Radio Linked Interferometer Network, an array consisting of 7 radio telescopes spread acrosstheUK1)aspartofLeMMINGs(Beswicketal.2014), ane–MERLINlegacyproject.Thedataweretakenat2wave- bands; 1.5GHz (L–Band) and 5GHz (C–Band) in 4 observ- IC10isthoughttobecurrentlyundergoingastarburst ing runs summarized in Table 2. The Lovell Telescope was phase(Leroyetal.2006),withopticalstudiesrevealingnu- only available for the February 2016 observation, resulting merous HII regions (Hodge & Lee 1990) and the highest inasmallerfieldofviewbuthighersensitivitywhencom- density of WR–stars observed in the Local Group (Massey paredtotheotherobservingruns.Thecalibrationanddata et al. 1992; Crowther et al. 2003). Moreover, stellar popula- tionanalysisrevealsaburstySFhistorywiththemostrecent reductionwascarriedoutusingAIPS2,followingthecalibra- tionstepsdetailedinthee–MERLINcookbook3. burstfinishing 10Myrago(Hunter2001;Vaccaetal.2007; ∼ Sannaetal.2009).AbriefsummaryofthepropertiesofIC10 ispresentedinTable1. 2.1 InitialFlagging&Inspection Recentradioinvestigationsintothelarge–scalegasmo- tionsofIC10revealacomplexnature,consistingofalarge Beforeanycalibrationtookplace,weusedSERPent(Peck& HIenvelopewithaninnerrotatingdiskandcounter–rotating Fenech2013)withdefaultsettingstoremoveanyobviousra- component(Shostak&Skillman1989;Wilcots&Miller1998; dio frequency interference (RFI). SERPent is auto–flagging Ashleyetal.2014).Theleadingexplanationforthesediffer- software developed in ParselTongue (Kettenis et al. 2006) entkinematicalsubsystemsisthatIC10isstillaccretingpri- principally for use in the e–MERLIN pipeline (Argo 2015). mordialgas(Wilcots&Miller1998),althoughnewevidence Wealsoconductedfurthermanualflaggingtoremoveother hints towards a recent merger or interaction being respon- obviousRFIthatSERPenthadmissed.Thevisibilitiesfrom sible for the unusual gas kinematics and current starburst eachdatasetwerethenvisuallyinspectedusingtheAIPStask (Nidever et al. 2013; Ashley et al. 2014). Furthermore, nu- IBLED to further identify and flag time periods when the merous bubbles and shells are observed in the large scale datawascorrupted.Weestimatethatoverall,weareflagging HI distribution(Shostak&Skillman1989;Wilcots&Miller 52%ofthedataat1.5GHzand 10%at5GHz. ∼ ∼ 1998),hintingthatIC10iscomingtowardstheendofitscur- rentstarburstphase(seethebottom–rightpanelinFigure1). Anumberofradiocontinuumstudiesfocusedonthenon– 2.2 1.5GHzData thermalsuperbubbletowardstheSouth–EastofIC10(Yang Both1.5GHzobservationsfollowedthesameobservational &Skillman1993;Heesenetal.2015),whichisthoughttobe set–up, which we describe here. The total bandwidth was theresultofeitheracollectionofsupernovaremnants(Yang splitinto8IFs(intermediatefrequencies),eachwith128in- &Skillman1993)orasinglehypernovaevent(Lozinskaya& dividualchannelsofbandwidth0.5MHz.Theprimaryflux Moiseev2007).AtitscentreresidestheX–raybinarysystem, calibrator, 3C286, was used to set the flux scale, the point– IC10X–1,whichislikelyrelatedtothebirthandevolution like source, OQ208, was used to determine the passbands ofthesuperbubble(Bauer&Brandt2004;Brandtetal.1997). and relative antenna gains and 0027+5958 was used as the IC10islocatedatalowgalacticlatitude( -3◦),making ∼ phasecalibrator.Theobservationsstartedwith30minscans distance measurements challenging with estimates ranging ofboththeprimaryfluxcalibratorandpointsource,andthen from0.5Mpcto3Mpc(Demersetal.2004;Kimetal.2009). wentontoalternatebetweenobservationsofIC10andthe Inthispaper,wewillassumeadistancetoIC10of0.7Mpc phasecalibrator,spending5minonIC10and1minonthe (1arcsec 3.4pc),aslistedinHunteretal.(2012);wescale ’ allliteraturemeasurementsusedheretothisdistance. Thepaperisstructuredasfollows;inSection2wede- 1 A basic overview of the array can be found at http://www. scribe our observations, data reduction and imaging meth- e-merlin.ac.uk/summary.html ods;inSection3wedescribeandanalyseoursourcedetec- 2 AIPS,theAstronomicalImageProcessingSoftware,isfreesoftware tionmethodandpresentourresults;inSection4wedescribe availablefromtheNRAO. thedetectedsourcesanddiscussouranalysisandwesum- 3 Available at: http://www.e-merlin.ac.uk/data_red/ marizeourresultsinSection5. tools/e-merlin-cookbook_V3.0_Feb2015.pdf MNRAS000,1–15(2016) High–ResolutionRadioContinuumStudyofIC10 3 Figure1.IC10atmultiplewavelengths.TopLeft:HαcontinuumsubtractedmaptakenfromHunter&Elmegreen(2004).TopRight:MapofIC10 at70µmtakenwithHerschelaspartoftheDwarfGalaxySurvey(Maddenetal.2013).BottomLeft:5GHzVLAC&DarraymapofIC10taken fromHeesenetal.(2015).BottomRight:NaturallyweightedHImapofIC10takenaspartofLITTLETHINGS(Hunteretal.2012).Notehowthe large-scaleholesandshellsintheHIdistributioncanbeeasilyidentifiedacrossmultiplewavelengths. phase calibrator each iteration. We followed standard cali- because no reliable flux density measurement for OQ208 brationproceduretodeterminethecomplexgainsolutions couldbeobtainedduetoexcessiveRFI. to apply to the data. The first and last 15channels in each Both 1.5GHz observations were calibrated indepen- IFwereflaggedbecausetheyareintheleastsensitiveareas dently and then combined. We verified that both datasets ofthepassbandandcontributemostlynoise.Severalrounds hadthesamefluxscalebyimaging8brightsourceswithin ofphaseonlyself–calibrationwerecarriedoutonthephase the primary beam but outside IC10 (identified in prelimi- referencesourceandonIC10itselftoimprovethequalityof naryimaging)andcheckingthatthefluxdensitymeasure- thefinalmaps.Eachcalibrateddatasetwasweightedtogive ments agreed to within 10 percent error. The flux densities moreweighttotelescopeswithalargercollectingarea,im- agreedfor7sources,showingthatourfluxscaleissatisfac- provingsensitivity. torilyconsistentbetweentheobservations.Weconcludethat The Cambridge antenna was not available for the theoutliermustbedowntovariabilitybetweentheobserva- November 2013 observation, resulting in a slightly larger tiondates.AstheNovemberdatasetwastakenataslightly synthesizedbeamasthisantennamakesupthelongestbase- higherfrequencythantheFebruarydataset,weusedtheAIPS linesinthee–MERLINarray.Additionally,IF1wasflagged task BLOAT to ensure that both observations covered the MNRAS000,1–15(2016) 4 J.Westcottetal. (a) (b) Figure2.Distributionsofvisibillitiesintheuv–planesforthee–MERLINobservations.(a)showsthecombined1.5GHzuv–planeand(b)shows thecombined5GHzuv–plane. samefrequencyrangebeforecombiningbothdatasetsusing imagedandanaturalweightingschemewasusedtomax- thetaskDBCON.Thecombineduv–planeisdisplayedinFig- imisesensitivity.Asmallfieldcentredonthebrightsource ure2(a). NVSS002108+591132wasaddedtothislisttoremoveitscon- taminatingsidelobes.Theindividualsubfieldswerecleaned downto2.5timesthermsnoiselevelofeachmapandwere 2.3 5GHzData thenmosaickedtogetherusingtheAIPStaskFLATNtopro- duce a single widefield map of the entire disk. This wide- The5GHzobservationsfollowedasimilarobservingsetup fieldmapwasusedtosearchforsources(seesection3.1)and tothe1.5GHzobservations.Thetotalbandwidthwassplit blanksubfieldswithnoapparentsourceswereusedtotest into 4 IFs, each with 128 individual channels 1MHz wide. the widefield maps completeness (see section 3.6). We im- Theprimaryfluxcalibrator,3C286,wasusedtosettheflux age the detected sources separately at 5GHz to save time, scale, the point source, OQ208, was used to determine the also using a natural weighting scheme to maximise sensi- passbands and relative antenna gains and 0027+5958 was tivity.Wecorrecteachdetectedsourcefortheprimarybeam used as the phase calibrator. IC10 and the phase reference individuallyusingthemodelsdescribedinsection3.2.This were observed alternatingly, with 5min on IC10 to 3min wasdonetosavetimeaseachdetectedsourcewassufficently onthephasecalibrator,finishingwith30minscansofboth smalltobecharacterisedbyasingleprimarybeamcorrection theprimaryfluxandpointsourcecalibrators.Thefirstand factor. last5channelswereflaggedbecausethisiswherethepass- Ourfinalmapsreachanoiselevelof26µJybeam−1 at bandrapidlylosessensitivity.Oneroundofphaseonlyself– 1.5GHzand12µJybeam−1at5.0GHz.Thesenoiselevelsare calibration on IC10 was performed to further improve the significantlyhigherthantheLeMMINGstargetsensitiviesof dynamic range of the final maps. Again, both calibrated 8µJybeam−1and3µJybeam−1at1.5GHzand5GHzrespec- datasetswereweighted. tively.ThiscanmainlybeattributedtothelackoftheLovell TherewereseveralissueswiththeFebruary2016obser- telescopeinthemajorityofthepresentedobservationsasits vation.TheMk2antennawasnotavailablefortheduration inclusionresultsinafactorof2improvementinsensitivity ofthisobservationandreliablegainsolutionscouldnotbe (see e–MERLIN technical capabilities). Additionally, as the found for the Darnhall antenna. The remaining data were arraywasstillinthecomissioningphaseformostoftheob- combinedwithdatatakeninApr2015tofurtherreducethe servations,someantennaswerenotpresentfortheentiredu- noiselevelinthefinalmaps.Thecombined5GHzuv-plane ration of an observation. It is also likely that the increased isdisplayedinFigure2(b). noiselevelisduetotheconsiderableflaggingcarriedout(see Section2.1)andthatlowlevelsofunflaggedRFIfurthercon- tribute to the noise level in the final maps. Together, these factorslargelyexplainthehighernoiselevel.Thesensitivity 2.4 Imaging targetsarelikelytobehitinfutureLeMMINGsdeepobser- IC10’sstarformingdiskwasimagedat1.5GHzwithamoa- vations provided the Lovell telescope will be included for sicof19subfields,witheachsubfieldcovering0.03aside.The theentiredurationoftheseobservationsandthee–MERLIN AIPStaskSETFCwasusedtogeneratethelistoffieldstobe arraywillbeoperatingatfullcapacity. MNRAS000,1–15(2016) High–ResolutionRadioContinuumStudyofIC10 5 Figure3.1.5GHzRadiocontoursofIC10.TopRight:CombinedVLAC+DarraymapofIC10at1.5GHz,takenfromHeesenetal.(2015).The contoursaresetto-3,5,10,20,40,80,150,300,600xthe13µJybeam−1noiselevel.Therednumbersrepresentthelocationsofthedetected e–MERLINsources,thebluesquaresrepresentspectroscopicallyconfirmedWRstarsfromCrowtheretal.(2003),theblackstarsrepresent Chandra(resolution300)pointsourcedetectionsandtheblackupwardstrianglesrepresentXMM(resolution1300)pointsourcedetections.All X–raydataaretakenfromWangetal.(2005).ThegridlinesarethesameasinFigure1.Surroundingplots:Naturallyweighted1.5GHze–MERLIN detectionsfromthisstudy.Thebeamsizeforeachimageis00.036x00.024andisdisplayedinthebottom-leftofeachmap.Thecontoursoneach sourcearesetto-3,3,6,10,20,40xthe26µJybeam−1noiselevel.Thecontoursalsocorrespondtobrightnesstemperaturessetat690,1400, 2300,4600and9200K.Eachfieldmeasures600aside.Anidentifyingsourcenumberislocatedinthetop–leftcornerofeachcontourmap. 3 RESULTS sionwithinobservedgalaxies,essentiallyhighlightingcom- pactstar–formingproductsandcontaminatingbackground Radio emission from star–forming galaxies originates from sources.Inthissectionwepresentoure–MERLINdetections two main sources, thermal emission from HII regions and withinIC10andtesttherobustnessofourdetections. non–thermalemissionfromCosmicRayelectrons(CRe)that havebeenacceleratedinSNRshockfronts.Itisunlikelythat anydetectionsarerelatedtoX–raybinariesorPlanetaryNeb- 3.1 SourceDetection ulae(Fender&Hendry2000;Leverenzetal.2016)asatthe distanceofIC10,thesesourceswouldhavefluxdenstiesof We used the widefield maps described in Section 2.4 to order 1µJy. Very long baseline interferometers, such as e– searchforcompactradiosources.Weusethemapat1.5GHz MERLIN, effectively resolve out nearly all extended emis- to search for sources because not only does this map have MNRAS000,1–15(2016) 6 J.Westcottetal. Figure3.(Continued.)AdditionalNotes:ThemapofSource7hasbeenconvolvedtoaresolutionoftwicethesynthesizedbeamtoshowthelow surfacebrightnessemission.Thecontoursonsource7aresettothesamelevelsasintheothercontourmaps,butthenoiselevelinthiscaseis 53µJybeam−1.Thecontourscorrespondtobrightnesstemperaturessetat170Kand340Kinthiscaseonly. Table3.PropertiesofSourcesDetectedinIC10 SourceNo IAUDesignation αJ2000 δJ2000 S1.5GHz S5.0GHz PeakTB SpectralIndex (hhmmss) (ddmmss) (mJy) (mJy) (K) 1∗ WBBHJ002017+591839.7 002017.390 +591839.68 8.06±0.82 1.02±0.11 5200 −0.3±0.1 2∗ WBBHJ002027+591728.7 002026.952 +591728.66 3.39±0.35 2.28±0.24 7700 −0.1±0.1 3∗ WBBHJ002015+591853.9 002014.988 +591853.88 2.23±0.25 - 2600 −1.0±0.1 4∗ WBBHJ002027+591706.1 002027.160 +591706.12 1.83±0.20 0.36±0.06 4900 −0.4±0.1 5 WBBHJ002008+591540.2 002008.348 +591540.21 1.29 0.14 0.28 0.04 >11000 1.3 0.2 ± ± − ± 6 WBBHJ002027+591843.7 002026.807 +591843.69 0.99 0.11 - >8500 1.9 ± ≤− 7∗ WBBHJ002018+591740.9 002018.249 +591740.92 0.93±0.14 - 700 −0.4±0.1 8 WBBHJ002019+591802.3 002019.334 +591802.33 0.87 0.16 - >7700 2.0 ± ≤− 9 WBBHJ002033+591942.9 002033.390 +591942.89 0.49 0.11 - >4100 1.0 ± ≤− 10 WBBHJ002008+591955.2 002008.137 +591955.23 0.37 0.07 0.14 0.03 >3200 0.8 0.3 ± ± − ± 11 WBBHJ001951+591644.2 001951.498 +591644.20 0.26 0.06 - >2000 1.1 ± ≤− Notes:Sourceswitha*areextendedsourcesandtheirspectralindices(italicized)arederivedfromthelow–resolutionspectralindexmaps presentedinHeesenetal.(2011).Allotherspectralindicesarederivedfromthee–MERLINobservations.Thepeakbrightnesstemperatures havebeenderivedfromthe1.5GHzobservations. awiderfieldofview,itismoresensitivetoextendedemis- cross-matchedtheseremainingcandidateswithlowerreso- sionthanthecorresponding5GHzmaps(seeFigure2).Fur- lutionfeaturesfromKarlG.JanskyVeryLargeArray(VLA) thermore,anysourcesdominatedbynon–thermalemission maps at 1.5GHz (Heesen et al. 2015; see Figure 3) to iden- mechanisms will be brighter at 1.5GHz due to the power– tifyspuriousdetections.Thelowerresolutionmapshavea lawradiospectrathesesourcesexhibit.WeusedAegeanas 13µJybeam−1 rmsnoiselevel,andso,wewouldexpectto oursourceextractor(Hancocketal.2012)withapeakflux observea5σe–MERLINdetectioninthesemaps.Wedeter- densitythresholdof5timesthermsnoiselevel,σrms,tofind mine2ofthee–MERLINdetectionstobespuriousandend candidates.Thesourceextractorretrieved26sourcesinto- upwithasampleof13sourceswhichwedisplayinFigure tal, of which 15 are coincident with IC10’s main disk. We MNRAS000,1–15(2016) High–ResolutionRadioContinuumStudyofIC10 7 Figure4.Naturallyweighted5GHze–MERLINdetectionsfromthisstudy.Thebeamsizeforthisimageis00.014x00.006andisdisplayedinthe bottom–leftofeachcontourplot.Thecontoursoneachsourcearesetto-3,3,6,10,20,40xthe12µJybeam−1noiselevel.Eachfieldmeasures 200onaside.Anidentifyingsourcenumberislocatedinthetop-leftcornerofeachcontourmap. 3.Wediscussthecompletenessandreliabilityofoursource with a FWHM of 30’ for the 1.5GHz observations (exclud- detectionmethodinSection3.6. ingtheLovellantenna)andaFWHMof5.6’forthe5GHz observations(includingtheLovellantenna). 3.2 SourceFluxMeasurement 3.3 BrightnessTemperature We determine integrated flux densitites for the unresolved and resolved sources using 2 different methods. For unre- Assuming an optically thick source, the expected observed solvedsourceswefitGaussiansthroughtheuseoftheAIPS brightness temperature for free–free emission from HII re- taskJMFIT.Forresolvedsources,wegenerateamaskbyonly gions is of order 10000K. Electrons radiating via non– considering emission associated with each source above a thermalmechanisms,however,leadtoobservedbrightness 3σrmslevel,whereσrmsisthelocalmaprmsnoiselevel(mea- temperaturesthatcanbemuchhigher(e.g.,1012K);bright- suredoffsource).Wethenintegratethemaskedemissionto ness temperatures could therefore be used to aid in source findtheintegratedfluxdensity. classification. Theerrorsfortheintegratedfluxdensitymeasurements Assuming a Rayleigh–Jeans black–body curve, we cal- aredeterminedusing: culate the brightness temperature, T , for each detected B sourceusing: σ = (σ )2+(σ )2 (1) Total Map Scale c2 S q T ν (2) JMFIwThfoerreuσnMreaspoilsveedithsoeurrecqeusaolrtiotitsheequfiatletroro√rNreσturmrsnfeodrrbey- B≈W2hνe2rkeBΩk(cid:18)is10t2h6eJyBWolt−z1mma2nnHzco(cid:19)nstant, c is the speed of solvedsources(N isthenumberofindependentbeamsthat B light, ν is the central frequency of the combined 1.5GHz fitwithinthemaskedimage).σ istheuncertaintyinthe Scale observations (1518MHz), Ω is solid angle that the synthe- fluxscalewhichistakentobe10percent. Wecorrecttheintegratedfluxdensityfromeachsource sized beam subtends and Sν is the measured flux density inJy.Thederivedbrightnesstemperatureisonlycorrectfor forprimarybeamattenuationindividuallybyassumingthe sourcesthatareresolved,i.e.,whenthesynthesizedbeamis e-MERLINprimarybeamcanbeparameterizedbyaGaus- sian,asdisplayedinthee–MERLINtechincalcapabillities4, completelyfilledwiththeemittingsource.Asitstands,our brightnesstemperatureforextendedsourcesislikelytobean underestimate,duetousmissingfluxasaresultofthelack 4 Availableathttp://www.e-merlin.ac.uk/tech/ ofshortbaselinesintheseinterferometricobservations.The MNRAS000,1–15(2016) 8 J.Westcottetal. To find spectral indices for resolved sources, we make Table4.AngularSizesofExtendedandResolvedSourcesat1.5GHz use of the spectral index maps provided in Heesen et al. (2011).Thesemapsaretakenatamuchlowerresolutionthan SourceNo MajorAxis MinorAxis Positionangle thepresentede–MERLINobservations,andhencecanonly (00) (00) (◦) giveusageneralideaaboutthespectralindexoftheresolved 1* 3.34+0.30 1.85+0.26 138.96+13.37 sourcescombinedwithemissionfromtheirimmediatesur- 0.63 0.34 10.99 2* 1.86−+0.12 1.21−+0.12 14.93+−17.18 roundingenvironment. 0.34 0.27 19.65 3* 2.49 −0.38 0.96−+0.14 71.35−+9.16 4* 1.46±+0.09 0.90−+00..0249 9.51+−116..4796 0.33 0.17 10.32 7* 1.80+−0.07 1.25+−0.06 48.93−+12.46 0.21 0.20 11.37 8 0.694 −0.094 0.590 −0.080 123.65−33.87 ± ± ± Notes:Thesuperscript*intheSourceNocolumnindicatesthatthe 3.6 Completeness&Reliability sourceisextended.Thepositionangleofeachsourceismeasured anti-clockwisefromtheNorth. WecarriedoutMonte–Carlosimulationsat1.5GHztoassess thecompleteness,C,andreliability,R,ofoursourcedetec- brightnesstemperatureobservedforunresolvedsourceswill tionmethod.Ateachband,wetookablankfieldfromthe alsobeanunderestimateasthesynthesizedbeamislarger widefield imaging (i.e., a noise map) and randomly added thanthetrueangularsizeofthesource.Furthermore,ourra- 400 Gaussian sources, each the same size as the naturally dioobservationsareprobingopticallythinconditions,result- weighted synthesized beam. We assigned a flux density to inginafurtherreductionoftheobservedbrightnesstemper- eachofthesesources,drawnfromacontinous,uniformprob- atures.Therefore,thebrightnesstemperaturesderivedboth ability distribution between 2 and 12 times the rms noise forallsourcesshouldbetreatedaslowerlimits.Wepresent levelofthemaps.WethenusedAegeantorecovertheplaced thepeakbrightnesstemperatureforeachdetectedsourcein sources, setting a detection threshold at 3 times the map Table3anddisplaybrightnesstemperaturecontoursforthe rmsnoiselevel.Asinouranalysis,onlysourcesexceeding resolvedsourcesinFigure3. athresholdof5σareusedtodeterminethestatisticalcom- pletenessofoursourcedetectionmethod.Thisprocesswas repeated1000timestoensureastaticallyrobustanswer. 3.4 AngularSizes Wesplitourdataintofluxbins,eachofwidth0.5times themaprmsnoise.Wedefinethecompleteness&reliability We measure the angular size, position angle and sky co- foreachfluxbinas: ordinates of each extended source by fitting an ellipse to the3σrmscontour.Weoptimizethefitbyminimizingtheχ2 statistic,assumingtheerrorateachpointonthecontouris thesame.Weobtainerrorsinthefitviathe∆χ2method,i.e., C = NM (3) bymodifyingeachindividualparametertogainχ2asafunc- NP tionofsaidparameterwhilstfixingallotherparametersto thebestfit.Thequoted1σerrorsaredefinedbytheintersect where∆χ2fromtheminimizedχ2isequalto1. N For marginally resolved and unresolved sources, we R= M (4) N R fit 2–D Gaussian functions using the AIPS task JMFIT to determine the angular size, position angle and sky co- WhereN isthenumberofmatchedsources(amatch M ordinates.Theangularsizepropertiesforextendedandre- is counted when the recovered source is spatially located solvedsourcesat1.5GHzaresummarizedinTable4andthe within 1 synthesized beam of the placed source), NP is skyco-ordinatesarepresentedinTable3. the number of placed sources and N is the total number R of matched sources recovered by the source extractor that 3.5 SpectralIndices alsowithinmatchedinflux(within1σrms uncertainty).The completenessisessentiallyameasureofthefractionofreal Ideally,forunambiguoussourceclassification,werequirea sources our source extractor detects and the reliability is a combination of reliable spectral indices (Sν ∝ να), to gain measureofhowoftenspuriousdetectionsmaybemistaken ameasureofthespectralenergydistributionforeachcom- forrealsources. pactsource,andmapsmadeatmultipleepochswithalong TheresultsfromthisanalysisaresummarisedinFigure enoughtimebaselinetomeasureSNRexpansion( 10yrs: 5.Wearecompletedowntoapproximately7σandreach50% ∼ McDonaldetal.2001;Beswicketal.2006;Fenechetal.2008). completenessatapproximately5σ.Thereliabilityplottellus These current observations are the highest resolution thatour5σdetectionsareveryrobustanditisunlikelythat mapsofIC10yet,andhence,wehavenopreviousobserva- anyofthesesourcesarespuriousdetections.Modifyingthe tionstoobserveanyexpansion.Furthermore,torecoverre- detectionthresholdresultsinatranslationofthecomplete- liablespectralindicesforresolvedsources,werequireboth ness distribuion presented in the upper panel of Figure 5, observationstohavesignificantlyoverlappinguv-planes.For wherethechosenthresholdbroadlymatcheswherethecom- ourcurrente–MERLINobservationshowever,thisisnotthe pletenessreaches50%.Changingthethresholdto,forexam- case(seeFigure2)andwecanonlygainreliablespectralin- ple3σ,increasesthecompletenessatlowfluxlevels,how- dices for sources that are unresolved at both 1.5GHz and ever,thisdoesnotresultinanincreaseinthereliability,as 5GHz. additionalsourcesmaybespurious. MNRAS000,1–15(2016) High–ResolutionRadioContinuumStudyofIC10 9 Figure5.Completenesssandreliabilityplotsforthecombined1.5GHzobservationsofIC10.Theuncertaintyinallbinsis<5%.Inthelower plot,averticalreddashedlinerepresentsthelowerfluxlimittowhichwecaninvestigatethereliability. 4 DISCUSSION gion.Thebrightnesstemperatureforthissourceisoforder 8000K,whichisroughlywhatisexpectedforanHIIregion. 4.1 IndividualSourceNotes Therefore,itislikelythatthissourceisacompactHIIregion Inthissectionwebrieflydiscusseachsourceinturn,high- withinIC10. lightingrelevantinformationtoaidinitsclassification. Source3(WBBHJ002015+591853.9):Thissourceispar- Source1(WBBHJ002017+591839.7):Thisisthebright- ticularly interesting. It has an unusual extended morphol- estsourcethatwedetectinoure–MERLINobservationsand ogy, no counterpart in either the Hα or 70µm maps and italsohasthelargestangularsize.Thereisevidenceinthe doesnotappeartobeassociatedwithanydiffuseHI emis- presentedcontourmapsfora‘cleanbowl’,hintingthatwe sion.Thissourcedoesnotappeartoberelatedtoanystar- aremissingfluxfromthissourceduetothelackofshortspac- forming regions within IC10, but it is spatially coincident ingsinthee–MERLINarray.Wefindthatthissourceisspa- withaChandraX–raysource.Asthissourcealsohasasteep tiallycoincidentwithemissionpeaksintheHα,70µmmaps low–resolutionspectralindex(α 1.0),determinedfrom ∼ − andlowerresolution5GHzand1.5GHzmaps.Thissource lowerresolutionmapsintheliterature,itislikelytobeacon- alsofallsbetween2holesinthelarge-scaleHIemission(see taminatingbackgroundgalaxy.Thissourcehasalowerthan Figure 1). We derive a brightness temperature of approxi- expected brightness temperature of roughly 3000K, which matly5000Kforthissource,whichislowerthanexpected. couldbeduetohighopticalthicknessalongthelineofsight Itisunlikelythatthisisduetoahighopticalthicknessalong to this source or due to missing flux from short baselines. thelineofsighttothesource,andisprobablyduetomissing Future VLA A–Array 10GHz observations would provide flux.Thelowresolutionspectralindexfromtheliteratureis areliablespectralindexforthissourceandhelpdetermine flat(α 0.3).Inviewoftheabove,weclassifythissource whetheritresideswithinIC10. ∼− asacompactHIIregionwithinIC10. Source4(WBBHJ002027+591706.1):LikeSource2,this Source2(WBBHJ002027+591728.7):Thissourceisspa- source is coincident with emission in the Hα and 70µm tiallycoincidentwithpeaksofemissionintheHαand70µm maps,thelowerresolution5GHz,and1.5GHzmapsaswell mapsaswellaslowerresolution5GHz,and1.5GHzmaps. aswithapeakintheHIdistribution.Source4islocatedon Itisalsospatiallycoincidentwithacurrentmajorstarform- theoutskirtsoftheNon–Thermalsuperbubble(seeSection ingregionwithinIC10(Heesenetal.2015),withnumerous 4.5),andtherearemanyWRstarsinthisgeneralregionofthe WRstarsnearby.Moreover,thissourceislocatedwithinthe galaxy. We determine a brightness temperature of roughly highestpeakoftheHIdistribution,indicatingthatSFispos- 5000K,whichislowerthanexpectedandcouldbeduetothe siblybeingfuelledatthislocation.Thelow-resolutionspec- samereasonsasdiscussedforsource1.Thissourcehasarel- tralindexfromtheliteratureforthissourceis-0.1,whichis ativelyflatlowresolutionspectralindex(α 0.4)andis ∼ − consistantwithadominatingthermalcontributioninthisre- likelytobeacompactHIIregionwithinIC10. MNRAS000,1–15(2016) 10 J.Westcottetal. Source5(WBBHJ002008+591540.2):Thissourceisun- North–East of IC10’s main disk. The source appears to be resolvedandlocatedtowardsthesouthernoutskirtofIC10’s extendedtotheEastinFigure3,butvisualinspectionsug- main disk. There are no corresponding sources at Hα or gests this to be a noise peak. This source appears isolated 70µm.Asthissourceisunresolved,thederivedbrightness fromIC10’smaindisk,withnocorrespondingemissionin temperature must be treated as a lower limit and the true eithertheHαor70µmmaps.Thissourceisfaintwithalower brightnesstemperaturemustbegreaterthan10000K.Ifthis limittothebrightnesstemperatureof4000K,whichisprob- sourceisofnon-thermalorigin,weexpectthatitmusthave ablyduetothesourcefillingasmallfractionofthesynthe- an angular size much smaller than the synthesized beam. sizedbeam.Duetoitsisolation,weclassifythissourceasa Furthermore, this source has a steep spectral index (α backgroundgalaxy. ∼ 1.3)asdeterminedfromoure–MERLINobservationsand Source10(WBBHJ002008+591955.2):Thissourceisan- − itisalsocoincidentwithaChandraX–raysource.Itislikely otherunresolvedsourcelocatedtowardstheNorth–Westof thatthissourceisabackgroundAGN. IC10’smaindisk.Thissourcelookslikeitcouldbeassoci- Source6(WBBHJ002027+591843.7):Thissourceisun- atedwiththenorthernringintheHIdistribution(seeFigure resolvedandlocatedtowardstheNorth-EastofIC10’smain 1)butitappearstobeoffset.Thereisnocorrespondingemis- disk.SimilarlytoSource5,thereisnocorrespondingemis- sionineitherHαor70µmmaps.Wederivealowerlimitto sion in either Hα or 70µm maps. We derive a lower limit thebrightnesstemperatureof3000Kwhichispossiblydue forthebrightnesstemperatureof8000K,butthisislikelyto tothesourcefillingasmallfractionofthesynthesizedbeam. be due to the source filling a small fraction of the synthe- This source appears to be coincident with a low resolution sizedbeam.Thissourceisspatiallylocatedclosetobutsepa- XMMX–raysource,butduetothelowresolution(1300,Wang ratefromaChandraX–raysource.Itissurprisingthatwedo etal.2005)wecannotsaywithcertaintythatthissourceisthe notdetectthisbrightsourceinthepresented5GHzobserva- originoftheX–rayemission.Thiscurrentevidencesuggests tions,resultinginanextremelysteepspectralindexestimate thatthissourceisafaintbackgroundsource. (α 1.9).Fromthisevidence,itislikelythatthissourceis Source11(WBBHJ001951+591644.2):Thissourceisan- ≤− abackgroundsource. other faint, unresolved source that is located towards the Source7(WBBHJ002018+591740.9):Thissourcehasa WestofIC10’smaindisk.Thissourcefallswithinextended resolved,diffusestructurewithasharppeakabovethe5σrms emissioninthe70µmmapbuttheHαmapdoesnotextend threshold.InFigure3wedisplayacontourmapthatwecon- thisfar.Thissourceislikelytobeabackgroundgalaxyasit volvedtoaresolutionoftwicethenaturallyweightedsyn- hasasteepspectralindex(α< 1.1)andtherearenocoinci- − thesisedbeamtohighlightthisdiffuseemission.Wecarried dentcompactsourcesatanyotherwavelength.Itcouldalso out the same analysis as for the other sources but with a be a peak in a more diffuse HII region but this is unlikely beamthatwastwicethesize.Thepeakbrightnesstemper- given the spectral index. The lower limit to the brightness ature for this source was found to be just 700K, and this temperature is still quite low ( 2000K) which is possibly ∼ should be treated as a lower limit. This source is located duetothesourcefillingasmallfractionofthesynthesized roughlyinthecentreofIC10’smaindisk,withcorrespond- beam.Furtherinvestigationwillberequiredtoproperlyclas- ingpeaksofemissionintheHα,70µmandthelowresolu- sifythissource,butcurrentevidenceindicatesitislikelyto tionradiocontinuummaps.Moreover,thissourcehasaflat beabackgroundgalaxy. low–resolutionspectralindex,suggestingthatthissourceis possibly an HII region within IC10 although more investi- gationwillberequiredtofullyclassifythissource.Thereis 4.2 ExpectedBackgroundSourceCount eemasitssoifonthaistaso3uσrcrmes. Ilefvtehlisloecmatiesdsio∼n2i.s500altsoowaasrsdosctihateedsowutihth– Wederivetheexpectednumberofbackgroundsourcescoin- source7,itispossiblethatthissourceisayoungSNRandwe cidentwithIC10byanalysingsourcecountsfromthelitera- areobservinghighbrightnessfeaturesintheexpandingshell ture.WefitthesourcecountsfromMassardietal.(2010)with (seeSection4.4).Future,moresensitive,e–MERLIN1.5GHz a 4th order polynomial5. This was chosen as it is the low- andVLA1.5GHzA–Arrayobservationswillberequiredto estorderpolynomialthatrepresentsthedatawell.Wethen determine if this source has an extended component. VLA applycorrectionsforcompleteness(seeSection3.6)andend 10GHzA–Arrayobservationscouldalsobeusedtoderivea upwithanestimateforthebackgroundcountof14.8 3.8 ± resolvedspectralindextoaidinclassifyingthissource. sources in a circular field of radius 5’. It is likely that this estimate is a slight overestimate as any nearby extended Source8(WBBHJ002019+591802.3):Thissourceispar- sourceswillberesolvedout,butthisisexpectedtoonlyaffect tiallyresolvedandlocatedtowardsthecentreofIC10.This sourceiscoincidentwithdiffuseemissionintheHαmapand brightersourceswhichcontributelittletotheoverallcounts. InaregionofthesamesizecentredonIC10(seeSection3.1) withpeaksinthe70µmandlowresolutionradiomaps.We wedetect15sourceswhichisconsistentwiththehypothe- do not detect this source in the presented 5GHz maps, re- sultinginaverysteepinferredspectralindex(α 2.0).We sisthatalldetectedsourcesarebackgroundgalaxies.Asdis- ≤− cussed in Section 4.1, it is clear from comparison with Hα present a lower limit for the brightness temperature of or- and70µmmapsthatatleast3ofourdetectionsresidewithin der8000K.Thissourcecouldeitherbeabackgroundsource IC10,butitisobviousfromthisexercisethatthemajorityof orapeakinamoreextendedHIIregion.Deepere–MERLIN thedetectedsourcesareprobablybackgroundgalaxies. 5GHz observations would be required to obtain a reliable spectralindexforthissourceandtodetermineitsmember- shiptoIC10. Source 9 (WBBH J002033+591942.9): This source is 5 The raw data is available from http://web.oapd.inaf.it/ another compact, unresolved source located towards the rstools/srccnt/srccnt_tables.html. MNRAS000,1–15(2016)