ebook img

A Hard Look at the Neutron Stars and Accretion Disks in 4U 1636-53, GX 17+2, and 4U 1705-44 with $\emph{NuSTAR}$ PDF

0.64 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Hard Look at the Neutron Stars and Accretion Disks in 4U 1636-53, GX 17+2, and 4U 1705-44 with $\emph{NuSTAR}$

DRAFTVERSIONJANUARY10,2017 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 AHARDLOOKATTHENEUTRONSTARSANDACCRETIONDISKSIN4U1636-53,GX17+2,AND4U1705-44WITH NUSTAR R.M.LUDLAM1,J.M.MILLER1,M.BACHETTI2,D.BARRET3,4,A.C.BOSTROM1,E.M.CACKETT5,N.DEGENAAR6,7,T.DI SALVO8,L.NATALUCCI9,J.A.TOMSICK10,F.PAERELS11,M.L.PARKER6 DraftversionJanuary10,2017 ABSTRACT 7 We present NuSTAR observations of neutron star (NS) low-mass X-ray binaries: 4U 1636-53, GX 17+2, 1 and4U1705-44. We observed4U1636-53inthehardstate, with anEddingtonfraction,FEdd, of0.01;GX 0 17+2and4U1705-44wereinthesoftstatewithfractionsof0.57and0.10,respectively.Eachspectrumshows 2 evidenceforarelativisticallybroadenedFeK line. Throughaccretiondiskreflectionmodeling,weconstrain α n the radius of the inner disk in 4U 1636-53to be Rin = 1.03±0.03 ISCO (innermoststable circular orbit) a assumingadimensionlessspinparametera∗ = cJ/GM2 = 0.0,andRin = 1.08±0.06ISCOfora∗ = 0.3 J (errors quoted at 1 σ). This value proves to be model independent. For a∗ = 0.3 and M = 1.4 M⊙, for 6 example,1.08±0.06ISCOtranslatestoaphysicalradiusofR = 10.8±0.6km,andtheneutronstarwould havetobesmallerthanthisradius(otheroutcomesarepossibleforallowedspinparametersandmasses). For E] GX17+2,Rin =1.00−1.04ISCOfora∗ =0.0andRin =1.03−1.30ISCOfora∗ =0.3.Fora∗ =0.3and M =1.4M⊙,Rin =1.03−1.30ISCOtranslatestoR=10.3−13.0km.Theinneraccretiondiskin4U1705- H 44maybetruncatedjustabovethestellar surface, perhapsbyaboundarylayerormagnetosphere;reflection . models give a radius of 1.46-1.64 ISCO for a∗ = 0.0 and 1.69-1.93 ISCO for a∗ = 0.3. We discuss the h implicationsthatourresultsmayhaveontheequationofstateofultradense,coldmatterandourunderstanding p of the innermost accretion flow onto neutron stars with low surface magnetic fields, and systematic errors - o relatedtothereflectionmodelsandspacetimemetricaroundlessidealizedneutronstars. r t s a 1. INTRODUCTION vations. LMXBs consist of a roughly stellar-mass compan- [ ion that transfers matter onto a compact object via Roche- Theequationofstate(EOS)ofultradensematterisnotyet known. Earth laboratoriesare unable to replicate the neces- lobe overflow. Broad iron line profiles have been seen 1 in these accreting systems that harbor a black hole (BH; v saryenvironmenttoconstraintheEOS.Thus,theonlywayto e.g. Fabianetal. 1989; Milleretal. 2002, 2007; Reisetal. 4 studymatterundertheseextremeconditionsisthroughobser- 2008, 2009a) or NS (e.g. Bhattacharyya&Strohmayer 7 vationsofneutronstars(NS).TheEOSsetsthemassandra- 2007; Papittoetal. 2008; Cackettetal. 2008, 2009, 2010; 7 diusoftheNS.Theoreticalmass-radiustrackshavebeencom- diSalvoetal. 2009, 2015; Egronetal. 2013; Milleretal. 1 piledfordifferenttheoreticalmodels(seeLattimer&Prakash 2013) as the primary accreting compact object. LMXBs 0 2016 for a review). Three-bodyinteractions between nucle- are ideal laboratories for conducting radius measurements . ons make the radius of the NS the most important quantity 1 through reflection studies since all accretion occurs via the in determining the EOS because it does not change quickly 0 disk, as opposed to their high-mass X-ray binary (HMXB) as a functionof mass. Hence, constrainingthe radiusof the 7 counterpartswhichcanaccreteviastellarwinds. 1 NS can, in turn, lead to a determination of the EOS of the X-raydisklinesareproducedfromanexternalhardX-ray : cold,densematterunderextremelydensephysicalconditions v (Lattimer2011). sourceirradiatingthe accretiondisk. Inthe case ofNSs, the i hardX-ray source couldbe a hotcorona, the stellar surface, X Low-mass X-ray binaries (LMXBs) are one setting in or a boundary layer and may be thermal or non-thermal in which we can attempt to constrain the EOS through obser- r nature. Regardlessof thenatureofthe hardX-rayemission, a 1DepartmentofAstronomy,UniversityofMichigan,1085SouthUni- theasymmetricallybroadenedprofileoftheFeKα linegives versityAve,AnnArbor,MI48109-1107,USA adirectmeasureofthepositionofinnerdisksincetheeffects 2INAF/Osservatorio Astronomico di Cagliari, via della Scienza 5, I- ofgravitationalredshiftandDopplerredshift/boostingonthe 09047Selargius(CA),Italy emission line become stronger closer to the compact object 3UniversitdeToulouse;UPS-OMP;IRAP;Toulouse,France (Fabianetal.1989). 4CNRS;InstitutdeRechercheenAstrophysiqueetPlantologie; 9Av. colonelRoche,BP44346,F-31028Toulousecedex4,France The Fe Kα line in NS LMXBs can set an upper limit 5DepartmentofPhysics&Astronomy,WayneStateUniversity,666W. for the radius of NS since the disk must truncate at or be- HancockSt.,Detroit,MI48201,USA forethesurface(Cackettetal.2008,2010;Reisetal.2009b; 6InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA,UK Milleretal.2013;Degenaaretal.2015). Sincethemagnetic 7AntonPannekoekInstituteforAstronomy,UniversityofAmsterdam, field could also truncate the accretion disk, studies of disk Pastbus94249,1090GEAmsterdam,TheNetherlands 8Dipartimento diFisicaechimica, Universita´ degliStudidiPalermo, reflectioncan also be used to set an upperlimit onthe mag- viaArchirafi36,90123,Palermo,Italy netic field strength (Cackettetal. 2009; Papittoetal. 2009; 9IstitutoNazionalediAstrofisica,INAF-IAPS,viadelFossodelCava- Milleretal. 2011; Degenaaretal. 2014, 2016; Kingetal. liere,00133Roma,Italy 2016;Ludlametal.2016). 10SpaceSciences Laboratory, 7GaussWay,University ofCalifornia, WeanalyzeNuSTAR(Harrisonetal.2013)observationsof Berkeley,CA94720-7450,USA 11Columbia Astrophysics Laboratory, 550 West 120th Street, New NS LMXBs 4U1636-53, GX 17+2, and 4U1705-44. 4U York,NY10027,USA 1636-53 and 4U 1705-44 are categorized as atoll sources 2 Ludlametal. while GX 17+2 is a “Z” source, according to the classifica- Table1 tion of Hasinger&vanderKlis (1989). Atoll sources have NuSTARObservationInformation lowerluminosities(∼ 0.01−0.2LEdd)thanZ sources(see Doneetal.(2007)forareview). TheZsourceshavesoftX- rayspectrathatcanbedescribedbytwothermalcomponents Source ObsID Date NetExp(ks) NetRate(cts/s) 4U1636-53 30101024002 06/06/2015 19.2 40 (multicolordiskblackbodyandsingletemperatureblackbody; GX17+2 30101023002 03/22/2016 23.3 361 Linetal. 2007). Atolls can have soft or hard spectra with 4U1705-44 30101025002 04/22/2016 28.7 174 transitional phases in between. The hard state can be mod- eledwellbyapowerlawandthermalcomponentwhenneeded LAOR, KRYLINE) to account for relativistic broadening and (Linetal.2007). foundthattheFelinedidnotchangesignificantly. Theycon- Further,thespectralstatemaybeassociatedwiththelevel cludethatthelineisbroadenedbymechanismsotherthanjust of disk truncation (Doneetal. 2007). A study of 4U 1608- relativistic broadening, though the data are consistent with 52 by Gierlin´ski&Done (2002) found that at low luminos- a disk remaining at the ISCO if timing parameters trace the ity the accretion disk was truncated while at high luminos- massaccretionrateratherthantheinnerradius. itythe innerradiusofthediskmovedinwards. Pintoreetal. (2016)foundsimilarbehaviorforSAXJ1748.9-2021. How- 1.2. GX17+2 ever,Sannaetal.(2014)foundthattheinnerdiskdidnotseem GX17+2isa bursterlocateda maximumdistanceof 13.0 to be correlatedwith the spectral state for 4U 1636-53. The kpc(Gallowayetal.2008)withaspinfrequencyof293.2Hz innerdiskradiusofSerpensX-1(SerX-1)also doesnotap- (Wijnandsetal. 1997). The counterpart of GX 17+2 is not peartochangemuchforarangeofluminosities(Chiangetal. knowncurrently. ItmaybeNPSer(Tarenghi&Reina1972) 2016). or star “A” proposed by Deutschetal. (1999) from optical 4U1636-53wasinthehardstateatthetimeoftheNuSTAR and IR variability studies. However, Callananetal. (2002) observation,whileGX17+2and4U1705-44wereinthesoft proposed that the IR variability could be explained by syn- state. Wefocusonconstrainingtheinnerdiskradiusinthese chrotron flares. The system has an inclination of less than sources and the implications this has on the EOS for ultra- 45◦ (Cackettetal. 2010, 2012). DiSalvoetal. (2000) per- dense, cold matter. The following sections (§1.1, 1.2, 1.3) formedthefirstextensivespectralanalysisofGX17+2.They give a brief introduction about each source. Section 2 pro- were able to limit the radius of the NS between 10-19 km videsdetailsontheobservationsofeachsourceandhowthe based upon comptonization of photons within their spectra. datawerereduced.Section3presentsouranalysisandresults. Cackettetal. (2010) found a similarly small limit through Section4 discusses thoseresultsand we concludein section modelingtheFereflectionintheaccretiondisk. 5. 1.1. 4U1636-53 1.3. 4U1705-44 4U 1636-53 is a well studied, persistent LMXB that ex- 4U1705-44isapersistentlybrightsourcethatshowsType hibits Type 1 X-ray bursts and has a spin frequency of 581 1 X-ray bursts (Langmeieretal. 1987) which place it at a Hz(Zhangetal.1997;Strohmayer&Markwardt2002). The maximum distance of 7.8 kpc (Gallowayetal. 2008). The source is located a maximum of 6.6 kpc away from in- source has been observed in both the hard and soft states spection of the Type 1 X-ray bursts (assuming the brightest (Barret&Olive2002;Pirainoetal.2007).BroadFeemission type-I X-ray bursts hit the Eddington limit; Gallowayetal. hasbeenineachofthesestates. Theinclinationofthesystem 2008). The companion star is a 0.4 M⊙, 18th magni- is between 20◦ − 50◦ (Pirainoetal. 2007). Di Salvo et al. tude star with an orbital period of 3.8 hours (Pedersenetal. (2009)foundevidenceformultipleemissionlinesforSXVI, 1982; vanParadijsetal. 1990). kHz quasi-periodic oscilla- Ar XVIII, and Ca XIX in addition to iron in observations tions (QPOs) suggest that 4U 1636-53 may harbor a NS as takenwithXMM-Newton. Theselinesgaveaninnerdiskra- large as 2 M⊙ (Barretetal. 2006; Casaresetal. 2006). The diusof2.3±0.3ISCO(assuminga∗ =0).Reisetal.(2009b) systemregularlyundergoesstatetransitionson∼40daytime foundaninnerdiskradiusof1.75+0.17ISCOwhenusingob- −0.28 intervals(Shihetal.2005). servations obtained with Suzaku. Cackettetal. (2010) used Reflectionstudiessuggestthissourcehasahighinclination, both XMM-Newton and Suzaku observations and found that butalackofdipsintheX-raylightcurvelimitstheinclination the inner disk ranged from 1.0-6.5 ISCO. The inner disk of ∼ 70◦ (Franketal. 1987; Casaresetal. 2006; Sannaetal. 4U 1705-44appearsto be truncated in many studies though 2013). Pandeletal. (2008) found the inner disk radius was thedegreeoftruncationvaries. consistent with the innermost stable circular orbit (ISCO) when looking at observations taken with XMM-Newton and 2. OBSERVATIONSANDDATAREDUCTION RXTE while in the transitional and soft state. Cackettetal. The details of each NuSTAR observation are listed in Ta- (2010)foundlargerinnerdiskradiiat∼8±4ISCO(assuming ble 1. Lightcurves and spectra were created using a 120′′ a∗ = 0) whenapplyingblurredreflectionmodelsto the low circular extraction region centered around the source using fluxstate,butvaluesconsistentwiththeISCOweremeasured theNUPRODUCTStoolfromNUSTARDASv1.5.1withCALDB in the soft state. Additionally, Sannaetal. (2013) analyzed 20160421.Abackgroundwasgeneratedandsubtractedusing the source in the soft and transitional states with two addi- anotherregionofthesamedimensioninaregionawayfrom tionalobservations. Theymeasuretheinnerdiskradiustobe thesource.Therewereatotalof6Type1X-rayburstspresent aslargeas4.45ISCOinlowfluxstates,whichissmallerbut inthelightcurvesfor4U1636-53anda singleType1X-ray consistent with Cackettetal. (2010). Lyuetal. (2014) used burstfor4U1705-44. Wewillreportontheburstsinasepa- observations from Suzaku, XMM-Newton, and RXTE to see ratepaper. We createdgoodtimeintervals(GTIs)toremove if the inner disk radius inferred from Fe line changed over ∼10–150saftertheinitialfastrise(dependingonthedura- fluxstates. Theyusedavailabledisklinemodels(DISKLINE, tionoftheindividualburst)toseparatethesefromthesteady AHardLookat4U1636-53,GX17+2,and4U1705-44 3 emission. TheseGTIswereappliedduringthegenerationof asfollows: logoftheionizationparameter(log(ξ)), temper- the spectra for both the FPMA and FPMB. Initial modeling atureoftheincidentblackbodyinkeV(kT),ironabundance of the persistent emission spectra with a constant, fixed to 1 (A ),reflectionfraction(f ),redshift(z),andnormaliza- Fe refl forthe FPMA and allowed to floatfor the FPMB, foundthe tion.TheparametersofRELCONVareasfollows:inneremis- floatingconstanttobewithin0.95-1.05ineachcase. Wepro- sivity index (q ), outer emissivity index (q ), dimension- in out ceededtocombinethetwosourcespectra,backgroundspec- less spin parameter (a∗), inner disk radius in units of ISCO tra, andancillaryresponsematricesvia ADDASCASPEC. We (Rin), and outer disk radius in units of gravitational radii useADDRMFtocreateasingleredistributionmatrixfile. The (Rout). spectra were grouped using GRPPHA to have a minimum of Additionally, we use REFLIONX (Ross&Fabian 2005) to 25countsperbin(Cash1979). testtherobustnessofourresultsobtainedwith RELXILL and thenatureoftheFeKαlineinourBBREFL. Inthecaseofthe 3. SPECTRALANALYSISANDRESULTS 4U1636-53,weuseaversionofREFLIONX12thathasavari- WeuseXSPECversion12.8.1(Arnaud1996)inthiswork. ablehighenergycut-off.Weconvolvethismodelwiththerel- Allerrorsarequotedat1σ (68%)confidencelevelandwere ativisticblurringkernelKERRCONV(Brenneman&Reynolds calculated from Monte Carlo Markov Chain (MCMC) of 2006). Thisprovidesacompletelymodelindependentcheck length 100,000. We perform fits over the energy range in to values obtained with RELXILL. In the case of GX 17+2 which the spectrum is not background dominated for each and 4U 1705-44,we have a version of REFLIONX13 that has source. Weaccountfortheneutralcolumnhydrogendensity beenmodifiedtoassumeablackbodyisilluminatingthedisk. alongthelineofsightviaTBABS(Wilmsetal.2000).Theso- Thisreflectionmodeldoesnotrepresentanindependentcheck larabundancewassettoWILM(Wilmsetal.2000)andVERN onBBREFL sincetheyarederivedfromthesameparentcode crosssections(Verneretal.1996)wereused. (Ross&Fabian1993). Itcan,however,beusedtoverifythat We experimented with different phenomenological one, the Fe K line is dynamicallybroadenedand nota result of α two, and three-component models to describe the spectral gas broadening. This is because the REFLIONX model con- continua. None of the sources required three components. tainsadditionalphysicsthataccountsforgaseffects. Ithasa The continuumof the spectrum obtained from 4U 1636−53 broaderrangeofelements,chargestates,andionizationwhile waswelldescribedwithacut-offpower-lawmodel. Thecut- itaccountsforthe localradiationfieldateachpoint. Hence, offenergymayreflecttheelectrontemperatureofthecorona, ifweareabletoobtainsimilarvaluesforvariousparameters, andthesimplecontinuumcomponentmayonlybeanapprox- thenthelineprofileisdynamicalinorigin. imationofaregiondominatedbyComptonization.Thespec- A few reasonable conditions were enforced when making tral continua of GX 17+2 and 4U 1705−44 were well de- fitswithRELXILLandRELCONV. First,wetietheouteremis- scribed by a combination of disk blackbody (Mitsudaetal. sivityindex,q totheinneremissivityindex,q ,tocreatea out in 1984) and simple blackbody components. It is possible to constantemissivityindex.Next,wefixthespinparameter,a∗ infer radii from both disk blackbody and simple blackbody (where a∗ = cJ/GM2), in the model RELCONV to 0.0 and components; however, it is also clear that scattering can 0.3inthesubsequentfitssinceNSinLMXBshavea∗ ≤ 0.3 harden emergent spectra and cause falsely small radii to be (Milleretal.2011;Gallowayetal.2008). Thisdoesnothin- inferred(e.g.,Londonetal.1986;Shimura&Takahara1995; der our estimate of the inner radiussince the position of the Merlonietal.2000).Lowtemperature,optically-thickComp- ISCO is relatively constant for low spin parameters (correc- tonizationcansometimesbeapproximatedasablackbody;it tions for frame-dragging for a∗ < 0.3 give errors ≪ 10%; is likely that our simple blackbody component accounts for Milleretal. 1998). Further, the outer disk radius has been thisprocessintheboundarylayer(e.g.,Gilfanovetal.2003). fixedto 990 R (whereR = GM/c2). In the case thatwe g g Giventhemanycomplexitiesandpossibledistortions,wedo use KERRCONV, we tie the emissivity indices to create one notlooktothecontinuaforrobustphysicalinferences;rather, emissivityindexandfixtheouterdiskradiusto400ISCO. weutilizediskreflectionforthispurpose. To properly describe the reflection features and relativis- 3.1. 4U1636-53 tic effects present in the data for 4U 1636-53 we employ As noted above, initial fits were performed from 3.0-50.0 the model RELXILL (Garc´ıaetal. 2014). This model self- keV with an absorbed cut-off power law to model the con- consistentlyaccountsforX-rayreflectionandrelativisticray tinuumemission. Althoughthecontinuumiswelldescribed, tracing for a power law irradiating an accretion disk while this model gives a poor fit (χ2/dof = 2435.47/876)since properly taking into account the inclination in the reflection itdoesnotaccountforthereflectionpresentwithinthespec- from the disk. The parameters of this model are as fol- trum. AbroadFeK linecentered∼ 7keVwitharedwing lows: inner emissivity (q ), outer emissivity (q ), break α in out extendingtolowerenergiesandbluewingextendingupto9 radius (R ) between the two emissivities, spin parame- ter (a∗ =brceJa/kGM2), inclination if the disk (i), inner radius keV,implyingahighinclination,canbeseeninthetoppanel ofFigure1. The additionof a thermalcomponentimproved of the disk (R ) in units of ISCO, outer radius of the disk in theoverallfit,butthetemperaturewasunfeasiblylowforthe (R ),redshift(z),photonindexofthepowerlaw(Γ),logof out sensitivityofNuSTAR(0.18±0.02keV)andthenormaliza- theionizationparameter(log(ξ)),ironabundance(A ),cut offenergyofthepowerlaw(Ecut),reflectionfractionF(ferefl), tion was notphysicallypossible (3.6+−233.4.2×107), hence we andnormalization. excludeditfromsubsequentmodeling. We apply BBREFL (Ballantyne 2004) to GX 17+2 and 4U WeperformedtwofitswithTBABS*RELXILLforthediffer- 1705-44 in order to model the emergent reflection emission entspinvalues.Eachoftheseprovideasignificantlybetterfit from a disk assuming an irradiating blackbody continuum, (28σ improvement)overtheabsorbedcut-offpowerlawand andconvolveitwithRELCONV(Dauseretal.2010). Theiron abundanceinBBREFLcomesintwoflavors: solarabundance 12https://www-xray.ast.cam.ac.uk/∼mlparker/reflionx models/reflionx hc.mod and twice solar abundance. The parameters of BBREFL are 13http://www-xray.ast.cam.ac.uk/∼mlparker/reflionx models/reflionx bb.mod 4 Ludlametal. Table2 Table3 4U1636RelxillModelingforDifferentSpinParameters 4U1636ReflionxModelingforDifferentSpinParameters Component Parameter RELXILL Component Parameter REFLIONX TBABS NH(1022)† 0.3 0.3 TBABS NH(1022)† 0.3 0.3 RELXILL q 2.25±0.05 2.19±0.04 CUTOFFPL Γ 1.74±0.01 1.75±0.01 a†∗ 0.0 0.3 Ecut(keV) 20.7±0.3 20.6±0.3 i(◦) 78.2±1.67 78.5±1.22 norm 0.20±0.01 0.20±0.01 Rin(ISCO) 1.03±0.03 1.08±0.06 KERRCONV q 2.33±0.04 2.28±0.05 Rout(Rg)† 990 990 a†∗ 0.0 0.3 Rin(km) 12.4±0.4 10.8±0.6 i(◦) 78.6±1.2 78.3±1.2 z† 0.0 0.0 Rin(ISCO) 1.02±0.02 1.08±0.06 Γ 1.74±0.01 1.74±0.01 Rout(ISCO)† 400 400 log(ξ) 3.3±0.1 3.26±0.06 Rin(km) 12.2±0.2 10.8±0.6 AFe 4.9±0.1 4.8±0.1 REFLIONX ξ 1800±600 1100±500 Ecut(keV) 20.5±0.3 20.5±0.3 AFe 4.4±0.5 4.6±0.3 frefl 0.42±0.05 0.40±0.04 frefl 0.6±0.2 0.6±0.3 norm(10−3) 2.21±0.06 2.22±0.03 z† 0 0 Funabs,3.0−50.0keV 8.9±0.2 8.9±0.1 norm(10−7) 2.7±0.9 6.8±4.0 Lunabs,3.0−50.0keV 4.6±0.1 4.63±0.06 Funabs,3.0−50.0keV 9±3 9±5 Funabs,0.5−50.0keV 12.8±0.3 12.8±0.2 Lunabs,3.0−50.0keV 5±2 5±3 Lunabs,0.5−50.0keV 6.7±0.2 6.67±0.09 Funabs,0.5−50.0keV 14±5 14±8 χ2ν(dof) 1.06(862) 1.06(862) Lunabs,0.5−50.0keV 7±2 7±4 †=fixed χ2(dof) 1.25(862) 1.23(862) ν †=fixed Note.—Errorsarequotedat1σconfidencelevel.Theabsorptioncolumn densitywasfixedtotheDickey&Lockman(1990)valueandgiveninunits Note.—Errorsarequotedat1σconfidencelevel.Theabsorptioncolumn ofcm−2.Thespinparameterispeggedatanupperlimitof0.3.Theinner densitywasfixedtotheDickey&Lockman(1990)valueandgiveninunits diskradiusinunitsofkmassumesaNSmassof1.4M⊙.Fluxisgivenin ofcm−2.Thespinparameterispeggedatanupperlimitof0.3.The unitsof10−10ergscm−2s−1.Luminosityiscalculatedatamaximumof REFLIONXmodelusedhasavariablehighenergycutoffwhichwetiedto 6.6kpcandgiveninunitsof1036ergss−1. thecutoffenergyofthecutoffpowerlawusedtomodelthecontinuum emission.Additionally,wetiedthephotonindexbetweenREFLIONXand CUTOFFPL.TheinnerdiskradiusinunitsofkmassumesaNSmassof1.4 can be seen in Table 2. The ionization parameter is reason- M⊙.Fluxisgiveninunitsof10−10ergscm−2s−1.Luminosityis calculatedatamaximumof6.6kpcandgiveninunitsof1036ergss−1. ableforaccretingsourcesacrossallfits. Theironabundance islarge,butfixingittolowervaluesdoesnotchangetheinner diskradius.Regardlessoftheironabundance,eachfitconsis- blackbody component. This gives a poor fit (χ2/dof = tently givesa small innerdisk radiusof Rin = 1.03±0.03 4289.59/670)becausethereflectionspectrumisnotyetmod- ISCOfora∗ =0.0andRin =1.08±0.06ISCOfora∗ =0.3. eled. TheFeKα emissioncanbeseeninthemiddlepanelin Thefitreturnsahighinclinationof76.5◦−79.9◦foreachspin Figure1. The redwing extendsdownto ∼ 4 keV while the value. Thephotonindexis1.74±0.01withacutoffenergy bluewingdropsaround∼7keV. at ∼ 20.5 keV. The best fit spectrum can be seen in Figure We use BBREFL to model the emergent reflection emis- 2. Figure 3 shows the goodness-of-fit versus the inner disk sion and convolveit with RELCONV. The overallmodel we radius(toppanel). usedwasTBABS*(DISKBB+RELCONV*BBREFL). Thismodel Tocheckthatthevaluesobtainedwith our RELXILL mod- provides a better fit with χ2/dof = 793.2/665 (33σ im- eling of 4U 1636-53 are not model dependent, we apply provement for the highest χ2). Parameters and values can ν the model REFLIONX to characterizethe emergentreflection beseeninTable4. Figure2showsthebestfitspectrum. For spectrum arising from an incidentcut-off power law contin- a∗ =0.0,theinnerdiskradiusistightlyconstrainedtoRin = uum. We blur the emergent reflection with the relativistic 1.00−1.02 ISCO for A = 1.0 and R = 1.00−1.04 Fe in convolution model KERRCONV. This version of REFLIONX ISCOforAFe =2.0. Forthehighervalueofspin,a∗ =0.3, hasanadjustablecut-offenergywhichwetiewiththecut-off R =1.15+0.15ISCOforA =1.0andR =1.10±0.07 powerlawmodelusedtomodelthecontinuumemission.This in −0.08 Fe in ISCO for A = 2.0. The emissivity index is high in each Fe model, however, is angle averaged, unlike RELXILL, which case(raytracingassumingeithera hotspotata modestlati- properly takes into account the inclination of the disk when tude, ora heatedequatorialregion,bothpredictq = 3.0; D. tracingeachphotonfromthedisk. Wilkins,priv.comm.).Theinclinationliesbetween25◦−38◦ TheresultingfitcanbeseeninTable3foraspinof0.0and forallfits. Figure3showsthechangeingoodness-of-fitver- 0.3. Theinnerdiskradiusisconsistentwiththevaluesfound sustheinnerdiskradius(middlepanel). in the RELXILL modeling. Additionally, the photon index, To test the origin of the Fe K line, we use a version of α highenergycut-off,emissivityindex,spinparameter,ioniza- REFLIONX that assumes a blackbody is illuminating the ac- tion,andinclinationarewithinerrorforthevaluesfoundwith cretiondisk. Table4showsparametersandvaluesusingthis RELXILL. Thisdemonstratesthatthe innerdisk radiusmea- model. The overallfit is worse, but still requiresa small in- surementisrobust. ner disk radiusof R = 1.00−1.02 ISCO for both values in ofspin. Theinclinationandionizationisconsistentwiththe 3.2. GX17+2 valuesfoundinthepreviousfitswithBBREFL. Theemissivity Initial fits were performedfrom 3.0-30.0keV with an ab- index is close to simple expectations. Regardless, the small sorbedsingletemperatureblackbodyandamulti-temperature inner radii measured with REFLIONX imply that dynamical AHardLookat4U1636-53,GX17+2,and4U1705-44 5 Table4 GX17+2ReflectionModeling Component Parameter BBREFL REFLIONX TBABS NH(1022)† 0.9 0.9 0.9 0.9 0.9 0.9 DISKBB Tin 1.93±0.04 1.992±0.001 1.93±0.05 1.92±0.06 1.92±0.01 1.92±0.01 norm 26±1 23.8±0.1 26±2 26±2 26.8±0.4 26.7±0.4 BLACKBODY kT ... ... ... ... 2.86±0.01 2.86±0.01 norm(10−2) ... ... ... ... 2.9±0.1 2.9±0.1 RELCONV q 8.1+−01..80 3.7+−40..73 6.0±3.0 4.5±1.5 3.5±0.1 3.2±0.1 a†∗ 0.0 0.3 0.0 0.3 0.0 0.3 i(◦) 35.1+0.2 30+8 30±5 30±4 25.9±0.2 25.8±0.2 −0.6 −2 Rin(ISCO) 1.00+0.02 1.15+−00..1058 1.02±0.02 1.10±0.07 1.01±0.01 1.01±0.01 Rout(Rg)† 990 990 990 990 990 990 Rin(km) 12.0+0.2 11.5+−10..58 12.2±0.2 11.0±0.7 12.1±0.1 10.1±0.1 BBREFL log(ξ) 2.47+−00..0071 2.45±0.01 2.33+−00..0091 2.40±0.06 ... ... kT (keV) 3.15+0.01 3.12+0.04 3.03+0.05 3.03±0.02 ... ... −0.07 −0.01 −0.01 A† 1.0 1.0 2.0 2.0 ... ... Fe frefl 1.69+−00..0647 1.52+−00..6071 1.2+−00..24 1.27+−00..0540 ... ... z† 0 0 0 0 ... ... norm(10−26) 8.83+0.60 8.61+0.02 13.0+1.0 13.1+0.08 ... ... −0.01 −0.36 −0.03 −0.01 REFLIONX ξ ... ... ... ... 240±20 230±7 AFe ... ... ... ... 2.1±0.4 2.1±0.4 frefl ... ... ... ... 0.9±0.1 0.9±0.1 z† ... ... ... ... 0 0 norm ... ... ... ... 1.7±0.2 1.8±0.1 Funabs,3.0−30.0keV 7.3+−00..63 7.30+−00..0341 7.3+−00..86 7.3±0.1 7.3±0.9 7.3±0.5 Lunabs,3.0−30.0keV 1.5±0.1 1.48+−00..0016 1.5+−00..21 1.48±0.02 1.5±0.2 1.5±0.1 Funabs,0.5−30.0keV 10.7+−00..84 10.7+−00..14 10.7+−10..28 10.7±0.8 11.0±1.3 11.0±0.7 Lunabs,0.5−30.0keV 2.2+−00..21 2.16+−00..0018 2.2±0.2 2.2±0.2 2.2±0.3 2.2±0.1 χ2(dof) 1.06(665) 1.13(665) 1.19(665) 1.18(665) 1.28(664) 1.26(664) ν †=fixed Note.—Errorsarequotedat1σconfidencelevel.TheabsorptioncolumndensitywasfixedtotheDickey&Lockman(1990)valueandgiveninunitsofcm−2. Limbbrighteningwasassumed.Theemissivityindexwaspeggedatthehardlimitof3.0.TheREFLIONXmodelusedhasbeenmodifiedforablackbody illuminatingtheaccretiondisk.TheinclinationforREFLIONXwaspeggedwithinthelimitsfoundwiththeBBREFLduetothemodelbeingangleaveragedand notabletoconstraintheinclination.TheionizationparameterwasalsopeggedwithintheBBREFLvaluessinceitwasunconstrainedonitsown.Theblackbody temperatureinREFLIONXwastiedtothetemperatureoftheblackbodyusedtomodelthecontinuumemission.Theemissivityindexwaspeggedatthehard limitof3.0.TheinnerdiskradiusinunitsofkmassumesaNSmassof1.4M⊙.Fluxisgiveninunitsof10−9ergscm−2s−1.Luminosityiscalculatedata maximumof13.0kpcandgiveninunitsof1038ergss−1. broadeningis dominantin shaping the iron line, and any at- a blackbodyilluminating the disk. The resulting fits can be mosphericeffectsaresecondary. seeninTable5. Eventhoughtheoverallfitisslightlyworse, thediskstillrequiresatruncationofR =1.21±0.18ISCO in 3.3. 4U1705-44 for a∗ = 0.0 and Rin = 1.37±0.27 ISCO for a∗ = 0.3. Initial fits were performedfrom 3.0-30.0keV with an ab- Neither model strongly requires that the disk extends to the sorbedsingletemperatureblackbodyandamulti-temperature ISCO,thoughtheISCOiswithin2sigmaofthenominalbest- blackbody component. This gives a poor fit (χ2/dof = fit valuesfoundwith REFLIONX. Thisconfirmsthatdynam- 4504.9/670)sincethestrongdiskreflectionspectrumhasnot ical broadeningis the dominantmechanismfor the iron line been modeled. See the bottom panel of Figure 1 for the Fe shape. K line. SincethediskdoesnotextenddowntotheISCO,wecalcu- α We use BBREFL to model the emergent re- latetheextentofa possibleboundarylayerandplaceanup- flection emission and convolve it with RELCONV perlimitonthemagneticfieldstrengthsincetheseareplausi- (Dauseretal. 2010). The overall model we used was blescenariosfordisktruncation. Popham&Sunyaev(2001) TBABS*(DISKBB+RELCONV*BBREFL). This provides a layoutthe Newtonianframeworkforboundarylayer behav- better overall fit (34σ improvement for the highest χ2). ior for differentmass accretion rates. We estimate the mass ν ParametersandvaluescanbeseeninTable5. Theinnerdisk accretionfor4U1705-44tobe(3.4±0.4)×10−9M⊙ yr−1 radius is slightly truncated prior to the neutron star surface from the 0.5-30.0 keV unabsorbed luminosity and using an between1.46-1.64ISCOfora∗ = 0.0forbothvaluesofiron efficiency of η = 0.2 (Sibgatullin&Sunyaev 2000). Using abundance.Fora∗ =0.3,theinnerdiskradiusistruncatedat Equation(25)inPopham&Sunyaev(2001),weestimatethat 1.69-1.93ISCO.Theinclinationisbetween24.0◦−26.1◦for theboundarylayerextendsoutto∼ 1.2ISCO(assuming1.4 all fits. The change in goodness-of-fitversus the inner disk M⊙&a∗ =0.0).Additionalfactors,suchasspinandviscos- radiuscanbeseeninthebottompanelofFigure3. ity in the layer, can extend this region to be consistent with Again,wetesttheoriginofourFeK lineinthistruncated thetruncationoftheinnerdisk. α disk with the version REFLIONX that has been modified for Ifthediskisimpededbythemagnetosphere,wecanplace 6 Ludlametal. Table5 4U1705-44ReflectionModeling Component Parameter BBREFL REFLIONX TBABS NH(1022)† 0.7 0.7 0.7 0.7 0.7 0.7 DISKBB Tin 2.13±0.01 2.13±0.01 2.00±0.01 2.00±0.01 1.95±0.02 1.95±0.03 norm 9.65±0.02 9.6±0.1 11.48±0.02 11.60±0.01 12.3±0.5 12.4±0.6 BLACKBODY kT ... ... ... ... 2.54±0.02 2.54±0.03 norm(10−2) ... ... ... ... 1.15±0.05 1.15±0.08 RELCONV q 3.1±0.1 3.1±0.1 3.2±0.1 3.2±0.1 2.8±0.3 2.7±0.3 a†∗ 0.0 0.3 0.0 0.3 0.0 0.3 i(◦) 24.4±0.4 24.4±0.4 24.6±0.5 25.6±0.5 13±11 16±6 Rin(ISCO) 1.54±0.08 1.82±0.09 1.50±0.07 1.78±0.09 1.21±0.18 1.37±0.27 Rout(Rg)† 990 990 990 990 990 990 Rin(km) 18.4±1.0 18.2±0.9 18.0±0.8 17.8±0.9 14.5±2.2 13.7±2.7 BBREFL log(ξ) 2.67±0.02 2.66±0.02 2.74±0.04 2.74±0.04 ... ... kT (keV) 2.83±0.01 2.84±0.02 2.67±0.01 2.67±0.01 ... ... A† 1.0 1.0 2.0 2.0 ... ... Fe frefl 2.0±0.1 2.1±0.2 0.74±0.02 0.74±0.02 ... ... z† 0 0 0 0 ... ... norm(10−26) 1.24±0.06 1.24±0.08 2.1±0.2 2.1±0.2 ... ... REFLIONX ξ ... ... ... ... 430±20 430±20 AFe ... ... ... ... 2.0±0.4 2.0±0.6 frefl ... ... ... ... 0.72±0.06 0.72±0.08 z† ... ... ... ... 0 0 norm ... ... ... ... 0.57±0.04 0.60±0.05 Funabs,3.0−30.0keV 3.4±0.2 3.4±0.2 3.4±0.3 3.4±0.3 3.4±0.3 3.4±0.4 Lunabs,3.0−30.0keV 2.5±0.1 2.5±0.2 2.5±0.2 2.5±0.2 2.5±0.2 2.5±0.3 Funabs,0.5−30.0keV 5.0±0.2 5.0±0.3 5.0±0.5 5.0±0.5 5.2±0.5 5.2±0.6 Lunabs,0.5−30.0keV 3.7±0.2 3.7±0.2 3.7±0.3 3.7±0.3 3.8±0.3 3.8±0.5 χ2(dof) 1.16(665) 1.16(665) 1.19(665) 1.19(665) 1.21(664) 1.21(664) ν †=fixed Note.—Errorsarequotedat1σconfidencelevel.TheabsorptioncolumndensitywasfixedtotheDickey&Lockman(1990)valueandgiveninunitsofcm−2. Limbbrighteningwasassumed.TheREFLIONXmodelusedhasbeenmodifiedforablackbodyilluminatingtheaccretiondisk.TheinclinationforREFLIONX waspeggedwithinthelimitsfoundwiththeBBREFLduetothemodelbeingangleaveragedandnotabletoconstraintheinclination.Theionizationparameter wasalsopeggedwithintheBBREFLvaluessinceitwasunconstrainedonitsown.TheblackbodytemperatureinREFLIONXwastiedtothetemperatureofthe blackbodyusedtomodelthecontinuumemission.InnerdiskradiusinunitsofkmassumesaNSmassof1.4M⊙.Fluxisgiveninunitsof10−9ergscm−2 s−1.Luminosityiscalculatedatamaximumof7.8kpcandgiveninunitsof1037ergss−1. an upper limit on the strength of the field using the upper disks.Differentdiskreflectionspectraareconsideredforeach limit of Rin = 9.8 Rg. Assuming a mass of 1.4 M⊙, tak- sourceinordertoexaminehowinferredradiidependonmod- ingthedistancetobe7.8kpc,andusingtheunabsorbedflux elingassumptions.Forplausiblecombinationsofneutronstar from0.5-30.0keVof5.2×10−9 ergcm−2 s−1 asthebolo- masses and dimensionless angularmomenta, our results im- metric flux, we can determine the magnetic dipole moment, plythatdisksextendtoanISCO,thatneutronstarsaresmaller µ, fromEquation(1)takenfromCackettetal. (2009). Ifwe than their ISCO, and the results begin to place meaningful make the same assumptions about geometry (i.e. k = 1, constraintsonneutronstarradii. Inthissection,weconsider A f = 1) and use an accretion efficiency of η = 0.2, then the results within the contextof the neutronstar equationof ang µ ≃ 2.2×1026Gcm3. Thiscorrespondstoamagneticfield state, implications for the inner accretion flow onto neutron strengthofB ≃4.3×108GatthemagneticpolesforaNSof stars,andevaluatepossiblesystematicerrorsandavenuesfor 10km. Moreover,ifweassumeadifferentconversionfactor improvementinfuturestudies. k = 0.5(Longetal.2005)thenthemagneticfieldstrength atAthepoleswouldbeB ≃1.5×109G.Notethatthemagnetic 4.1. NeutronStarRadiusConstraints field strengthat the pole is twice as strongas at the equator. 4U 1636-53is foundto have an innerdisk radiusof 1.00- However,thetype1X-rayburstthatoccurredduringtheob- 1.03ISCOfora∗ = 0.0and1.02-1.14ISCOfora∗ = 0.3as servationmeanmaterialisstillreachingthesurfaceoftheNS constrained from RELXILL modeling of the reflection spec- andnopulsationshavebeenseen. trum.Weappliedanotherreflectionmodel,REFLIONX,totest the robustness of our measurement. The resulting fit gave a 4. DISCUSSION nearly identical inner disk measurement. For a∗ = 0.3 and Using NuSTAR, we have taken a hard look at three well- 1.4M⊙,1.08±0.06ISCOtranslatesto10.8±0.6km.Forthe known neutron star X-ray binaries. Our observations cap- lowervalueofa∗ =0.0and1.4M⊙,1.03±0.03ISCOtrans- tured 4U 1636−53 in the hard state, while GX 17+2 and latesto12.4±0.4km.Thissmallinnerdiskradiusisinagree- 4U1705−44werecaughtinsoftstates. OwingtoNuSTAR’s ment with previous measurements for this source that were broad bandpass and its ability to measure robust spectra at consistent with the ISCO (Pandeletal. 2008; Cackettetal. high flux levels, we are able to constrain different proper- 2010; Sannaetal. 2013). The high inclination of 4U 1636- tiesofthesesourcesthroughmodelingofreflectionfromtheir 53 is consistent with previousreflection studies (Franketal. AHardLookat4U1636-53,GX17+2,and4U1705-44 7 5 1.1 105 (a) 4U 1636−53 (a) 4U 1636−53 V−1 104 e 1.1 nts k u Co 1000 Ratio 1.05 100 1.4 o 1.2 1 Rati 1 5 10 20 95 Energy (keV) 0.3 4 5 E6nergy (keV7) 8 9 10 106 (b) GX 17+2 1 1. 105 (b) GX 17+2 eV−1 104 nts k ou 1000 C 5 1.0 100 o 10 ati R o 1.2 1 ati R 1 5 10 20 Energy (keV) 95 106 0.3 4 5 6 7 8 9 10 Energy (keV) (c) 4U 1705−44 105 5 1 1. V−1 104 (c) 4U 1705−44 unts ke 1000 o C 1 1. 100 10 Ratio 1.05 1.4 o 1.2 ati R 1 1 0.8 5 10 20 Energy (keV) Figure2. (a)4U1636-53spectrumfitfrom3.0-50.0keVwithRELXILL(red 95 dashline)forthefitinTable2.Thepanelbelowshowstheratioofthedatato 0.3 4 5 E6nergy (keV7) 8 9 10 themodel. (b)GX17+2spectrumfitfrom3.0-30.0keVwithDISKBB(blue dot-dashline)andBBREFL(reddashline)forthefitinTable4. Thepanel Figure1. Ratioofthedatatothecontinuum modelintheFeKbandfor belowshowstheratioofthedatatothemodel. (c)4U1705-44spectrumfit NuSTARobservationof4U1636-53,GX17+2,and4U1705-44. Theiron from3.0-30.0keVwithDISKBB(bluedot-dashline)andBBREFL(reddash lineregionfrom5-8keVwasignoredtopreventthefeaturefromskewingthe line)forthefitinTable5.Thepanelbelowshowstheratioofthedatatothe fit.Thedatawererebinnedforplottingpurposes.(a)Asimplecut-offpower model.Thedatawererebinnedforplottingpurposes. lawwasfitovertheenergiesof3.0-5.0keVand8.0-50.0keV.Forpanels(b) and(c), asimplediskblackbodyandsingletemperature blackbodywasfit overtheenergiesof3.0-5.0keVand8.0-30.0keV. a∗ = 0.0 and 1.4 M⊙, 1.00 − 1.02 ISCO translates to 12.0−12.2 km. For the higher value of a∗ = 0.3 and 1.4 1987; Casaresetal. 2006; Cackettetal. 2010; Sannaetal. M⊙, 1.03−1.30ISCO translatesto 10.3−13 km. The in- 2013). clination was found to be 25◦ − 38◦. Cackettetal. (2010) Similarly, the inner disk radius in GX 17+2 is tightly foundsimilarlysmallinnerdiskradiiandlowinclinationfor constrained to 1.00-1.02 ISCO for a∗ = 0.0 and 1.03-1.30 thissystem. ISCO for a∗ = 0.3 byusing theblackbodyreflectionmodel Thus, in the most sensitive and robust spectra of 4U BBREFL. We founda tighter constrainton the inner disk ra- 1636−53 and GX 17+2 yet obtained, the innermost extent diusof1.00-1.01ISCOwhenweappliedaREFLIONX model of the accretion disk is found to be close to the ISCO, with thatwasmodifiedforablackbodyilluminatingthedisk. For consequences for the neutron star radii. There may still be 8 Ludlametal. ceedtoexaminetheimplicationsoftheresultsfortheEOSof ultradensematterinamoregeneralizedway. Ratherthanas- sumingspecificvaluesa = cJ/GM2, weneedtodetermine thelikelyrangeofagiventhemeasuredspinfrequenciesfor thesesources. 40 4U 1636-53 and GX 17+2 have known rotation frequen- (a) 4U 1636-53 35 cies: ν1636−53 = 518.0 Hz (Gallowayetal. 2008) and ν17+2 = 293.2Hz (Wijnandsetal. 1997), respectively. The 30 total angular momentum, J, can be obtained from the spin frequency assuming a reasonable range of mass and radius 25 for a neutron star and a solid sphere (J = 2MR2ω where 5 20 ω = 2πνspin). For 4U 1636−53,ν = 518Hz then implies 0.09±0.05 < a1636−53 < 0.44±0.23, andν = 293.2Hz 15 implies0.05±0.04 < a17+2 < 0.25±0.13. These values assume a mass range of 1.3 ≤ MNS/M⊙ ≤ 2.1, consistent 10 with the range of masses that have been measured directly (Jacobyetal. 2005; Demorestetal. 2010; Freireetal. 2011; 5 Kiziltanetal.2013). Thelowerlimitoftheradiusrangewas 80 determined by where causality approximately intersects the (b) GX 17+2 largestmeasureNS. The upperlimitofthe radiusrangewas 70 limitedbybreakup(a∗ =0.7). The radius of the ISCO around a compact object in units 60 of gravitational radii is depends on its spin Bardeenetal. 50 (1972); the ranges above therefore enable a translation to gravitational radii and then into kilometers. Figure 2∆χ40 4 plots these ranges in the mass versus radius plane used to characterize the EOS. Several equations of states 30 from Akmaletal. (1998), Lattimer&Prakash (2001), and 20 Horowitz&Piekarewicz (2001) are also plotted, as well as knownNS masses frompulsartiming methodsandbinaries. 10 The regions allowed by our models must be considered up- perlimitsontheradiusofneutronstars,sincetheneutronstar 20 canbesmallerthanitsISCO.Diskreflectionisnotyetableto 18 (c) 4U 1705-44 ruleoutplausibleEOS;however,deeperX-rayspectraand/or mass measurements in these systems can greatly reduce the 16 allowedregionsinthismass–radiusplane. 14 4.2. ImplicationsofDiskTruncationin4U1705−44 12 In 4U 1636−53 and GX 17+2, the inner disk appears to 10 extendto the ISCO, and we cannotplace any constraintson 8 the magnetic field in these sources. In contrast, 4U 1705- 6 44 hasan innerdisk radiusof 1.46-1.64ISCO fora∗ = 0.0 and 1.69−1.93 ISCO for a∗ = 0.3. For a spin of 0.0 and 4 stellarmassof1.4M , 1.46-1.64ISCOtranslatesinto17.5- ⊙ 2 19.7km. Aspinof0.3andstellarmassof1.4M ,1.69-1.93 ⊙ ISCOtranslatesinto16.9-19.3km. 1.0 1.2 1.4 1.6 1.8 2.0 Thesimilaritybetweentheresultsofourfitsandpriorwork R (ISCO) in suggests that such modeling is converging on a relatively consistent set of physical constraints. A truncated disk has beenindicatedin4U1705−44inseveralpriorinvestigations (diSalvoetal. 2009, 2015; Reisetal. 2009b; Egronetal. Figure3. The change in goodness-of-fit versus inner disk radius for the 2013; Cackettetal. 2010, 2012). Our results closely match NuSTARobservationsof4U1636-53,GX17+2,and4U1705-44takenover thoseofReisetal.(2009b);thatworkreportedthediskof4U 50evenlyspacedstepsgeneratedwithXSPEC“steppar”. Theinnerdiskra- 1705−44wastruncatedabovethestellarsurfacewithagapof diuswasheldconstantateachstepwhiletheotherparameterswerefreeto ∼3.5km.Ourmodelsfindthattheinclinationoftheinnerdisk adjust.Thebluedashedlineshowsthe68%confidencelevel.(a)4U1636-53 fitcorrespondingtothefirstcolumninTable2.(b)GX17+2fitcorrespond- isbetween24.0◦−26.1◦;thisisagainlargelyconsistentwith ingtothefifthcolumninTable4. (c)4U1705-44fitcorrespondingtothe previousreflectionstudies(20◦−50◦,Pirainoetal.2007;≤ firstcolumninTable5. 35◦, Reisetal. 2009b; D’A`ıetal. 2010; Cackettetal. 2010, aboundarylayerpresentonthesurfaceoftheNS,butinthis 2012;Egronetal.2013).DiSalvoetal.(2015)findaslightly caseitwouldhavetobequitesmall. Giventhat1ISCOcorre- largerinclinationthanwedoof43◦±5◦. spondsto12km,fora∗ =0and1.4M⊙,andusingthefidu- Disksaroundneutronstarscanbetruncatedbyaboundary cialneutronstarradiusof10km,theboundarylayerwouldbe layer, or by magnetic pressure. It is also possible that the about∼2km.Theinnerdiskradiiarenotstronglydependent innerdiskmayevaporateatlowaccretionrates,qualitatively uponthereflectionmodelsthatareutilized.Wethereforepro- similartotheexpectedtruncationofdisksaroundblackholes AHardLookat4U1636-53,GX17+2,and4U1705-44 9 3.0 NL4 2.5 Causality PA1 4U 1636-53 ENG AP4 2.0 J1614-2230 SQM3 Z271 J1903+0327 SQM1 1.5 J1909-3744 GS1 1.0 0.5 ) ⊙ M ( 3.0 ss NL4 a M 2.5 PA1 Causality ENG GX 17+2 AP4 2.0 J1614-2230 SQM3 Z271 J1903+0327 SQM1 1.5 J1909-3744 GS1 1.0 0.5 nucleons nucleons+exotic strange quark matter 5 10 15 20 Radius (km) Figure4. Constraints onthecold, ultradensematterequationofstatefromFeKα reflectionmodelingtodeterminetheinnerdiskradius, assumingthatthe stellarsurfaceistruncating thedisk. Thegrayregionisexcluded bycausality (thespeedofsoundmustbelessthanthespeedoflight). Thecurvelabeled NL4isfromAkmaletal.(1998)andZ271isfromHorowitz&Piekarewicz(2001). Allothermass-radiuscurvesarelabeledasinLattimer&Prakash(2001). Theshadedregionsfor4U1636-53andGX17+2correspondtotheallowedvaluesformassandradiusgivenaspinfrequencyof518.0Hz(Gallowayetal. 2008)and293.2Hz(Wijnandsetal.1997),respectively. Forreasonablevaluesformassandradius,aspinfrequencyof518.0Hzrelatestoaspinparameter of0.09±0.05 < a∗ < 0.44±0.23and293.2Hzgives0.05±0.04 < a∗ < 0.25±0.13. Thehatchedarearepresentstheerrorsonthespinparameter. ThedashedlinesineachpanelrepresentthesolidareaconstraintsfromtheNSintheotherpanel. Theyellowhorizontallinesarethemeasuredmassesforthe NSsPSRJ1614-2230(M = 1.97±0.04M⊙;Demorestetal.2010),PSR1903+0327(M = 1.667±0.021M⊙;Freireetal.2011)andPSRJ1909-3744 (M =1.438±0.024M⊙;Jacobyetal.2005).TheorangeregionrepresentsmassrangefoundforaNSinadoubleNSsystem(M =1.33−1.55M⊙;see Kiziltanetal.2013forareview). atlowmassaccretionrates. Evidenceofthismaybeseenin duringtheobservation,suggestingthatsomematerialwasstill HETEJ1900.1-2455(Papittoetal.2013). reachingthesurface,like4U1705−44. In Section 3.3, we estimated that the boundary layer could push out to 1.2 ISCO based on the arguments in 4.3. InneraccretionflowsandM˙ Popham&Sunyaev (2001). This is smaller than the radius implied by most of our disk reflection models, but the pre- It is expected that the inner radius of an accretion disk is dictedextentoftheboundarylayercanbeincreasedforspe- partly set by the mass accretion rate through the disk (see, cific combinations of radiative efficiency and stellar spin. e.g., Gonza´lezMart´ınez-Pa´ısetal. 2014). Indeed, as noted D’A`ıetal. (2010) estimated that the boundary layer in 4U above,severalmechanismsmighttruncatetheinneraccretion 1705−44 extended out to ∼ 2 RNS in the soft state. Our diskaroundaneutronstar,buteachtruncationmechanismbe- estimateisconsistentwiththispictureassumingaNSradius comesmore effectiveat lower mass accretion rates. Indeed, of10km. theradialextentoftheinnerdiskmaybeanimportantfactor Iftheneutronstarmagnetosphereistruncatingthedisk,we indeterminingthephenomenamanifestedindifferentpartsof placeanupperlimitonthemagneticfieldstrengthatthepoles the “Z” and “atoll” tracks followed by many persistent neu- tobeB ≤ 0.4−1.5×109 (seeSection3.3). Arecentstudy tron star X-ray binaries, and even the position of the source byKingetal.(2016)alsofoundatruncateddisksurrounding alongsuchtracks. thewell-knownneutronstar X-raybinaryandpulsarAqlX- The sensitive spectra that we have obtained with NuSTAR 1. An inner disk radius of R = 15 ± 3 R = 2.88 ± have permitted particularly strong radius constraints. Prior in g 0.58ISCOwasmeasuredviadiskreflection. Ifthediskwas NuSTARobservationsofneutronstarshavealsomeasuredin- nottruncatedbyaboundarylayerandinsteadbytheneutron ner disk radii. It is now pragmatic to consider what a mod- star magnetic field, an upper limit of B < 5 ± 2 × 108 G estcollectionofrobustspectralconstraintsimpliesaboutthe results(Kingetal.2016). AqlX-1hada Type1X-rayburst evolutionoftheinneraccretiondiskaroundneutronstarsasa functionofthemassaccretionrate. Forconsistency,wecare- 10 Ludlametal. fully replicated the models considered in prior work within For 4U 1636−53, both RELXILL and XSPEC, and extrapolated the models to a common energy RELCONV×REFLIONX return small and formally consistent range (0.5–50 keV). We then use the maximum distance to innerdiskradii. DifferentrunswithRELCONV×BBREFL and eachsourcetoconvertunabsorbedfluxestoluminosities,and RELCONV×REFLIONX all return small radii consistent with dividedby an Eddingtonlimitof 3.8×1038 ergss−1 as per R ≤1.1ISCOinfitstoGX17+2.Insomecases,theerrors in Kuulkersetal.(2003)toobtaintheEddingtonfraction. are formally different at the 1σ level of confidence, but the Table7liststhekeydatathatresultfromthisexercise.Fig- valuesareconsistentovermoreconservativeranges. Inthese ure5plotstheinnerdiskradiusversusEddingtonfractionfor twocases,themodelsareincloseagreementandsuggestthat asetofeightneutronstarsobservedwithNuSTAR.Acrossal- theradiusvaluesthatemergecanbetakenseriously. For4U mosttwoordersofmagnitudeinEddingtonfraction–imply- 1705−44, a greater range of inner disk radii emerges with inganequivalentrangeinmassaccretionrateiftheefficiency different models and parameter selections. The most recent is independent– the innerdisk appearsto remainveryclose model, REFLIONX, returns radii that are nearly consistent totheISCO.Themostobviousexceptiontotheoveralltrend with the ISCO at 1σ; other models return values as large as isAqlX-1;however,thissourceisknowntobeapulsarandit R = 1.8ISCO, andthe majorityofmodels– andthe best in mayhavea slightlyhighermagneticfield thanothersources overallfits – measurea truncateddisk. Deeper observations inthesample. of 4U 1705−44may be requiredto obtain a more definitive Cackettetal. (2010) found similar results when looking pictureofthatsource. at the inner disk radius dependence on Eddington fraction Theemissivityprofileoftheaccretiondiskencodesthege- for a sample of 10 neutron stars that were observed with ometryoftheemittingsourceandspacetimeoftheinnermost XMM-Newton and Suzaku. Chiangetal. (2016) recently environment. Anemissivityindexofq = 3isexpectedfora looked at Suzaku observations of Ser X-1 over a range of point source emitter in a (nearly) Schwarzschild spacetime, flux states and found that the inner disk radius changes lit- and different plausible geometries for neutron stars (bound- tle between 0.2− 0.6 LEdd. Disk reflection studies under- ary layers, hotspots) appear to producethe same emissivity taken with NuSTAR have the advantages of a broad, contin- profile (D. Wilkins, priv. comm.). Both families of reflec- uous bandpass that enables better characterizationof the di- tion modelsprefer a flatter emissivity in fits to the spectrum rectcontinuumandstrongerconstraintsonthetotalreflection of 4U 1636−53. This may be the result of a moreextended spectrum, and spectroscopy that is not distorted by photon coronainthehardstate.FitstothespectrumofGX17+2with pile-up(whichcanfalselyskewtheshapeoftheline:Ngetal. BBREFL generally prefer a much steeper index, but fits with 2010;Milleretal.2010). the more recent REFLIONX model are only slightly steeper than q = 3. This is broadly consistent with the direct con- 4.4. Potentialsystematicerrorsandmodelingissues tinuum, which suggests that a boundary layer or hot spot is Wehaveobtainedspectrawithveryhighstatisticalquality, likely irradiating the disk. The models for 4U 1705−44are and thereforespectral fitting results with small statistical er- allbroadlyconsistentwithq =3. rors. Systematicerrorsarelikelytobecomparableorlarger, Theabundanceofironaffectsthelocalstrengthofreflection and should be considered. In practice, the most important relativetothedirectcontinuum,nottheshapeoftheline.Itis sourcesofsystematicerrorsaredifficulttoquantify,butthey theshapeofthediskreflectionspectrum–andparticularlythe areimportanttomention. shapeoftheFeKemissionline–thatisusedtoinfertheinner All measures of black hole spin that utilize the accretion radiusoftheaccretiondisk,andtotherebysetanupperlimit disk, and all limits on neutron star radii that utilize the disk ontheradiusoftheneutronstar. Theabundanceofirondoes (includingdisk reflectionandQPOs), assume thatgasin the notdirectlyaffectourradiusmeasurements.However,itisin- disk orbits as test particles would orbit. If real fluid disks terestingtoconsiderthisparameterandwhetherornotitisac- pushslightlyinwardoftheISCOdefinedfortestparticles,it curatelydetermined.Bothfamiliesofreflectionmodelsprefer amountstoasystematicerroronsuchmeasurements.Thereis an iron overabundanceof 4.5–5.0relative to solar values, in noastrophysicaltestofthisassumption,butnumericalsimu- fitsto4U1636−53. Itisunlikelythattheabundanceofiron lationscanpotentiallyprovidesomeinsights. Explorationsof isthathighinthelowmasscompanionstarin4U1636−53, disksaroundblackholessuggestthataccretiondisksdogen- butitispossiblethatthismeasurementcorrectlydescribesthe erallyobeythetestparticleISCO(Reynolds&Fabian2008). atmosphereoftheaccretiondisk. There,theionizationstruc- Similarsimulationshavenotbeenperformedinthepresence turemayskewtherelativeabundancesofdifferentelementsto of a neutronstar, and the influenceof a boundarylayer may valuesthatdonotreflecttheoverallabundanceswithintheac- also inducesmall changes. New simulationscan help to ad- cretionflow.FitstothespectraofGX17+2and4U1705−44 dresssuchsystematics. areconsistentwithironabundancesof1.0–2.0timessolarval- Apart from the reaction of the accretion disk to the po- ues,butthesefitsalsoreturnlowerionizationparameters,po- tential, it is possible that our assumption of a Kerr metric tentiallyconsistentwithionizationaffectingabundancemea- is itself a source of systematic error. The neutron star that surements. It is also possible that the enhanced abundances wehavestudiedmayhaveasmallquadrupolemoments,and maythetheresultofeffectsinespeciallydensegas. Inthese thiscouldchangetheeffectivepotentialinwhichthediskor- cases, the abundance would increase to replicate the contin- bits. Onetreatmentsuggeststhatsystematicerrorsrelatedto uumfor a lower density disk allowed by the atomic data set quadrupole-induced deviations from a pure Kerr metric are withinthecurrentreflectionmodels(Garc´ıaetal.2016). ≤10% even for a dimensionless spin parameter of a = 0.3 Finally,wesimplynotethattheionizationparametersmea- (Sibgatullin&Sunyaev1998). sured in different fits to each source spectrum are com- Theblurredreflectionmodelsthemselvescanpotentiallybe parable to the values seen for other NS reflection studies, sourcesofsystematicerror. Someancillaryparametersofthe 2.3 < log(ξ) < 4.0 (Cackettetal. 2010; Milleretal. 2013; reflection models require a note of caution. We now turn to Degenaaretal.2015). theseissues.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.