ebook img

A Handbook of Magnetochemical Formulae PDF

982 Pages·2012·34.563 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Handbook of Magnetochemical Formulae

1 Molecular Symmetry 1.1 Some Definitions 1.1.1 Tensors A tensor is a generalised linear ‘quantity’ or ‘geometrical entity’ that can be expressed as a multi-dimensional array relative to a choice of basis. However, as an object in and of itself, a tensor is independent of any chosen frame of reference. The rank of a particular tensor is the number of array indices required to describe suchaquantity. Tensor product. The tensor product, denoted by (cid:1), may be applied in different contextstovectors,matrices,tensors,vectorspaces,etc.Ineachcasethesignificance ofthesymbolisthesame:themostgeneralbilinearoperation. A representative case is the Kronecker product of any two rectangular arrays, consideredasmatrices 0 1 0 1 b a b a b a b 1 1 1 2 1 3 1 B C B C B@bb2CA(cid:1) ða1 a2 a3Þ5B@aa1bb2 aa2bb2 aa3bb2CA ð1:1Þ 3 1 3 2 3 3 3 b a b a b a b 4 1 4 2 4 3 4 Here,resultantrank52,resultantdimension(4,3)5433512.Therankdenotes the number of requisite indices, while dimension counts the number of degrees of freedom in the resulting array. It should be emphasised that the term rank is being usedinitstensorsenseandshouldnotbeinterpretedasmatrixrank. (You can arbitrarily add many leading or trailing one dimensions to a tensor without fundamentally altering its structure. These one dimensions would alter the character of operations on these tensors, so any resulting equivalences should be expressedexplicitly.) Outer product. Given a tensor A with rank a and dimensions (i ,...,i ), and a 1 a tensorBwith rank b and dimensions (j ,..., j ),their outer product C5A(cid:1)B has 1 b rank a1b and dimensions (k1,...,ka1b) which are the i dimensions followed by thejdimensions. For example, if A has rank 3 and dimensions (3, 5, 7) and B has rank 2 and dimensions(10,100),theirouterproductChasrank5anddimensions(3,5,7,10,100). Inotherwords,outerproductontensors5tensorproduct. AHandbookofMagnetochemicalFormulae.DOI:10.1016/B978-0-12-416014-9.00001-X ©2012ElsevierInc.Allrightsreserved. 4 AHandbookofMagnetochemicalFormulae To understand the matrix definition of an outer product in terms of the tensor definition of outer product, you can interpret the vector v as a rank-1 tensor with dimension (M), and the vector u as a rank-1 tensor with dimension (N). The result oftheouterproductisarank-2tensorwithdimension(M,N). Inner product. The result of an inner product between two tensors of rank-q and rank-risthegreaterof(q1r22)and0. (cid:1) Theinnerproductoftwomatriceshasthesamerankastheouterproduct(ortensorproduct) oftwovectors. (cid:1) TheinnerproductoftwomatricesAwithdimensions(I,M)andBwithdimensions(M,J)is XM C 5 A B whereiAf1;...; Ig and jAf1;...; Jg ð1:2Þ ij im mj m Directproductoftwomatricesis (cid:2) (cid:3) (cid:2) (cid:3) a a b b A3B5 11 12 3 11 12 a a b b 0 21 22 21 22 1 a b a b a b a b B 11 11 11 12 12 11 12 12C ð1:3Þ Ba b a b a b a b C 5B 11 21 11 22 12 21 12 22C6¼B3A @a b a b a b a b A 21 11 21 12 22 11 22 12 a b a b a b a b 21 21 21 22 22 21 22 22 Theresultingrankisnot4butonly2,sothatthisisakindoftheinnerproduct. 1.1.2 Physical Vector (Polar Vector) ! A true vector (syn. polar vector, V) is required to have components that transform ^ in a certain way under a proper rotation (rotation about an axis, C ). If everything n ! in the universe undergoes a rotation (e.g. the displacement vector r is transformed with the rotation matrix R to!r05R!r), then any vector V! must be transformed in thesameway(V!05RV!). The polar vector is a contravariant vector (a tensor of contravariant rank one). Examples of the polar vectorsare: position (displacement) vector!r; velocity!v and linearmomentum!p : Under inversion through the origin (i^5S^ ), the true vector alters its sign: V! 2 goesto 2V!: 1.1.3 Pseudovector (Axial Vector) ! Thepseudovector(syn.axialvector,P)transformsunderrotationsaccordingtothe formula ! ! P5ðdetRÞðRPÞ ð1:4Þ MolecularSymmetry 5 Ittransformsundertheproperrotationslikeapolarvector,butundertheimproper rotations(rotationsofmirrorimage,S^ 5σ^ C^ )gainsanadditionalsignflip. n h n Examples of the axial vector are: angular momentum!l ; magnetic induction !B; torqueandvorticity.Forinstance,theangularmomentumisdefinedthroughthecross product!l 5 !r 3!p :Oninversion:!r !2!r and!p !2p^;while!l !!l : Propertiesforadditionandmultiplication !P 6!P 5!P; a!P 5 !P; V! 6 V! 5 !V; aV! 5 !V ð1:5Þ 1 2 1 1 2 1 !P 6V! 2undefined ð1:6Þ 1 2 Propertiesforthecrossproduct V! 3V! 5 !P; !P 3!P 5 !P; V! 3!P 5 !V; !P 3V! 5 !V ð1:7Þ 1 2 1 2 1 2 1 2 A common way of introducing a pseudovector is by taking the cross product of polarvectors.Forinstance,themagneticinductionis ! ! ! B 5 r 3 A ð1:8Þ 1.2 Point Groups 1.2.1 Elementary Terms The molecular symmetry originates in the fact that there exist symmetry operations (transformations of the nuclear coordinates) that transform the molecule into a nuclear configuration identical with an initial one. The symmetry elements (axis, plane and inversion centre (cid:3) Table 1.1) remain unchanged. Molecules belong to the point groups of symmetry as all the symmetry operations have at least one point in common (this point does not necessarily be identified with any atom of themolecule) [61284]. A brief summary of the properties of the symmetry point groups is presented in Table1.2.Someadditionaldefinitionsfollow: 1. a subgroup G0 is a set of elements within a group G which, on their own constitute a group; 2. two groups are isomorphous when there exists a one-to-one correspondence between their operations;theyhavethesamedefiningrelationsandthesamemultiplicationandcharacter tables; 3. ifthere are two groups G and G , having only their identity in common and possessing a b elements R^ (for a51,...,h ) and R^ (for b51,...,h ), then the direct product group a a b b G5G 3G isdefinedasthesetofalldistinctelementsR^ R^ 5R^ R^ forallaandb. a b a b b a 6 AHandbookofMagnetochemicalFormulae Table1.1 SymmetryOperations Symmetry Property Inverse OperationR^k OperatorR^k21 E^orI^ Identity;rotationthroughanangle2πinsinglegroups; E^ rotationthroughanangle4πindoublegroups C^ Rotationaboutangle2π/n C^n2k forC^k n n n σ^ðσ^ ;σ^ ;σ^ Þ Mirrorplane(horizontal,vertical,diagonal) σ^ h v d ^ ^ ^ iorS Inversecentre i S^ 5σ^2 C^ Rotationfollowedbythemirrorplane S^n2k forS^k n h n n n Q^ orR^ Rotationbyanangle2πbutdifferingfromtheidentity Q^ ^ ^ operation(Q6¼E);applicabletodoublegroups C^kQ^ Arotationthroughϕ52π12πk/n;applicabletodouble C^n2k n n groups Table1.2 ElementaryTermsintheSymmetryPointGroupTheory Term Property Note (a)PropertiesofthesymmetrygroupGoforderh Existenceofaproduct R^R^ 5R^ ðR^;R^;R^ ÞAG i j k i j k Associativelaw R^ðR^R^ Þ5ðR^R^ÞR^ i j k i j k Existenceofidentity R^ E^5E^R^ 5R^ Existenceofinversion R^kR^215R^2k1R^ 5k E^ ðR^ ;R^21ÞAG k k k k k k (b)ClassTofthegroupG Asetofoperatorsobeying R^ 5R^21R^R^ ðR^;R^ÞAT,R^ AG i s j s i j s The symmetry point groups along with their important characteristics are classi- fied in Table 1.3 (Crystals have no C , C , C , etc. axes and this fact restricts the 5 7 8 possiblegroupsto32pointgroups.) 1.2.2 Representations A set of matrices D(R ), transforming coordinates in the same way as the symmetry k operator R^ ; forms a representation Γ of the group G (Table 1.4). The irreducible k representations (IRs) used to be denoted by two conventions: according to Mulliken (Table1.5)oraccordingtoBethe(simplyΓ ,Γ ,etc.). 1 2 The representation is reducible, Γ, when by the same similarity transformation r Uablock-diagonalformofmatricesD(R )isobtained k ⎛ ⎛ U−1D(R)U = D (R) = ⎜D1 0 ⎜ (1.9) k bd k ⎝ ⎝ 0 D2 Table1.3 SymmetryPointGroupsofMoleculesandAtoms Symbol SymmetryOperations Orderh NumberofIR Note Generators Non-axial C E^ 1 1 C 5C E^ 1 1 C E^;σ^ 2 2 C 5C 5C 5S σ^ s h s 1h 1v 1 C E^;i^ 2 2 C 5S i^ i i 2 Axial,cyclic C E^;C^ n n n52,3,... C^ n n n S E^;C^ ;S^ 2n 2n S 5C S^ 2n n 2n 6 3i 2n Axial,non-cyclic C E^;C^ ;σ^ ;S^ 2n 2n C^ ;σ^ nh n h n n h C E^;C^ ;nσ^ 2n (n13)/2 Foroddn C^ ;σ^ nv n v n v (n16)/2 Forevenn Axial,dihedral D E^;C^ ;nC^0 2n (n13)/2 Foroddn C^ ;C^0 n n 2 n 2 (n16)/2 Forevenn;D 5V 2 D E^;C^ ;nC^0;S^ ;σ^ ;nσ^ 4n n13 Foroddn C^ ;C^0;σ^ nh n 2 n h v n 2 h n16 Forevenn;D 5V 2h h D E^;C^ ;nC^0;S^ ;nσ^ 4n n13 D 5S ;D 5V C^ ;C^0;σ^ nd n 2 2n d nd 2nv 2d d n 2 d Axial,linear CNv E^;C^N;Nσ^v N N C^N;σ^v DNh E^;C^N;Nσ^v;S^N;NC^02 N N C^N;σ^h;C^02 Cubica T E^;4C^ ;4C^2;3C^ 12 4 Rotationsofthetetrahedron C^ ;C^ ðzÞ 3 3 2 3 2 T E^;4C^ ;4C^2;3C^ ;i^;4S^5;4S^ ;3σ^ 24 8 T 5C 3T C^ ;C^ ðzÞ;i^ h 3 3 2 6 6 v h i 3 2 T E^;8C^ ;3C^ ;6S^ ;6σ^ 24 5 Regulartetrahedron C^ ;S^3ðzÞ d 3 2 4 d 3 4 (Continued) Table1.3 (Continued) Symbol SymmetryOperations Orderh NumberofIR Note Generators O E^;8C^ ;6C^0;6C^ ;3C^ 24 5 Rotationsoftheoctahedron C^ ;C^ ðzÞ 3 2 4 2 3 4 O E^;8C^ ;6C^ ;6C^ ;3C^ ;i^;6S^ ;8S^ ;3σ^ ;6σ^ 48 10 O 5C 3Oregularoctahedron C^ ;C^ ðzÞ;i^ h 3 2 4 2 4 6 h d h i 3 4 Icosahedralb I E;12C^ ;12C^2;20C^ ;15C^ 60 5 Rotationsoftheicosahedron C^ ;C^ ðzÞ 5 5 3 2 3 5 I fE;12C^ ;12C^2;20C^ ;15C^ ; 120 10 I 5C 3Iregularicosahedron C^ ;C^ ðzÞ;i^ h 5 5 3 2 h i 3 5 i^;12S^ ;12S^3 ;20S^ ;15σ^g 10 10 6 Rotational R E^;C^ ;C^ ;... N N R 5SO(3) 3 2 3 3 O(3) N N O(3)5C 3R i 3 SU(2) Agroupofunitarymatricesoforder2havingdeterminant51 aC3axisinclinedatanangle54.74(cid:4)totheC2(z)axis. bAngleC 2C(z)537.38(cid:4). 3 5 MolecularSymmetry 9 Table1.4 RepresentationΓoftheGroupG Term Property Conditions Existenceoftransformation R^ .DðR Þ ForkAh1,hi k k matrices Matrixelements Complex[D(R )] Frequentlyreal P k nm Actiononthebasis(f ,...,f) R^ f 5 ½DðR Þ(cid:5) f ForkAh1,hiandmAh1,li 1 l k m n51 k nm n Propertiesofmatrices D(R)D(R)5D(R ) WhenR^R^ 5R^ ;forkAh1,hi i j k i j k Dimensionofthe l5dimensionofD representation Equivalentrepresentations B(R )5U21D(R )U U2unitarymatrix,kAh1,hi k k Table1.5 MullikenClassificationofIRs Representation Name Propertyχα(Rk)5m ^ R m k A One-dimensional C^ 11 n B One-dimensional C^ 21 n E Two-dimensional T(orF) Three-dimensional G(orU) Four-dimensional H(orV) Five-dimensional A0 Symmetric σ^ 11 h Av Antisymmetric σ^ 21 h A Even(gerade) 11 g A Odd(ungerade) 21 u A (orΣ1),E (orΠ) Symmetric σ^ 11 1 1 v A (orΣ2),E (orΔ) Antisymmetric σ^ 21 2 2 v A ,E (orΦ) Specificproperties 3 3 The reducible representation consists of IRs. The decomposition of a reducible representationintoitsirreduciblecomponentsmaybewrittenasfollows X Γr5 nαΓα ð1:10Þ α where nα is a multiplicity of inequivalent IRs (an integer). Their orders obey the relationship X lr5 nαlα ð1:11Þ α where lα is the dimension of the α-th block Dα in the reducible representation matrixD . bd 10 AHandbookofMagnetochemicalFormulae The matrix elements of IRs satisfy the orthogonality relation (The Great OrthogonalityTheorem) Xh ½AαðRkÞ(cid:5)μν½BβðRkÞ(cid:5)λσ5hðlαlβÞ21=2δαβδμλδνσ ð1:12Þ k51 The IRs are fully characterised by their characters; these are formed by the tracesofthetransformationmatrices Xlα χαðRkÞ5TrfDαðRkÞg5 ½DαðRkÞ(cid:5)ii; ½for k51;2;...; h(cid:5) ð1:13Þ i Thecharactersoftheirreduciblerepresentationspossesstheseproperties 1. ThenumberofIRsofagroupisequaltothenumberofclassesinthegroup,N 5N . irep class 2. Inagivenrepresentationthecharactersofallmatricesbelongingtooperationsinthesame classareequal. 3. Theorthogonalityrelationship Xh χαðRkÞUχβðRkÞ5hUδαβ ð1:14Þ k51 or,whenthesummationrunsoverclassesofoperation,then NXclass gðRiÞUχαðRiÞUχβðRiÞ5hUδαβ ð1:15Þ i51 whereg(R)2numberofsymmetryoperationsinthei-thclass. i 4. ThesumofthesquaresofthecharactersundertheidentityoftheIRsequalstotheorder ofthegroup XNirep ðχðEÞÞ25h ð1:16Þ i i 5. ThemultiplicitynαoftheIRΓainthereduciblerepresentationΓrisgivenbytheformula 1Xh 1NXclass nα5h ½χαðRkÞ(cid:5)(cid:6)UχrðRkÞ5 h gðRiÞU½χαðRiÞ(cid:5)(cid:6)UχrðRiÞ ð1:17Þ k51 i51 Ofnumerousapplicationsofthegrouptheorythefollowingtheoremisofagreat importance:thematrixelement P 5hΨjP^jΨi ð1:18Þ ij i j MolecularSymmetry 11 isnon-zeroonlywhenthetripledirectproductoftheinvolvedIRs ΓðΨÞ3ΓðP^Þ3ΓðΨÞ5Γ 5Γ 1? ð1:19Þ i j r 1 (whichisa reducible representation Γ) contains the totallysymmetric representation r Γ of the relevant point group. Alternatively, the double direct product of the IRs of 1 ^ statevectorsshouldcontainarepresentationoftheoperatorP X ΓðΨiÞ3ΓðΨjÞ5Γr5 nαΓα5ΓðP^Þ1? ð1:20Þ α The characters of the representations Γi3j, spanned by a direct product Γi3Γj, are obtainedbymultiplyingcorrespondingcharactersofthecontributingrepresentations χ ðR Þ5χðR ÞUχðR Þ ð1:21Þ i3j k i k j k Thereduciblerepresentationisthendecomposedbyusingtheformula 1Xh nα5 h χi3jðRkÞU½χαðRkÞ(cid:5)(cid:6) ð1:22Þ k51 The direct product of IRs follows the rules compiled in Table 1.6. For degen- erate representations the rules are more complex and specific for the given group (Tables 1.7 and 1.8). The directproduct ofa k-fold degenerate IR Γ withitselfmay beresolvedintoa k symmetriccomponent,½Γ2(cid:5);andanantisymmetriccomponentðΓ2Þ k k Γ 3Γ 5½Γ2(cid:5)1ðΓ2Þ ð1:23Þ k k k k 1.2.3 Rotation Group R 3 A free atom belongs to the continuous rotation group R . The IRs of the group R 3 3 arelabelledwiththequantumnumberl.ThesphericalharmonicfunctionsY (cid:7)jl,mi l,m formthebasisoftheIRofR withthedimension2l11. 3 Table1.6 RulesfortheDirectProductofOne-DimensionalIRs 1.FortherepresentationA 2.FortherepresentationB A3A5A B3B5Aa A3B5B B3E5E A3E 5E k k A3T5T 3.Forthelowerindices 4.Fortheupperindices 5.Forthenumericalindicesa x 3x 5x x03x05x0 x 3x 5x g g g 1 1 1 x 3x 5x xv3x05xv x 3x 5x u g u 1 2 2 x 3x 5x xv3xv5x0 x 3x 5x u u g 2 2 1 aForallgroupsexceptD2andD2h. 12 AHandbookofMagnetochemicalFormulae Table1.7 IrreducibleComponentsoftheDirectProductofMulti-dimensionalIRsforAxial GroupsG 5C ,C ,C ,D ,D ,D ,S a n n nh nv n nh nd n G 1S E 3 6 E A ,(A ),E 1 2 G 1D 2D B E 4 2d 4d B A . E E A ,(A ),B ,B 1 2 1 2 G 1S E E 5 10 1 2 E A ,(A ),E . 1 1 2 2 E E E A ,(A ),E 2 1, 2 1 2 1 G 2S 2D B E E 6 6 6d 1 2 B A . . E E A ,(A ),E . 1 2 1 2 2 E E B ,B ,E A ,(A ),E 2 1 1 2 1 1 2 2 G E E E 7 1 2 3 E A ,(A ),E . . 1 1 2 2 E E ,E A ,(A ),E . 2 1 3 1 2 3 E E ,E E ,E A ,(A ),E 3 2 3 1 2 1 2 1 G 1D 2D B E E E 8 4d 8d 1 2 3 B A . . . E E A ,(A ),E . . 1 3 1 2 2 E E E ,E A ,(A ),B ,B . 2 2 1 3 1 2 1 2 E E B ,B ,E E ,E A ,(A ),E 3 1 1 2 2 1 3 1 2 2 aTheantisymmetriccomponentofthedirectproductΓi3Γiisplacedinparentheses;therestisthesymmetric component.Pointsshowsymmetryequivalentresultbymeansofthecommutationpropertyforthedirectproduct, Γi3Γj5Γj3Γi. Theoperationofrotationthroughanangleαaboutthez-axisyields R^αjl;mi5expðiα¯h21L^zÞjl;mi5expðimαÞjl;mi ð1:24Þ Sucharotationhasarepresentationexpressedthroughthe2l11dimensionalmatrix 0 1 exp½ilα(cid:5) 0 ... 0 DlðRαÞ5BB@ .0.. exp½ið.l.2. 1Þα(cid:5) ...... .0.. CCA ð1:25Þ 0 0 0 exp½2ilα(cid:5) Thereforethe characterofthisoperation(atrace ofthetransformationmatrix) is asumofthegeometricseries,i.e. sin½ð2l11Þðα=2Þ(cid:5) sin½ðl11=2Þα(cid:5) χlðRαÞ5 sinðα=2Þ 5 sinðα=2Þ ð1:26Þ

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.