A globalfit study onthe new agegraphic darkenergy model Jing-Fei Zhang,1 Yun-He Li,1 and Xin Zhang 1,2, ∗ † 1Department ofPhysics, Collegeof Sciences, NortheasternUniversity, Shenyang 110004, China 2Center for High Energy Physics, Peking University, Beijing100080, China We perform a global fit study on the new agegraphic dark energy (NADE) model in a non-flat universe by using the MCMC method withthe full CMB power spectra data from the WMAP 7-yr observations, the SNIadatafromUnion2.1sample,BAOdatafromSDSSDR7andWiggleZDarkEnergySurvey,andthelatest measurementsofH fromHST.WefindthatthevalueofΩ isgreaterthan0atleastatthe3σconfidencelevels 0 k0 (CLs),whichimpliesthattheNADEmodeldistinctlyfavorsanopenuniverse. Besides,ourresultsshowthat thevalueofthekeyparameterofNADEmodel, n = 2.673+0.053+0.127+0.199,atthe1–3σCLs,whereitsbest-fit 3 0.077 0.151 0.222 valueissignificantlysmallerthanthoseobtainedinpreviou−swo−rks. −Wefindthatthereasonleadingtosucha 1 changecomesfromthedifferentSNIasamplesused. Ourfurthertestindicatesthatthereisadistincttension 0 betweentheUnion2sampleofSNIaandotherobservations,andthetensionwillberelievedoncetheUnion2 2 sampleisreplacedbytheUnion2.1sample. So,thenewconstraintresultoftheNADEmodelobtainedinthis n workismorereasonablethanbefore. a J PACSnumbers:95.36.+x,98.80.Es,98.80.-k 2 2 I. INTRODUCTION background(CMB). For the CMB information, to save time ] and power, one often uses the CMB “distance priors” (R, O l , z ) whose information is extracted from the temperature Darkenergyhasbecomeoneofthemostimportantresearch A C powe∗rspectrumofCMB basedona ΛCDM scenario. How- areasincosmologysincethecosmicaccelerationwasdiscov- . ever,itshouldbenotedthatusingtheCMB“distancepriors” h eredbytheobservationsoftypeIasupernovae(SNIa)[1].The to constrain other dark energy modelswill lead to a circular p cosmologicalconstant, Λ, introducedbyEinsteinin 1917,is - a natural candidate for dark energy, which fits the observa- problem, since the values of the CMB “distance priors” de- o pend on a specific cosmological model, namely, the ΛCDM r tional data best to date. However, the model of Λ plus cold model.Besides,the“distancepriors”donotcapturetheinfor- t darkmatter,knownastheΛCDMmodel,alwayssuffersfrom s mationconcerningthegrowthofstructureprobedbythelate- a the two well-knowntheoreticaldifficulties, namely, the fine- [ tuningandcosmiccoincidenceproblems[2]. Thus, dynami- time ISW effect which is sensitive to the properties of dark 3 caldarkenergymodelsbecomepopular,becausetheymayal- energy.Inthepast,theNADEmodelwasconstrainedonlyby theCMB“distancepriors”data.Inthisstudy,weshallusethe v leviatethetheoreticalchallengesfacedbytheΛCDMmodel. fullCMBdatafromthe7-yrWMAPobservationstoexplore 0 Forarecentreviewofdarkenergy,seeRef.[3]. theparameterspaceofthecosmologicalmodelinvolvingthe 0 Among the many dynamical dark energy models, a class 3 NADE.Suchanexplorationisbelievedtocompletethestudy withfeatureofquantumgravity,embodyingholographicprin- 0 oftheNADEmodel. . ciple, looks very special and attractive. Such class of mod- 2 In the previous studies, the spatial curvature, Ω , is usu- els, usually called “holographic dark energy”, has been in- k0 1 ally neglected. So, we do not know if a flat universe is still vestigated in detail [4] and constrained by the observational 2 favored by current data in the NADE model. Moreover, the data[5]. Inthispaper,wefocusonthe“newagegraphicdark 1 initial condition of the NADE model [6] is only applicable : energy”(NADE)model[6]inthisclass,whichtakesintoac- v fora flatuniversecontainingonlydarkenergyand pressure- counttheuncertaintyrelationofquantummechanicstogether i less matter. In Ref. [7], a new, updated initial condition is X with the gravitationaleffect in generalrelativity. The reason proposed,whichisapplicableforanon-flatuniversewithvar- thatthe NADE modelis fairly attractiveis also owingto the r a factthatthismodelhasthesamenumberofparameterstothe ious components. We shall apply this new initial condition in the present work. In such an application, for employing ΛCDM model, less than other dynamical dark energy mod- the “CosmoMC” package, one may treat the parameter n as els. The NADE model has been proven to fit the data well. aderivedparameterandusetheNewton’siterationalgorithm However, it should be noticed that the global fit analysis on to determine its value. In addition, in a global fit analysis, theNADEmodelhasneverbeendone. thecosmologicalperturbationsofdarkenergyshouldalsobe The global fit analysis is very important for the study considered. Thanks to the quintessence-like property of the of a cosmological model. To determine the parameters of NADE,thereisnow = 1-crossingbehaviorandsothecor- dark energy models, one often has them constrained by us- − responding gravity instability is absent. In the holographic ing some important observational data sets, such as SNIa, darkenergymodel,thew = 1-crossinghappens,soonehas baryon acoustic oscillation (BAO) and cosmic microwave − toemploytheparameterizedpost-Friedmann(PPF)approach totreatthegravityinstabilityoftheperturbationsina global fit analysis; for details see Ref. [8]. For the NADE model, however,wehavenoneedtoemploythePPFapproach. ∗Correspondingauthor Electronicaddress:[email protected] Our paper is organized as follows. In Sec. II, we derive † 2 the backgroundand perturbation evolution equations for the Forsolvingthedifferentialequation(6),weadopttheinitial NADEmodelinanon-flatuniverse. InSec.III,weintroduce condition,Ω (z ) = n2(1+zini)−2 1+ √F(z ) 2 atz = 2000 the fit method and the observational data, and then give the de ini 4 ini ini withF(z)= Ωr0(1+z) ,givenin(cid:16)Ref.[7],wh(cid:17)ichhelpsreduce global fit results. Concluding remarks are given in Sec. IV. Ωm0+Ωr0(1+z) In this work, we assume today’s scale factor a = 1, and so onefreeparameterfortheNADEmodel.Thisinitialcondition 0 the redshift z satisfies z = a 1 1; the subscript“0” always is an updated version of the original one, Ωde(zini) = n2(1+ − − z ) 2/4atz = 2000,giveninRef.[9]. Theonlydifference indicatesthepresentvalueofthecorrespondingquantity,and ini − ini theunitswithc=~=1areused. betweenthemisthatthenewoneisvalidwhentheradiation is considered as a non-ignorable component. Note that the initialconditionisalsoapplicableinanon-flatuniverse,since thespatialcurvatureΩ ismuchsmallerthanΩ orΩ atz= II. BRIEFDESCRIPTIONOFTHENADEMODEL k m r 2000.Formoredetailsaboutthederivationandapplicationof thenewinitialcondition,seeRef.[7]. TheNADEmodelisconstructedinlightoftheKa´rolyha´zy Inourwork,forsimplicity,wefixΩ =2.469 10 5h 2(1+ relationandcorrespondingenergyfluctuationsofspace-time. r0 × − − 0.2271N ) according to the WMAP 7-yr observations[10], TheenergydensityofNADE,ρ ,hastheform[6] eff de whereN =3.04isthestandardvalueoftheeffectivenumber eff ofneutrinospeciesandhistheHubbleconstantH inunitsof 3n2M2 0 ρ = Pl, (1) 100km/s/Mpc. de η2 It should be noted that the parameters n, Ω , Ω and dm0 b0 Ω are not independent. One of them can be derived from where nisanumericalparameter, M isthereducedPlanck k0 Pl the others. For example, we can treat the parameter n as mass,andηistheconformalageoftheuniverse, the derivedparameter. In thiscase, oncethe valuesof Ω , dm0 t dt˜ a da˜ Ωb0 and Ωk0 are given, one can impose an initial value of n η = , (2) and then obtain the true value of n by using the Newton it- ≡Z a Z Ha˜2 0 0 eration algorithm, n = n f(n )/f (n ), where f(n ) = k+1 k k ′ k k − 1 Ω Ω Ω Ω Ω (0) withΩ (0) thekth where a is the scale factor and H a˙/a is the Hubble pa- − dm0− b0− r0− k0− de |nk de |nk ≡ ordernumericalsolution(atz=0)ofEq.(6)withthenewini- rameter. Hereadotdenotesthederivativewithrespecttothe tialcondition,and f (n )isthenumericalderivativeof f(n)at cosmictimet. ′ k thepointn=n . Ofcourse,onecanalsotreatΩ orΩ or The background evolution of a non-flat universe is de- k dm0 b0 Ω asaderivedparameterandgetitsvaluebyusingasimilar scribedbytheFriedmannequation, k0 method. For our global fit analysis, it is convenient to modify the Ω =1, (3) i “CosmoMC” package [11] if n is set as a derived parame- X ter. Thus, wewilluse theNewtonmethodmentionedabove, where Ω is defined as the ratio of the energy density ρ to i i which is provedto be convergent,to get the true value of n. the critical energydensity ρ 3M2 H2 with i = de, dm, b, c ≡ Pl Wechoosetheinitialvaluen =2.7andsetaterminationcon- r and k which denotes the dark energy, dark matter, baryon, 0 ditionfortheiteration,suchas n n ǫ withǫ asmall radiation and spatial curvature, respectively. Note that here | k+1− k| ≤ quantity. Once Eq. (6) is solved, the Hubble expansion rate ρ 3M2k/a2. k ≡− Pl canbeobtainedby Theenergyconservationequationsforthevariouscompo- nentstaketheform Ω (1+z)3+Ω (1+z)4+Ω (1+z)2 1/2 H(z)= H m0 r0 k0 . ρ˙i+3H(1+wi)ρi =0, (4) 0" 1−Ωde(z) # (7) where w is the equation-of-state parameter (EOS) of a spe- With the backgroundevolution of the NADE model com- i cificcomponentdenotedbysubscripti,suchasw =w =0, pleted, we now consider how to handle the perturbation of dm b w =1/3andw = 1/3.FortheEOSofNADE,onecanob- NADE. Since the EOS of NADE is always greater than 1, tarin k − wecaneasilyhandleitsperturbation.WetakeNADEasap−er- fectfluidwiththeEOSgivenbyEq.(5). Inthesynchronous 2(1+z) gauge,theconservationofenergy-momentumtensorTµ =0 w = 1+ Ω , (5) ν;µ de de − 3n givestheperturbationequationsofdensitycontrastandveloc- p itydivergencefortheNADEintheFourierspace, from Eqs. (1), (2) and (4). Furthermore, using Eqs. (1)–(4), eonnteiaclaenqaulastoioena,silygettheequationofmotionofΩde,adiffer- δ′ = −(1+wde)(θ+ h2′)−3aH(c2s−wde)δ, (8) c2 dΩdzde = −1Ω+dze (1−Ωde)"3+G(z)− 2(1n+z) Ωde#, (6) θ′ = −aH(1−3c2s)θ+ 1+swdek2δ−k2σ. (9) p Here d/dη, H and w are given by Eqs. (7) and de whereG(z)= Ωm0(1Ω+rz0)(+1Ω+zr0)2(1−+Ωzk)02+Ωk0 withΩm0 =Ωdm0+Ωb0. (5). O′th≡er notation is consistent with the work of Ma and 3 Bertschinger[12]. For the gauge ready formalism about the TABLEI:Globalfitresultsofthenewagegraphicdarkenergymodel. perturbationtheory,seeRef.[13]. FortheNADE,weassume theshearperturbationσ=0.Inourcalculations,theadiabatic initialconditionswillbetaken. Class Parameter Bestfitwitherrors Primary Ω h2 0.113+0.006+0.011+0.015 Finally,wefeelthatitmaybenecessarytomakesomead- dm0 0.005 0.009 0.014 100Ω h2 2.262−+0.064−+0.114−+0.158 ditionalcommentson thetreatmentofdarkenergyperturba- b0 0.045 0.103 0.156 Ω 0.020−+0.006−+0.010−+0.016 tions in the NADE model. Actually, it is fairly difficult to k0 0.005 0.012 0.016 τ 0.085−+0.015−+0.032−+0.049 calculatethecosmologicalperturbationsofdarkenergyinthe 0.011 0.023 0.036 Θ 1.040+−0.002+−0.005+−0.008 holographic-typedark energymodels, because there is some n 0.970+−00..001032+−00..002055+−00..003067 non-local effect that makes the perturbation mechanism ex- log[10s10A ] 3.181−+00..001410−+00..002830−+00..013272 s 0.033 0.075 0.113 tremelyobscureandhardtohandle.Thisisthereasonwhyfor Derived n 2.673−+0.053−+0.127−+0.199 0.077 0.151 0.222 alongtimenooneaddressedtheissueofdarkenergypertur- H (km/s/Mpc) 69.−2+1.2−+2.6+3−.9 0 1.4 2.9 4.2 bationsinacompletemannerintheholographic-typemodels. Ω 0.697+0−.011+−0.02−5+0.037 de0 0.015 0.031 0.046 Bethatasitmay,Li, Lin,andWang[14]madeacalculation Ωm0 0.284+−00..001104+−00..002229+−00..003433 for the perturbations in the holographic dark energy model, Age(Gyr) 13.125−+0.202−+0.457−+0.657 0.220 0.414 0.580 in which some approximations are used in dealing with the zre 10.531−+01..828348−+22..045885−+33..268966 − − − non-local integrals in the equations governing the evolution ofmetricperturbations,andtheyprovedthattheperturbations arestableforbothsuper-horizonandsub-horizonscales. But Thesoundspeedofdarkenergy,c2 δp /δρ ,isusually a complete analysis of the cosmologicalperturbationsin the s ≡ de de treatedasaphenomenologicalparameterforafluidmodelof holographic dark energy model is still absent. Thus, in the darkenergy.Itmustberealandnon-negativetoavoidunphys- past,toavoidtheinclusionofdarkenergyperturbationprob- icalinstabilities. Infact,ifwetreatthedarkenergystrictlyas lem, one only used the CMB “distance priors” data, instead an adiabatic fluid, then the sound speed c would be imag- of the full CMB data, to constrain the holographicand age- s inary (in this case, the physical sound speed is equal to the graphicdarkenergymodels. adiabatic sound speed, c2 = c2 < 0), leading to instabilities However, recently, it was realized that, in order to make s a indarkenergy. Inordertofixthisproblem,itisnecessaryto progress, one should first ignore the non-local effect in the assume that dark energy is a non-adiabatic fluid and impose holographic-type models and directly calculate dark energy c2 > 0by hand[16]. Ouranalysisisinsensitiveto thevalue perturbationsinthesemodelsasiftheyareusualperfectflu- s of c . As long as c is close to 1, the dark energy does not ids.Alonethisline,globalfitanalysesontheholographicdark s s clustersignificantlyon sub-Hubblescales. Therefore,in our energymodelwere performed[8, 15]. Itshould be stressed, analysis, we set c to be1; the adiabaticsoundspeedcan be however,thatsuchatreatmentisonlyanexpedientmeasure, s imaginary, c2 dp /dρ < 0. This is what is done in the in the case that we are not capable of completely handling a ≡ de de CAMB and CMBFAST codes. Of course, one can also take thenon-localeffectinthecalculationofdarkenergyperturba- c asaparameter,butthefitresultswouldnotbeaffectedby tionsinthesemodels. But, ontheotherhand,sincethenon- s thistreatment[17]. localeffectisnotadominantfactor,itisbelievedthatthefluid Forthedata,besidestheCMBdata(includingtheWMAP approximationintheholographic-typedarkenergymodelsis 7-yr temperature and polarization power spectra [10]), the reasonable. mainotherastrophysicalresultsthatweshalluseinthispaper forthejointcosmologicalanalysisarethefollowingdistance- scaleindicators: III. GLOBALFITRESULTS The Union2.1sample of 580 SNIa with systematic er- In our global fit analysis, the parameter n of the NADE • rorsconsidered[18]. modelis treated as a derivedparameter, whose value can be obtainedbytheparametersΩ ,Ω andΩ viatheNewton The BAO data, including the measurements of b0 dm0 k0 • iterationalgorithm,asmentionedinSec.II.The“CosmoMC” r (z )/D (0.2) and r (z )/D (0.35) from the SDSS s d V s d V package uses the physical densities of baryon ω Ω h2 DR7 [19] and the measurements of A parameter at b b0 andcolddarkmatterω Ω h2 insteadofΩ a≡ndΩ . z=0.44, 0.6, 0.73fromtheWiggleZDarkEnergySur- dm dm0 b0 dm0 ≡ Thus,ourmostgeneralparameterspacevectoris: vey[20]. P (ω ,ω ,Θ,τ,Ω ,n ,A ), (10) The Hubble constant measurement H = 73.8 b dm k0 s s 0 ≡ • ± 2.4km/s/MpcfromtheWFC3ontheHST[21]. whereΘistheratio(multipliedby100)ofthesoundhorizon to the angular diameter distance at decoupling, τ is the op- OurglobalfitresultsaresummarizedinTableIandFig.1. tical depth to re-ionization, A and n are the amplitude and We notice two remarkable results: (i) the value of Ω is s s k0 thespectralindexoftheprimordialscalarperturbationpower greaterthan0atleastatthe3σconfidencelevels(CLs),which spectrum. For the pivot scale, we set k = 0.002Mpc 1 to implies that the NADE model distinctly favors an open uni- s0 − be consistentwith the WMAP team [10]. Notethatwe have verse; (ii) the best-fit value of n is evidently less than those assumedpurelyadiabaticinitialconditions. obtainedinthepreviouswork. 4 Likelihood 0.0215 0.0235 2hm00.12 Wd 0.1 0.0215 0.0235 0.1 0.12 1.045 1.045 Q 1.035 1.035 0.0215 0.0235 0.1 0.12 1.035 1.045 0.12 0.12 0.12 Τ 0.09 0.09 0.09 0.06 0.06 0.06 0.0215 0.0235 0.1 0.12 1.035 1.045 0.060.090.12 0.03 0.03 0.03 0.03 Wk000..0012 00..0012 00..0012 00..0012 0.0215 0.0235 0.1 0.12 1.035 1.045 0.060.090.12 0.010.020.03 72 72 72 72 72 H06780 6780 6780 6780 6780 66 66 66 66 66 0.0215 0.0235 0.1 0.12 1.035 1.045 0.060.090.12 0.010.020.03 66687072 2.9 2.9 2.9 2.9 2.9 2.9 2.7 2.7 2.7 2.7 2.7 2.7 n 2.5 2.5 2.5 2.5 2.5 2.5 0.0215 0.0235 0.1 0.12 1.035 1.045 0.060.090.12 0.010.020.03 66687072 2.5 2.7 2.9 Wb0h2 Wdm0h2 Q Τ Wk0 H0 n FIG.1: The1Dmarginalizeddistributionsofindividualparametersand2Dcontoursatthe1–3σconfidencelevelsfromtheglobalfitusing theCMB+BAO+SNIa+H data. 0 6000 WMAP data NADE Union2.1+CMB+BAO+H0 5000 CDM 2mk)4000 TTC/2p(l3000 +1) l(l2000 1000 0 1 10 100 1000 l FIG.2: ParameterspacesintheΩ –Ω planeconstrainedbydif- FIG. 3: The CMB CTT power spectra for the NADE and ΛCDM de0 m0 l ferent joint data sets. The cyan, orange and red regions denote modelswiththebest-fitparametervalues. Theblackdotswitherror the constraint results from the joint CMB, BAO and H observa- bars denote the observational data from the WMAP 7-yr observa- 0 tionswithoutSNIadata,withUnion2sampleofSNIadataandwith tions. Union2.1sampleofSNIadata,respectively. NotethattheUnion2.1 sampleisusedwiththesystematicerrorswhiletheUnion2sample isn’t,soitisnowonderwhytheUnion2sampleslightlyconstrains The fit result of n is n = 2.673+0.053+0.127+0.199 at the 1– 0.077 0.151 0.222 theparametersmoretightlythantheUnion2.1sample. 3σ CLs. We find that the best-fit v−alue−of n−is significantly different from the results obtained in the previous work [7, 9, 22–25]. For example, Refs. [7], [22], [24] and [25] gave The result of the spatial curvature we obtained is still at n = 2.810, 2.807, 2.887, and 2.886, respectively. What can thelevelof10 2, consistentwiththeotherresultsaboutdark thischangetellus? Next,weshallexplorewhatthefactoris − energyintheliterature.However,itshouldbepointedoutthat thatismakingthischange. ourworkisthefirsttoshowthattheNADEmodeldistinctly To doso, andwithoutlossof generality,we take the most favorsanopenuniverseundercurrentdata. recentworkinRef.[7]asanexampletomakeacomparison. 5 Welistherefourdifferentpointsbetweenthem:(1)thespatial thedifferentialequationofΩ ,whichcanreduceonefreepa- de curvatureis consideredin thisworkwhileit isn’tconsidered rameter for the NADE model. In order to easily modify the inRef.[7];(2)theHubbleconstantH measurementandthe “CosmoMC”package,wesetΩ ,Ω , andΩ asfreepa- 0 dm0 b0 k0 BAO measurement of A parameter from the WiggleZ Dark rameters and n as a derived parameter, and use the Newton EnergySurveyare usedin this workwhiletheyare notused iterationalgorithmtoobtainthetruevalueofn. inRef.[7];(3)theSNIadatasetusedinthisworkisUnion2.1 OurglobalfitresultsshowthattheNADEmodeldistinctly sample while it is Union2 sample in Ref. [7]; (4) this paper favorsanopenuniverse,sincethevalueofΩ isgreaterthan k0 performs a global fit where the full CMB information from 0 at the 3σ CLs. Besides, we find that the value of the key WMAP-7yrobservationsisusedwhiletheCMBinformation parameteroftheNADEmodeln = 2.673+0.053+0.127+0.199sig- usedinRef.[7]comesonlyfrom7-yrWMAP“distancepri- nificantlydifferentfromthoseobtainedin−t0h.0e77p−r0e.1v5i1o−u0.s22w2ork. ors”. After testing these four items one by one by varying Wefindthatthemainreasonleadingtosuchachangecomes oneconditionandsettingtheothersthesame,wefindthatthe fromthedifferentSNIasamplesused. Namely,theUnion2.1 changeismainlyduetothedifferentSNIadataused. sampleandtheUnion2samplegivefairlydifferentconstraint Toseeclearly,weplotthetestresultsofdifferentSNIadata results for the NADE model. Our further test indicates that used for the NADE model in Fig. 2. The cyan, orange and thereisadistincttensionbetweentheUnion2sampleofSNIa redregionsdenotetheparameterspacesconstrainedbyusing andotherobservations,andthetensionwillberemovedonce thejointCMB,BAOandH0 observationswithoutSNIadata, theUnion2sampleisreplacedbytheUnion2.1sample.Thus, withUnion2sampleofSNIadata,andwithUnion2.1sample weconcludethatthenewconstraintresultoftheNADEmodel ofSNIadata,respectively. NotethattheCMBdatausedhere obtained in this paper is more reasonable than the previous are the 7-yr WMAP “distance priors” for simplicity. Com- ones. paringthecyanregion(withoutSNIa)withtheorangeregion We also plot the CMB power spectra for the NADE and (with Union2), one can easily find that their overlappingre- ΛCDMmodelsbyusingthebest-fitresultsoftheglobalfits.It gion is very small, which implies that there is a tension be- isshownthattheNADEmodelandtheΛCDMmodelproduce tween the Union2 sample of SNIa and the joint CMB, BAO slightlydifferentfeaturesin thelow lregions. Since the low and H observations. However, the tension between SNIa 0 l data are rather rare and rough, the two models cannot be andCMB+BAO+H willbegreatlyrelievedoncetheUnion2 0 discriminatedbythelate-timeISWeffectsyet.Weexpectthat sampleisreplacedbytheUnion2.1sampleofSNIa,sincethe thefuturehighlyaccuratedatacandothisjob. overlap between cyan and red regions is very large. Thus, If dark energy is truly dynamical, as hinted by recent we can concludethat the new constraintresultof the NADE work[26],thepossiblenon-gravitationalinteractionbetween modelobtainedinthisworkismorereasonablethanbefore. dark energy and dark matter may deserve deeper investiga- In addition, by using the globalfit results obtained in this tions. In this work the interaction between dark energy and work (best-fitvalues), we plotthe CMB powerspectrum for darkmatterisnotconsidered. Ifsuchaninteractionexists in the NADE modelin Fig.3. To make a comparison,we also plot the corresponding curve of the ΛCDM model with the theNADEmodel,thecalculationsoftheperturbationsofdark energyand dark matterwill becomemore complicated. The best-fit parameters given by the same data sets. The 7-yr global fit analysis on the interacting agegraphic dark energy WMAP observationaldata points with uncertaintiesare also modelis fairly attractive. In addition, the comparisonof the markedinthefigure.WecanclearlyseethattheNADEmodel producesadifferentfeaturecomparedwiththeΛCDMmodel various holographic models of dark energy under a uniform globalfitisalsonecessary. Weleavethesesubjectsinthefu- inthelowlregions.However,sincethelowldataarerareand turework. rough, the two models cannot be discriminated by the late- timeISWeffectsbyfar. IV. CONCLUDINGREMARKS Acknowledgments Inthiswork, ourmaintask isto performa globalfitanal- This work was supported by the National Science Foun- ysis on the NADE model in a non-flat universe by using a dation of China under Grant Nos. 10705041, 10975032, MCMC method with the joint data of the full CMB spectra, 11047112 and 11175042, and by the National Ministry BAO,SNIaandH0observations.Weusetheinitialcondition, of Education of China under Grant Nos. NCET-09-0276, Ω (z ) = n2(1+zini)−2 1+ √F(z ) 2 at z = 2000, to solve N100505001,N090305003,andN110405011. de ini 4 ini ini (cid:16) (cid:17) [1] A.G.Riessetal.[SupernovaSearchTeamCollaboration],As- A.A.Starobinsky,Int.J.Mod.Phys.D9(2000)373;S.M.Car- tron.J.116,1009(1998);S.Perlmutteretal.[SupernovaCos- roll,LivingRev.Rel.4(2001)1;T.Padmanabhan,Phys.Rept. mologyProjectCollaboration],Astrophys.J.517,565(1999). 380(2003)235;P.J.E.PeeblesandB.Ratra,Rev.Mod.Phys. [2] S. Weinberg, Rev. Mod. Phys. 61 (1989) 1; V. Sahni and 75(2003)559;E.J.Copeland,M.SamiandS.Tsujikawa,Int. 6 J. Mod. Phys. D 15 (2006) 1753; J. Frieman, M. Turner and [11] A.LewisandS.Bridle,Phys.Rev.D66,103511(2002). D.Huterer,Ann.Rev.Astron.Astrophys.46,385(2008). [12] C.P.MaandE.Bertschinger,Astrophys.J.455,7(1995). [3] M.Li,X.D.Li,S.WangandY.Wang,Commun.Theor.Phys. [13] J.c.HwangandH.r.Noh,Phys.Rev.D65,023512(2002). 56,525(2011). [14] M.Li,C.LinandY.Wang,JCAP0805,023(2008). [4] M.Li,Phys.Lett.B603,1(2004);X.Zhang,Int.J.Mod.Phys. [15] L.Xu,Phys.Rev.D85,123505(2012). D14,1597(2005); B.Chen, M.LiandY.Wang, Nucl.Phys. [16] C. Gordon and W. Hu, Phys. Rev. D 70, 083003 B 774, 256 (2007); X. Zhang, Phys. Lett. B 648, 1 (2007); (2004);J.Valiviita,E.MajerottoandR.Maartens,JCAP0807, X. Zhang, Phys. Rev. D 74, 103505 (2006); C. Gao, F. Wu, 020(2008). X. Chen and Y. G. Shen, Phys. Rev. D 79, 043511 (2009); [17] H. Li and J. Q. Xia, JCAP 1004, 026 (2010); H. Li and J.Zhang,X.ZhangandH.Liu,Eur.Phys.J.C52,693(2007); X.Zhang,Phys.Lett.B713,160(2012) X.Zhang,Phys.Lett.B683,81(2010);M.LiandR.X.Miao, [18] N.Suzuki, D.RubinandC.Lidmanetal.,Astrophys.J. 746, arXiv:1210.0966[hep-th]. 85(2012). [5] X. Zhang and F. Q. Wu, Phys. Rev. D 72, 043524 (2005); [19] B.A.Reidetal.[SDSSCollaboration],Mon.Not.Roy.Astron. X. Zhang and F. Q. Wu, Phys. Rev. D 76, 023502 (2007); Soc.401,2148(2010). Q. G. Huang and Y. G. Gong, JCAP 0408, 006 (2004); [20] C.Blake,E.KazinandF.Beutleretal.,Mon.Not.Roy.Astron. Z.Chang,F.Q.WuandX.Zhang,Phys.Lett.B633,14(2006); Soc.418,1707(2011). J.Y.Shen,B.Wang,E.AbdallaandR.K.Su,Phys.Lett.B609, [21] A.G.Riess,L.MacriandS.Casertanoetal.,Astrophys.J.730, 200(2005); Z.L.YiandT.J.Zhang, Mod. Phys.Lett.A22, 119(2011). 41(2007); X.Zhang,Phys.Rev.D79,103509(2009); M.Li, [22] M.Li,X.D.Li,S.WangandX.Zhang,JCAP0906,036(2009). X.D.Li,S.Wang,Y.WangandX.Zhang,JCAP0912(2009) [23] M.Li,X.LiandX.Zhang,Sci.ChinaPhys.Mech.Astron.53, 014;Z.Zhang,S.Li,X.D.Li,X.ZhangandM.Li,JCAP1206, 1631(2010). 009(2012). [24] H.Wei,JCAP1008,020(2010). [6] H.WeiandR.G.Cai,Phys.Lett.B660,113(2008). [25] Y.Li,J.Ma, J.Cui, Z.WangandX.Zhang, Sci.ChinaPhys. [7] Y. H. Li, J. F. Zhang and X. Zhang, Chin. Phys. B, in press, Mech.Astron.54,1367(2011). arXiv:1201.5446[gr-qc]. [26] G. B. Zhao, R. G. Crittenden, L.Pogosian and X. M. Zhang, [8] S. Wang, Y. H. Li, X. D. Li and X. Zhang, arXiv:1207.6679 Phys. Rev.Lett.109, 171301 (2012); J.Z.MaandX. Zhang, [astro-ph.CO]. Phys.Lett.B699,233(2011);H.LiandX.Zhang,Phys.Lett. [9] H.WeiandR.G.Cai,Phys.Lett.B663,1(2008). B703,119(2011);X.D.Li,S.Wang,Q.G.Huang,X.Zhang [10] E.Komatsuetal.[WMAPCollaboration],Astrophys.J.Suppl. andM.Li,Sci.ChinaPhys.Mech.Astron.55,1330(2012). 192,18(2011).