ebook img

A general relativity workbook PDF

440 Pages·2010·6.327 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A general relativity workbook

A General Relativity Workbook Credit: NASA Thomas A. Moore Version b0.92 © January 2010 GR Units: c = 1 (with time measured in meters, mass-energy in kg or eV) Important Conversion Factors for GR Units 1m / (1/299,792,458)s= 3.33564095#10-9s . 3.34ns 1 ns = 0.2998 m (of time) ≈ 1 ft 1 µs = 299.8 m (of time) 1 ms = 299.8 km 1 s = 299,800 km 1 min = 17.99 × 106 km 1 hr = 1.079 × 109 km 1 day = 25.90 × 109 km 1 y = 365.25 d = 9.461 × 1015 m = 1 ly 1J =1.1126501#10-17kg (energy) 1 kg (energy) = 8.98755179 × 1016 J 1 kg (momentum) = 299,792,458 kg·m/s 1 eV = 1.602 × 10–19 J = 1.782 × 10–36 kg (energy) 1 eV (momentum) = 5.34 × 10–28 kg·m/s Useful Data in GR Units 1AU = 1.495 978 706 91(30) × 1011 m 1 pc = 30.857 × 1012 m = 3.2616 ly 1 M = mass of earth = 5.9736 × 1024 kg (GM = 4.4361 mm) e e 1 M9 = 1 solar mass = 1.9891 × 1030 kg (GM9 = 1477.1 m) m (electron) = 9.109 382 15(45) × 10–31 kg = 0.510 998 910(13) MeV e m (proton) = 1.672 621 637(83) × 10–27 kg = 938.272 013(23) MeV p m (neutron) = 1.674 927 211(84) × 10–27 kg = 939.565 346(23) MeV n t = age of universe = 13.73(0.16) Gy = 1.30 × 1026 m 0 H = Hubble constant at present = 70.4(1.5) km s–1 Mpc–1 = 7.61 × 10–27 m–1 = [13.9(0.3) Gy]–1 0 t = critical density at present = 9.32(0.20) × 10–27 kg m–3 c X = baryon density fraction = 0.0441(23) b X = matter density fraction = 0.268(18) (includes baryons and dark matter) m X = vacuum energy density fraction = 0.732(18) v Important Constants in SI and GR Units Symbol Value in SI Units* Value in GR Units Comments g 9.8 m/s2 1.09 × 10–16 m–1 = (0.97 ly)–1 G 6.674 28(67) × 10–11 m3 kg–1 s–2 7.426 × 10–28 m/kg = 1477 m / solar mass & 1.054 571 628(53) × 10–34 J·s 3.518 × 10–43 kg·m &c 197.326 9631(49) eV·nm same (= &) (when using eV) k 1.380 6504(24) × 10–23 J K–1 1.536 × 10–40 kg K–1 B k 8.617 343(15) × 10–5 eV K–1 same (when using eV) B v 5.670 400(40) × 10–8 W m–2 K–4 2.105 × 10–33 kg m–3K–4 Stefan-Boltzmann SB k 8.987 551 788 × 109 kg m3 s–2 C–2 1.000 × 10–7 kg m C–2 (exact) *Most SI constants from http://physics.nist.gov/cuu/Constants/index.html, 2006 values Values in parentheses are the uncertainties (68% confidence range) in the last two digits. Sign Conventions (Landau-Lifshitz Spacelike Convention): Metric Signature: – + + +, Riemann tensor: Rabno=+2nCbao-f, Einstein tensor: Gno=+8rGTno Useful Formulae: R V c -cb 0 0 S W Lorentz Transformation: Kno=SSS-0cb c0 01 00WWW fcor/b[1=-^+b2b]-,01/2,0h S 0 0 0 1W T X Flat Space Metric: ds2=-dt2+dx2+dy2+dz2/hnodxndxo (in spherical coordinates): ds2=-dt2+dr2+r2di2+r2sin2idz2 Spherical surface metric: ds2=R2di2+R2sin2idz2 dxn Four-velocity definition: un/ dx (note that -1=u:u/gnounuo) Energy seen by observer: E=-p:u where p for object /mu obs 2xn 2xn2xb Tensor Transformations: Ul =U, Anl= 2xaAa, Bnol= 2xa 2xoBab, etc. 2xn 2xa Fundamental Identity: 2xa 2xo =dno, where dno=1if n=o, 0otherwise Raising, Lowering Indices: Bno=gnaBao, Bno=gnaBao, etc. R V 0 E E E S x y z W S-E 0 B -B W EM Field Tensor: Fno=S-Ex -B 0z B yW S y z x W S-E B -B 0 W z y x T X dpn Maxwell’s Equations: 2oFno=4rkJn, 2aFno+2oFan+2nFoa=0 Lorentz force law: dx =qFnouo Christoffel Symbols: Cnao= 21gav 2ngov+2ogvn-2vgno 7 A d dxb dxn dxo d2xa dxn dxo Geodesic Equation: 0= dxcgab dxm- 21(2agno) dx dx or 0= dx2 +Cnao dx dx Absolute Gradient: daBno=2aBno+CanvBvo-CacoBnc (one Christoffel symbol per index) Riemann Tensor: Rabno=2nCbao-2oCban+CnacCbco-CoavCbvn (in a LIF, where Cnao=0): Rabno= 21 2b2ngao+2a2ogbn-2b2ogan-2a2ngbo ^ h Riemann Symmetries: Rabon=-Rabno, Rbano=-Rabno, Rnoab=+Rabno, Rabno+Ranob+Raobn=0 Bianchi Identity: dvRabno+doRabvn+dnRabov=0 Ricci Tensor: Rbo=Rabao Curvature Scalar: R=gboRbo=Roo Stress-Energy: perfect fluid: Tno=(t0+p0)unuo+p0gno vacuum: Tvnaoc=-Kgno/8rG Einstein Tensor: Gno=Rno- 1gnoR 2 Einstein Equation: Gno=8rGTno or Rno=8rG(Tno- 21gnoTaa) Linear Approximation: 2a2aHno=-16rGTno, with 2nHno=0, and Hno/hno- 21hnohvv where gno=hno+hnowith hno <<1 (raise and lower H and h indices using the flat space metric) 2GM 2GM -1 Schwarzschild Metric: ds2=-b1- r ldt2-b1- r l dr2+r2di2+r2sin2idz2 Cosmic Metric: ds2=-dt2+[a(t)]2[drr2+q2(di2+sin2idz2)] where q(rr)=Rsinh(rr/R), rr,orRsin(rr/R), with R=H0 Xk 1/2= constant 1 da 2 X X Friedman Equation: cH0 dtm =Xk+ am + a2r +Xva2, where Xk=1-Xm-Xr-Xv 2GMr r2+a2cos2i Kerr Metric: ds2=- 1- dt2+ dr2+(r2+a2cos2i)di2 c r2+a2cos2im dr2-2GMr+a2n 2GMra2sin2i 4GMrasin2i + r2+a2+ sin2idz2- dzdt d r2+a2cos2i n dr2+a2cos2in (This page is intentionally blank) A General Relativity Workbook Credit: NASA Thomas A. Moore Pomona College Version b0.92 © January 2010 ii For Joyce, whose miraculous love always supports me and allows me to take risks with life that I could not face alone. and for Edwin Taylor, whose book with Wheeler set me on this path decades ago, and whose gracious support and friendship has kept me going. Page Layout: Thomas Moore (using Adobe® InDesign®, MathMagic®, and Virginia Systems InSeq® and InDex Pro®) Copyright © 2009 Thomas A. Moore This publication is protected by copyright. You may download the PDF file for this book (posted online at pages.pomona.edu/~tmoore/grw/), view it, and make backup copies for your personal use. All other rights are reserved. In particular, you may NOT print a copy, electronically copy material from the book, print and/or xerox more than one copy, send or copy the PDF file to someone else, or post the file on the internet. (This list does not exhaust the rights that are reserved.) To request permission to use material from this book, to print or xerox a copy or copies, to order printed copies for your personal use or use by your class, or to re- quest solutions to the box exercises or homework problems, send an email describ- ing your request to [email protected]. Please also report any errors to me at the same address. The posted PDF will always be kept as up-to-date as possible with regard to reported errors. Table of Contents iii Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 General Relativity in a Nutshell: Outline . . . . . . . . . . . . . . . . . .2 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Review of Special Relativity . . . . . . . . . . . . . . . . . . . .11 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Box 2.1 Overlapping IRFs move with constant relative velocities . . . 16 Box 2.2 Unit conversions between SI and GR units . . . . . . . . . . 17 Box 2.3 One derivation of the Lorentz Transformation . . . . . . . . . 18 Box 2.4 Lorentz Transformations and Rotations . . . . . . . . . . . . 21 Box 2.5 Frame-independence of the Spacetime Interval . . . . . . . . 22 Box 2.6 Frame-Dependence of the Time Order of Events . . . . . . . 22 Box 2.7 Proper time along a path . . . . . . . . . . . . . . . . . . . . 23 Box 2.8 Length contraction . . . . . . . . . . . . . . . . . . . . . . . 23 Box 2.9 The Einstein Velocity Transformation . . . . . . . . . . . . . 24 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Four-Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Box 3.1 The Frame-Independence of the Scalar Product . . . . . . . . 30 Box 3.2 The Invariant Magnitude of the Four-Velocity . . . . . . . . . 30 Box 3.3 The Low-Velocity Limit of u . . . . . . . . . . . . . . . . . 31 Box 3.4 Conservation of Momentum or Four-momentum? . . . . . . . 32 Box 3.5 Example: The GZK Cosmic-Ray Energy Cutoff . . . . . . . . 33 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Index Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Box 4.1 Behavior of the Kronecker Delta . . . . . . . . . . . . . . . . 42 Box 4.2 EM Field Units in the GR Unit System . . . . . . . . . . . . 42 Box 4.3 Example: The GZK Cosmic-Ray Energy Cutoff . . . . . . . . 43 Box 4.4 Identifying Free and Bound Indices . . . . . . . . . . . . . . 44 Box 4.5 Rule Violations . . . . . . . . . . . . . . . . . . . . . . . . . 44 Box 4.6 Example Derivations . . . . . . . . . . . . . . . . . . . . . . 45 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Arbitrary Coordinates . . . . . . . . . . . . . . . . . . . . . . . . .47 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Box 5.1 The Polar Coordinate Basis . . . . . . . . . . . . . . . . . . 52 Box 5.2 Proof of the Metric Transformation Law . . . . . . . . . . . . 53 Box 5.3 A 2D Example: Parabolic Coordinates . . . . . . . . . . . . . 54 Box 5.4 The LTEs as an Example General Transformation . . . . . . . 56 Box 5.5 The Metric Transformation Law in Flat Space . . . . . . . . . 56 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . 56 iv Table of Contents 6 Tensor Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Box 6.1 Example Gradient Covectors . . . . . . . . . . . . . . . . . . 62 Box 6.2 Lowering Indices . . . . . . . . . . . . . . . . . . . . . . . . 63 Box 6.3 The Inverse Metric . . . . . . . . . . . . . . . . . . . . . . . 64 Box 6.4 The Kronecker Delta is a Tensor . . . . . . . . . . . . . . . . 65 Box 6.5 Tensor Operations . . . . . . . . . . . . . . . . . . . . . . . 65 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . 66 7 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . .67 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Box 7.1 Gauss’s Law in Integral and Differential Form . . . . . . . . 72 Box 7.2 The Derivative of m2 . . . . . . . . . . . . . . . . . . . . . . 73 Box 7.3 Raising and Lowering Indices in Cartesian Coordinates . . . . 73 Box 7.4 The Tensor Equation For Conservation of Charge . . . . . . . 74 Box 7.5 The Antisymmetry of F Implies Charge Conservation . . . . . 75 Box 7.6 The Magnetic Potential . . . . . . . . . . . . . . . . . . . . . 76 Box 7.7 Proof of the Source-Free Maxwell Equations . . . . . . . . . 77 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . 78 8 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Box 8.1 The Worldline of Longest Proper Time in Flat Spacetime . . . 83 Box 8.2 Derivation of the Euler-Lagrange Equation . . . . . . . . . . 84 Box 8.3 Deriving the Second Form of the Geodesic Equation . . . . . 85 Box 8.4 Geodesics for Flat Space in Parabolic Coordinates . . . . . . 86 Box 8.5 Geodesics for the Surface of a Sphere . . . . . . . . . . . . . 88 Box 8.6 The Geodesic Equation Does Not Determine the Scale of x . 90 Box 8.7 Light Geodesics in Flat Spacetime . . . . . . . . . . . . . . . 90 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . 91 9 The Schwarzschild Metric . . . . . . . . . . . . . . . . . . . . . . 93 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Box 9.1 Radial Distance . . . . . . . . . . . . . . . . . . . . . . . . . 98 Box 9.2 Falling from Rest in Schwarzschild Spacetime . . . . . . . . 99 Box 9.3 GM for the Earth and the Sun . . . . . . . . . . . . . . . . 100 Box 9.4 The Gravitational Redshift for Weak Fields . . . . . . . . . 100 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 102 10 Particle Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Box 10.1 Schwarzschild Orbits Must be Planar . . . . . . . . . . . . 108 Box 10.2 The Schwarzschild “Conservation of Energy” Equation . . . 109 Box 10.2 Deriving Conservation of Newtonian Energy for Orbits . . . 110 Box 10.4 The Radii of Circular Orbits . . . . . . . . . . . . . . . . . 110 Box 10.5 Kepler’s Third Law . . . . . . . . . . . . . . . . . . . . . . 112 Box 10.6 The Innermost Stable Circular Orbit (ISCO) . . . . . . . . . 113 Box 10.7 The Energy Radiated by an Inspiraling Particle . . . . . . . 113 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 114 Table of Contents v 11 Precession of the Perihelion . . . . . . . . . . . . . . . . . . . 115 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Box 11.1 Verifying the Orbital Equation for u(z) . . . . . . . . . . . 120 Box 11.2 Verifying the Newtonian Orbital Equation . . . . . . . . . . 120 Box 11.3 Verifying the Equation for the Orbital “Wobble” . . . . . . 121 Box 11.4 Application to Mercury . . . . . . . . . . . . . . . . . . . . 121 Box 11.5 Constructing the Schwarzschild Embedding Diagram . . . . 122 Box 11.6 Calculating the Wedge Angle d . . . . . . . . . . . . . . . 123 Box 11.7 A Computer Model for Schwarzschild Orbits . . . . . . . . 123 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 126 12 Photon Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Box 12.1 The Meaning of the Impact Parameter b . . . . . . . . . . 132 Box 12.2 Derivation of the Equation of Motion for a Photon . . . . . 132 Box 12.3 Features of the Effective Potential Energy Function for Light 133 Box 12.4 Photon Motion in Flat Space . . . . . . . . . . . . . . . . . 133 Box 12.4 Evaluating 4-Vector Components in an Observer’s Frame . 134 Box 12.6 An Orthonormal Basis in Schwarzschild Coordinates . . . . 134 Box 12.7 Derivation of the Critical Angle for Photon Emission . . . . 135 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 136 13 Deflection of Light . . . . . . . . . . . . . . . . . . . . . . . . . . .137 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Box 13.1 Checking Equation 13.2 . . . . . . . . . . . . . . . . . . . 143 Box 13.1 The Differential Equation for the Shape of a Photon Orbit . 144 Box 13.3 The Differential Equation for the Photon “Wobble” . . . . . 144 Box 13.4 The Solution for u(z) in the Large-r Limit . . . . . . . . . 145 Box 13.5 The Maximum Angle of Light Deflection by the Sun . . . . 145 Box 13.6 The Lens Equation . . . . . . . . . . . . . . . . . . . . . . 146 Box 13.7 The Ratio of Image Brightness to the Source Brightness . . 147 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 148 14 Event Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Box 14.1 Finite Distance to r = 2GM . . . . . . . . . . . . . . . . . 154 Box 14.2 Proper Time for Free Fall from r = R to r = 0 . . . . . . . . 156 Box 14.3 The Future is Finite Inside the Event Horizon . . . . . . . . 157 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 158 15 Alternative Coordinates . . . . . . . . . . . . . . . . . . . . . . .159 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Box 15.1 Calculating 2tc/2r . . . . . . . . . . . . . . . . . . . . . . . 164 Box 15.2 The Global Rain Metric . . . . . . . . . . . . . . . . . . . 165 Box 15.3 The Limits on dr/dtc Inside the Event Horizon . . . . . . . 165 Box 15.4 Transforming to Kruskal-Szekeres Coordinates . . . . . . . 166 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 168 vi Table of Contents 16 Black Hole Thermodynamics . . . . . . . . . . . . . . . . . .169 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Box 16.1 Free-fall Time to the Event Horizon from r = 2GM + f . . . 174 Box 16.2 Calculating E3 . . . . . . . . . . . . . . . . . . . . . . . . 175 Box 16.3 Evaluating k , &, and T for a Solar-Mass Black Hole . . . . 176 B Box 16.4 Lifetime of a Black Hole . . . . . . . . . . . . . . . . . . . 177 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 178 17 The Absolute Gradient . . . . . . . . . . . . . . . . . . . . . . . . 179 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Box 17.1 Absolute Gradient of a Vector . . . . . . . . . . . . . . . . 184 Box 17.2 Absolute Gradient of a Covector . . . . . . . . . . . . . . . 184 Box 17.3 Symmetry of the Christoffel Symbols . . . . . . . . . . . . 185 Box 17.4 The Christoffel Symbols in Terms of the Metric . . . . . . . 185 Box 17.5 Checking the Geodesic Equation . . . . . . . . . . . . . . . 186 Box 17.6 A Trick for Calculating Christoffel Symbols . . . . . . . . . 186 Box 17.7 The Local Flatness Theorem . . . . . . . . . . . . . . . . . 187 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 190 18 Geodesic Deviation . . . . . . . . . . . . . . . . . . . . . . . . . .191 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Box 18.1 Newtonian Tidal Deviation Near a Spherical Object . . . . 196 Box 18.2 Proving Equation 18.9 . . . . . . . . . . . . . . . . . . . . 197 Box 18.3 The Absolute Derivative of n . . . . . . . . . . . . . . . . 197 Box 18.4 Proving Equation 18.14 . . . . . . . . . . . . . . . . . . . 198 Box 18.5 An Example of Calculating the Riemann Tensor . . . . . . 198 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 200 19 The Riemann Tensor . . . . . . . . . . . . . . . . . . . . . . . . .201 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Box 19.1 The Riemann Tensor in a Locally Inertial Frame . . . . . . 204 Box 19.2 Symmetries of the Riemann Tensor . . . . . . . . . . . . . 205 Box 19.3 Counting the Riemann Tensor’s Independent Components . 206 Box 19.4 The Bianchi Identity . . . . . . . . . . . . . . . . . . . . . 207 Box 19.5 The Ricci Tensor is Symmetric . . . . . . . . . . . . . . . . 208 Box 19.6 The Riemann and Ricci Tensors and R a Sphere . . . . . . . 208 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 210 20 The Stress-Energy Tensor . . . . . . . . . . . . . . . . . . . . . 211 Concept Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Box 20.1 Why the Source of Gravity Must be Energy, not Mass . . . 216 Box 20.2 Interpretation of Tij in a Locally Inertial Frame . . . . . . . 216 Box 20.3 The Stress-Energy Tensor for a Perfect Fluid in its Rest LIF 217 Box 20.4 Equation 20.16 Reduces to Equation 20.15 . . . . . . . . . 219 Box 20.5 Fluid Dynamics from Conservation of Four-Momentum . . 219 HOMEWORK PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . 220

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.