ebook img

A General Model for the CO-H2 Conversion Factor in Galaxies with Applications to the Star Formation Law PDF

0.93 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A General Model for the CO-H2 Conversion Factor in Galaxies with Applications to the Star Formation Law

Mon.Not.R.Astron.Soc.000,1–??(2010) Printed12January2012 (MNLATEXstylefilev2.2) A General Model for the CO-H Conversion Factor in Galaxies with 2 Applications to the Star Formation Law 2 1⋆ 2 3 4 1 Desika Narayanan †, Mark R. Krumholz , Eve C. Ostriker , Lars Hernquist 0 1StewardObservatory,UniversityofArizona,933NCherryAve,Tucson,Az,85721 2 2DepartmentofAstronomyandAstrophysics,UniversityofCalifornia,SantaCruz,Ca,95064 n 3DepartmentofAstronomy,UniversityofMaryland,CollegePark,Md20742 a 4Harvard-SmithsonianCenterforAstrophysics,60GardenSt.,Cambridge,Ma02138 J 1 1 AcceptedbyMNRAS ] A G ABSTRACT . h Themostcommonmeansofconvertingan observedCO lineintensityintoa molecular p gasmassrequirestheuseofaconversionfactor(XCO).WhileintheMilkyWaythisquantity o- does not appear to vary significantly, there is good reason to believe that XCO will depend r on the larger-scale galactic environment. With sensitive instruments pushing detections to st increasinglyhighredshift,characterisingXCO asafunctionofphysicalconditionsiscrucial a to our understanding of galaxy evolution. Utilising numerical models, we investigate how [ varying metallicities, gas temperatures and velocity dispersions in galaxies impact the way 2 COlineemissiontracestheunderlyingH2gasmass,andunderwhatcircumstancesXCOmay v differfrom the Galactic meanvalue. We find that, due to the combinedeffects of increased 1 gastemperatureandvelocitydispersion,XCO isdepressedbelowtheGalacticmeaninhigh 9 surfacedensityenvironmentssuchasULIRGs.Incontrast,inlowmetallicityenvironments, 7 XCO tends to be higher than in the Milky Way, due to photodissociation of CO in metal- 3 poorclouds.Athigherredshifts,gas-richdiscsmayhavegravitationallyunstableclumpsthat 0. arewarm(duetoincreasedstarformation)andhaveelevatedvelocitydispersions.Thesediscs 1 tendtohaveXCOvaluesrangingbetweenpresent-epochgas-richmergersandquiescentdiscs 1 at low-z. This model shows that on average, mergers do have lower XCO values than disc 1 galaxies,thoughthereissignificantoverlap.XCO variessmoothlywith thelocalconditions : withinagalaxy,andisnotafunctionofglobalgalaxymorphology.Wecombineourresultsto v i provideageneralfittingformulaforXCO asafunctionofCOlineintensityandmetallicity. X WeshowthatreplacingthetraditionalapproachofusingoneconstantXCOforstarburstsand r anotherfordiscswith ourbest-fitfunctionproducesstarformationlawsthatarecontinuous a ratherthanbimodal,andthathavesignificantlyreducedscatter. Key words: ISM:clouds-ISM:molecules-galaxies:interactions-galaxies:ISM- galaxies:starburst-galaxies:starformation 1 INTRODUCTION molecules.Theground-staterotationaltransitionofcarbonmonox- ide(12CO(J=1-0),hereafterCO)isoneofthemostcommontracers Asthebuildingblockofstars,H2 isarguablythemostimportant ofH inGMCsowingtoitsrelativelyhighabundance( 10−4/H moleculeinastrophysics.Ironically,however,itisalsooneofthe 2 ∼ 2 intheGalaxy;Leeetal.1996),thehighatmospherictransmission moreobservationally elusive.Withnopermanent dipolemoment, at 3mmwheretheJ=1-0linelies,andthelowtemperaturesand H2 isbestdirectlydetectedviaitsfirstquadrupole line.Thisline den∼sitiesrequiredforCOexcitation( 5K, 102 103cm−3). lies at 500 K above ground, significantly above the 10 K ∼ ∼ − typical∼ofthecoldmolecular interstellarmedium(ISM),∼andina However,usingCOtotraceH2doesnotcomewithoutuncertainty. At the basis of the interpretation of CO observations is the con- spectralregionwithrelativelylowatmospherictransmission.Asa version between CO spectral line intensity and H gas mass, the result,giantmolecularclouds(GMCs)areoftenstudiedviatracer 2 so-calledCO-H conversionfactor. 2 TheCO-H conversionfactorisdefinedas 2 ⋆ E-mail:[email protected] X = NH2 (1) † BartJ.BokFellow CO W CO 2 Narayananet al. whereN isthemolecular gascolumndensity, andW isthe high-z, the CO-H conversion factor may be larger than the H2 CO 2 velocity-integratedCOlineintensity(measuredinK-kms−1).Al- MilkyWaymeanvalue(Wilson1995;Arimotoetal.1996;Israel ternatively,theconversionfactorcanbedefinedastheratioofthe 1997; Bosellietal. 2002; Leroyetal. 2006; Bolattoetal. 2008; moleculargasmassandCOlineluminosity: Leroyetal.2011;Genzeletal.2011a),thoughthereissomedebate over this (see summaries in Blitzetal. 2007, and the Appendix M αCO = Lgas (2) ofTacconietal.(2008)).ObservationshavesuggestedthattheX- CO factormayscaleasX (O/H)−bwhereb=1 2.7(Arimotoetal. XCOandαCOareeasilyrelatedvia 1996;Israel1997). ∝ − X (cm−2(K kms−1)−1)= Thefact that thesetwoeffectsdrive XCO inopposite direc- CO − (3) tions complicates the interpretation of CO detections from high- 6.3 1019 αCO(M pc−2(K kms−1)−1) redshiftsystemswheregalaxiesdisplayalargerangeinmetallici- × × ⊙ − ties(e.g. Shapleyetal.2004;Genzeletal.2011a;Shapley2011) Hereafter, we refer to the CO-H conversion factor in terms of 2 X 1,thoughplotintermsofbothX andα . and gas surface densities (e.g. Bothwelletal. 2010; Daddietal. CO CO CO 2010a; Genzeletal. 2010; Narayananetal. 2011a). Further mud- DespitepotentialvariationsinCOabundances,radiativetrans- dying the interpretation of high-z molecular line emission is fer effects, and varying H gas fractions, a variety of inde- 2 the fact that there are not always clear analogs of high-redshift pendent measurements of H gas mass in GMCs have shown 2 galaxies in the present-day Universe. For example, relatively that the CO-H conversion factor in Galactic clouds is reason- 2 ably constant, with XCO 2 4 1020 cm−2/K-kms−1 unperturbed discs at z∼2 oftentimes have surface densities, (α 3 6 M pc−2(≈K-km−s−1)−×1). Methods for obtain- star formation rates, and velocity dispersions comparable to lo- CO ing ind≈epend−ent me⊙asurements of H gas mass include (i) as- cal galaxymergers(Daddietal.2005,2010a;Krumholz&Dekel 2 2010;Genzeletal.2011b),though(sometimes)lowermetallicities suming the GMCs are in virial equilibrium, and utilising the (Crescietal.2010).Similarly,eventhemostheavilystar-forming CO line width to derive the H mass within the CO emitting 2 galaxiesatz 2,SMGs,attimesshowdynamicallycoldmolec- region (e.g. Larson 1981; Solomonetal. 1987); (ii) Inferred ∼ ular discs even when they are potentially the result of mergers dust masses and an assumed dust-to-gas mass ratio (Dickman (Narayananetal.2009;Carillietal.2010;Narayananetal.2010b; 1975; deVriesetal. 1987; Guelinetal. 1993; Dameetal. 2001; Engeletal.2010).ConvertingCOlineintensitytoH gasmasses Draine&Li 2007; Lombardietal. 2006; Pinedaetal. 2008; 2 isamulti-facetedproblemthatinvolvesunderstandinghowgalactic Leroyetal.2011;Magdisetal.2011)and(iii)γ-rayemissionaris- environmentsetstheX-factor. ing from the interaction of cosmic rays with H (Bloemenetal. 2 Over the last two decades, models of GMC evolution have 1986; Bertschetal. 1993; Strong&Mattox 1996; Hunteretal. made substantive headway in elucidating the variation of X 1997; Abdoetal. 2010b; Delahayeetal. 2011). Beyond this, ob- CO with physical properties of molecular clouds. The earliest GMC servations of GMCs in the Local Group suggest that a simi- models utilised 1D radiative transfer with spherical cloud mod- lar CO-H conversion factor may apply for some clouds out- 2 els (e.g Kutner&Leung 1985; Wall 2007). Photodissociation side of our own Galaxy (Rosolowskyetal. 2003; Blitzetal. region (PDR) models furthered these studies by including the 2007; DonovanMeyeretal. 2011). Numerical models of molec- formation and destruction pathways of CO (Belletal. 2006, ular clouds on both resolved and galaxy-wide scales have indi- 2007; Meijerinketal. 2007). More recently, magnetohydrody- cated that a relatively constant CO-H conversion factor in the 2 namicmodelsofGMCevolutionwithtime-dependentchemistryby Galaxy and nearby galaxies may naturally arise from GMCsthat Gloveretal. (2010) and Glover&MacLow (2011) coupled with have a limited range in surface densities, metallicities and ve- radiativetransfercalculations (Shettyetal.2011b,a)haveinvesti- locity dispersions (Glover&MacLow 2011; Shettyetal. 2011b; gatedX onthescalesofindividualGMCs,anditsdependence Narayananetal.2011b;Feldmannetal.2011). CO onthephysicalenvironment. In recent years, a number of observational studies have pro- Compared to models of isolated GMCs, there are relatively vided evidence for at least two physical regimes where the CO- fewsimulationsexploringtheeffectofthelargergalacticenviron- H conversion factor departs from the “standard” Milky Way 2 value. The first is in high-surface density environments. In- mentontheX-factor.Maloney&Black(1988)presentedsomeof theearliestmodelswhichexploredtheeffectsofchangingindivid- terferometric observations of present-epoch galaxy mergers by ualphysicalparametersinisolationontheCO-H conversionfac- Scovilleetal.(1991);Downesetal.(1993);Solomonetal.(1997); 2 tor.Veryrecently,Feldmannetal.(2011)havetiedtheGMCmod- Downes&Solomon (2003); Hinz&Rieke (2006); Meieretal. els of Glover&MacLow (2011) to cosmological simulations of (2010)andDownes&Solomon(1998)showedthatusingaMilky WayX wouldcausetheinferredH gasmasstoexceedthedy- galaxyevolutiontoinvestigateXCOongalaxy-widescalesinrela- CO 2 tivelyquiescentdiscgalaxies.Buildingonthesemodels,aswellas namical mass of the CO-emitting region for some galaxies. This whathasbeenlearnedinthestudiesofGlover&MacLow(2011), implies that the CO-H conversion factor should be lower than 2 Shettyetal.(2011b)andWolfireetal.(2010),inNarayananetal. theGalacticmeaninhigh-surfacedensityenvironments.Morere- (2011b), we combined dust and molecular line radiative transfer cent observations of z 2 Submillimetre Galaxies (SMGs) by ∼ calculations withhydrodynamic simulationsof galaxies inevolu- Tacconietal. (2008) suggested a similar result for high-redshift tioninordertodevelop amodel thataimstocapturetheCOline starbursts. Similarly, observations of GMCs toward the Galactic emissionfromGMCsongalaxy-widescales. Centreindicatethat X maybelower inthishigh-surface den- CO sityenvironment(Okaetal.1998). In this paper, utilising the methodology we developed in Second, in low-metallicity environments at both low and Narayananetal.(2011b),weinvestigatetheeffectofgalacticenvi- ronmentinsettingtheCO-H conversionfactoringalaxiesatlow 2 and high-redshifts. Our paper is organised as follows. In 2, we § 1 Intheliterature,XCOissometimesreferredtoastheX-factor,andwe summarisethemethodologydevelopedinNarayananetal.(2011b) shallusethetwointerchangeably. andemployed here.Wenotethatwhile 2isashortersummary, § TheEffect ofGalacticEnvironmenton X 3 CO a more complete description ispresented in Appendix A. In 3, (Krumholz&Thompson 2007). This radiation is then followed § weinvestigatetheroleofgalacticenvironmentonX ,focusing through the galaxy in order to account for radiative transfer pro- CO onisolateddiscgalaxies( 3.1),galaxiesatlowmetallicity( 3.2), cessesongalaxy-widescales(Narayananetal.2006,2011b).With § § high-surfacedensity( 3.3),andhighredshift( 3.4).Buildingon thesecalculations,weknowthethermalandchemicalstateofthe § § theseresults,in 4,wedevelop afunctional formforcalculating molecular ISM in our model galaxies, the synthetic broadband § X fromobservations ofgalaxiesand, asanapplication, utilise SEDs, and the modeled CO emission line spectra. At this point, CO thesetointerpretKennicutt-Schmidtstarformationraterelationsat weareinapositiontounderstandvariationsintheCO-H conver- 2 lowandhigh-redshift.In 5,wediscussourresultsinthecontext sionfactor.Weremindthereaderthatfurtherdetailsregardingthe § of other theoretical models, and in 6, we summarise our main implementationofthesemodelscanbefoundintheAppendix. § results. Wenotethat,inordertoalleviateconfusionbetweensimula- tionpointsandobservationaldataonplots,wewillemployasys- temthroughoutthisworkinwhichfilledsymbolsexclusivelyrefer toobservationaldata,andopensymbolsrefertosimulationresults. 2 SUMMARYOFSIMULATIONMETHODOLOGY Ourmaingoalistosimulatetheimpactofgalacticenvironmenton theH contentandCOemissionfromgalaxies.Thisinvolvessim- 2 3 THEEFFECTOFOFGALACTICENVIRONMENTON ulating theevolution of galaxies, thephysical stateof themolec- X ular ISM, and the radiative transfer of CO lines through GMCs CO andthroughgalaxies.Becausemuchofthemethodologyhasbeen OurgeneralgoalistounderstandhowX dependsonthephys- CO described inaprevious paper byus(Narayananetal.2011b),we icalenvironmentingalaxies,andhowitmayvarywithobservable brieflysummariseourapproachhere,anddeferthequantitativede- propertiesofgalaxies.Inordertodothis,wemustfirstdevelopin- tailstotheAppendix. tuitionastohowvarious physicalparametersaffect X .Inthis CO We first require model galaxies to analyse. We simulate the section, we examine how X varies from the Galactic mean in CO hydrodynamic evolution of disc galaxies in isolation and galaxy low-metallicity environments, high-surface density environments, mergers over a range of galaxy masses, merger mass ratios, and andathigh-redshift. redshiftsutilisingamodifiedversionofthepubliclyavailablecode, Quantitatively,wedefinethemeanX fromagalaxyas: CO GADGET-2. These simulations provide information regarding the kinematicstructure,massandmetaldistributionoftheISM,aswell X = ΣH2dA (4) CO asthestellarpopulations.TableA1summarisesthemodelproper- h i RWCOdA ties. whichisequivalenttoaluminosiRty-weightedX overallGMCs CO The remainder of our calculations occur in post-processing. inthegalaxy. We smooth the SPH results onto an adaptive mesh. We require knowledge of the physical and chemical state of the molecular cloudsinourmodelgalaxies.WeassumethecoldH gasisbound 2 3.1 ReviewofX inz=0QuiescentDiscGalaxies insphericalGMCswithH fractionscalculatedfollowingthemod- CO 2 elsofKrumholzetal.(2008)andKrumholzetal.(2009a).Carbon WebeginbyconsideringX indiscgalaxiesatz=0withmetal- CO is assumed to have a uniform abundance within these clouds of licitiesaroundsolar(Z′ 1).ThesegalaxieshavemeanX-factors 1.5 10−4 Z′,whereZ′isthemetallicitywithrespecttosolar. comparable to the Galac≈tic mean and will serve as the “control” × × ThefractionofcarbonlockedupinCOisdeterminedfollowingthe samplefromwhichwewilldiscussvariationsinphysicalparame- models of Wolfireetal. (2010), and have an explicit dependence ters. onthemetallicity.GMCsthathaveasurfacedensitygreater than Recalling 2,andreferringtotheAppendix,whencloudsare 100M pc−2areconsideredresolved.GMCsthatarenotresolved notresolved,w§eimposeafloorsurfacedensityof100M pc−2. (typica⊙llylowmassGMCsinlargecellsintheadaptivemesh)have IntheseGMCs,thevelocitydispersionisthevirialveloci⊙tyofthe afloorsurfacedensityoftheaforementionedvalueimposed,con- cloud.Inourmodelz=0discgalaxies,gascompressionswithinthe sistentwithobservationsofLocalGroupGMCs(e.g. Bolattoetal. galaxyareunabletocausesignificantdeviationsfromthesesubres- 2008;Fukui&Kawamura2010).UnresolvedGMCshavevelocity olutionvaluesofN 1022cm−2andσ 1 5kms−1.Inthis H2 ∼ ∼ − dispersions equal to the virial velocity of the GMC, whereas re- regime,thetemperaturesoftheGMCstypicallyfallto 8 10K. ∼ − solved GMCshave velocitydispersions determined directlyfrom Thisistheusualtemperaturewherecosmicraysdominategasheat- thesimulations. inginourmodel;thedensitiesarenotsufficientlyhighforanyof ThetemperatureoftheGMCsisdeterminedviaabalanceof theheatingprocessestoincreasethegastemperaturesdrastically. thevariousheatingprocessesonthegas(here,photoelectriceffect, At solarmetallicities,asufficientcolumnofdustcaneasilybuild ∼ cosmicraysandenergyexchangewithdust),andlinecooling.The uptoprotecttheCOfromphotodissocation, andmost ofthecar- dusttemperatureiscalculatedviathepubliclyavailabledustradia- boninmolecular cloudsisintheformofCO.Withthesemodest tivetransfercode, SUNRISE(Jonssonetal.2010).Thecosmicray conditionsintheclouds,andlittlevariationthroughoutthegalaxy heating rate is assumed take on the mean Galactic value (except (seeFigure2of Narayananetal.2011b),themodeledX tends CO asdescribedinAppendixC).Utilisingthismodel,thetemperature to be a few 1020 cm−2/K-kms−1 (i.e. similar to the Milky ∼ × rangestypicallyfrom 10KinquiescentGMCsto> 100Kin Waymean),withtheonlynotableexceptionbeingGMCstoward ∼ thecentresofstarbursts(Narayananetal.2011b). thegalacticcentre(Narayananetal.2011b). Once the physical and chemical state of the ISM is known, As pointed out by Narayananetal. (2011b), while various we are prepared to model the CO line emission via radia- subresolution techniques are folded into our model disc galaxies, tive transfer calculations. The emergent CO line emission from thatweseerelativelylittlevariationintheGMCpropertiesinour the GMCs is calculated via an escape probability formalism model z=0 discs is a statement that the galactic environment is 4 Narayananet al. 22 1021 100.0 1:1 Burst 10.0 1:3 Burst 1:10 Burst ) ) -1-km s 21 10.0 -1m s)) -1-km s 1020 Tacconi et al. 2008 -1m s)) K k K 1.0 k -2(cm/ 20 1.0 2pc K- -2(cm/ 2pc K- g(X) 10CO 19 (M / (O •O ean X CO 1019 0.1 (M / (O •O lo Leroy et al. 2011 0.1 αC M αC Bolatto et al. 2008 Genzel et al. 2011 18 1018 0.0 0.2 0.4 0.6 0.8 1.0 1.2 100 1000 10000 Z/Z Σ (M pc-2) O • mol O • Figure1.XCOversusmass-weightedmeanmetallicity(inunitsofsolar) Figure2.MeanXCOversusmass-weightedmeansurfacedensityforz=0 forallz=0modelgalaxieswithΣH2∼100M⊙pc−2.Thecontoursrep- modelmergerswhentheyareundergoingastarburst(e.g.thesnapshotswith resentthenumberofsnapshotsinagivenXCO-Z′bin,withthenumbers thepeakSFRs).Theplotting symbolsareshowninthelegend, thougha increasingwithincreasinglightnessofthecontour.Thedashedlineouter givensymbolmaybereplacedbyasquareifthemetallicityislowerthan0.5 contour encompasses all model galaxies, regardless of their gas surface Z⊙.ThepurplefilledcirclesrepresentthecompileddatafromTacconietal. density.Overlaidareobservational datapointsfromBolattoetal.(2008); (2008).Theblacksolidlineisthebestfitforallsimulationsnapshotsfrom Leroyetal.(2011)andGenzeletal.(2011a).Thesolidlineshowsourbest Equation10,andisdiscussedin§4. fittothesimulationsandisexpressedinEquation8anddescribedin§4. anorderofmagnitudegreaterthantheGalacticmean.Asthegalax- not extreme enough to cause significant deviations from the de- iesevolveandtheISMbecomesenrichedwithmetals,thecarbonis fault surface densities and velocitydispersions. The temperatures almostexclusivelyintheformofCO,andtheX-factordecreases. and velocity dispersions are allowed to vary freely with galactic The predicted X -Z′ relation in Figure 1 matches well CO environment, and the surface densities have a floor value similar with recent observational data. Overlaid, we plot recent results toactual GMCs(Blitzetal.2007; Bolattoetal.2008).Asshown fromresolvedregionsinnearbygalaxiesfromBolattoetal.(2008), by Shettyetal. (2011b), GMCswithphysical parameterscompa- Leroyetal.(2011)andGenzeletal.(2011a).NotethatΣ (and H2 rable to those observed in Galactic GMCs exhibit XCO values thusXCO) intheobservationsdependsonanestimateofthegas closetotheGalacticmean,XCO 2 4 1020cm−2/K-kms−1 mass, which is obtained with various methods for these studies2. (mαeCrgOer≈s in3th−e6prMese⊙ntpUc−n2iv(eKrs-ek,m≈losw−−1m)−e1ta×)l.liAcistywgealwaxililess,haonwd, iinn Bwoitthhdthecereoabssienrgvamtieotnasllaicnidty.mWodheillseswheowdeafenruapdwisacrdustsrieonndoifnfiXttiCnOg some cases, high-redshift discs, the physical properties of GMCs X intermsofZ′to 4,wedenoteourbestfitmodel(discussed CO varysufficientlythatthisisnolongerthecase. inEquation8)bytheso§lidlineinFigure1. WeshouldnotethatthecontoursinFigure1indicatetherange ofpossibleX-factorsatagivenmetallicityasreturnedbyourmod- 3.2 TheEffectsofMetallicityonX CO els. They are not cosmological, so do not connote any particular Themetallicityof thegascanhaveastrongeffect ontheCO-H probabilities.Thesimplefactthat observed datapointsliewithin 2 conversion factor. In metal-poor gas, it is possible to have “CO- the contours with a similar X -Z′ trend suggest a reasonable CO dark” molecular clouds (Papadopoulosetal. 2002; Wolfireetal. matchbetweenourmodelsandobservedgalaxies.Whenexamin- 2010). In these regions, H can self-shield to protect itself from ingtheoutercontourthatencompassesallofourmodels(andnot 2 photodissociating UV radiation, whereas CO cannot and requires justthoseatagivensurfacedensityasinthegreyscalecontours), dusttosurvive(Sternberg&Dalgarno1995;Hollenbach&Tielens it is clear that there is a significant dispersion in X on either CO 1999).Inthesecases,weexpectalargerfractionofCO-darkclouds sideofthebest-fitlineinFigure1.Moreover,thereisasignificant andariseintheCO-H conversionfactor(Maloney&Black1988; dispersion in the observed data at a given metallicity (especially 2 Wolfireetal.2010;Shettyetal.2011a;Feldmannetal.2011). noticeablenearZ′ 1).Thissuggeststhatthereisasecond pa- ≈ InFigure1,weplottheemission-weightedmeanX forour rametercontrollingtheX-factoringalaxies,asidefrommetallicity. CO modelz=0isolateddiscgalaxiesasafunctionofmetallicitywith filledcontours.Tocontrolforsurfacedensityeffects,weplotmod- elswithΣ 100M −2.Thecontoursindicatethenumberof 2 Bolattoetal.(2008)assumecloudsarevirialised; ifinstead cloudsare H2 snapshotsina≈givenX⊙ Z′ bin.Theouterdashedcontour de- marginallybound,thenXCO woulddecrease.Leroyetal.(2011)usein- CO− fraredemissiontoderivedustmasses,andHIobservationstoderiveadust- notes the contour that encompasses all of our models, at any gas to-gasratio.IfthisdusttogasratiodoesnotmaptotheH2gas,thederived surfacedensity. XCOwillchangeaccordingly.Genzeletal.(2010)assumeascalingrela- Thelowestmetallicitymodelgalaxiesallhaverelativelyhigh tionΣSFR ∝ Σ1g.a1s.Ifasteeper relation wereadopted (c.f.§4.2),then meanX-factorscomparedtothe∼solarmetallicitygalaxies.The thevaluesofXCOcorrespondingtohighvaluesofΣSFRwoulddecrease lowestmetallicitymodelscanhavemeanX-factorsapproximately somewhat. TheEffect ofGalacticEnvironmenton X 5 CO Aswewillshowinthenextsection,thisisthedynamicalandther- andarecategorised by themerger massratio(1:1, 1:3and 1:10). malstateofthemolecularISM. Themeansurfacedensityisdefinedasthemass-weightedsurface densityoverallGMCs,i,inthegalaxy: 3.3 HighSurfaceDensityGalaxies Σ M Σ = i H2,i× H2,i (5) 3.3.1 LargeTemperaturesandVelocityDispersions h H2i P iMH2,i On average, in regions of high surface density, the emission- Henceforth,whenwerefertothePsurfacedensityofthegalaxy,we refertothemeansurfacedensitydefinedbyEquation5.Wenote weightedmeanX inagalaxyislowerthantheGalacticmean CO valueof 2 4 1020 cm−2/K-kms−1.Thishasbeenshown that this is different from the commonly used definition ΣH2 = observatio∼nally−by×Tacconietal.(2008),andseeninthemodelsof MH2/A,whereAistheareawithinanobservationalaperture.We refrainfromthelatterdefinitionasitisdependentonthechoiceof Narayananetal.(2011b). Byitself,anincreaseinsurfacedensitydoesnotcauseX scale. ΣH2 canbethoughtofasthesurfacedensityatwhichmost CO h i ofthemassresides.Immediately,weseetwotrendsinFigure2. todecrease.Rather,theoppositeistrue:perEquation1,athighsur- First,withincreasingsurfacedensity,weseedecreasingmean facedensities,X wouldincreaseifW werefixed.However, CO CO inhigh-Σ regions,thevelocity-integratedlineintensity,W in XCO duetothewarmandhighvelocitydispersiongasassociated H2 CO with merging systems. Second, the most violent mergers tend to factincreasesevenmorerapidlythanΣ ,causinganetdecrease H2 inX .Toseewhythisis,considerthephysicalprocessesthatare havethelowestmeanXCOvalues,whereaslowermassratiomerg- CO typicallyassociatedwithincreasedsurfacedensities. ers (1:3) have less extreme conditions, and thus X-factors more comparabletotheGalacticmeanvalue.ThepurplecirclesinFig- First, regions of high surface density are associated with ure2noteobservationalpointsfromTacconietal.(2008);themod- higher star formation rates (Kennicutt 1998a; Krumholzetal. elsanddatashowbroadagreement3. 2009b;Ostrikeretal.2010;Ostriker&Shetty2011).Whileava- TheopensquaresinFigure2arepointsfromourmodelswith riety of theories exist as to why this is the case (see a review of someofthesemodelsinTan2010),inoursimulationsthisisdue meanmetallicitieslessthanZ′ <0.5.Carefulexaminationofthese to the fact that we explicitly tie our star formation rates to the points shows that some of them have rather large X-factors. As wediscussedin 3.2,lowermetallicitygalaxieshavelargermass volumetric gas density on small scales. With high star formation § ratescomehotterdusttemperaturesastheUVradiationheatsthe fractionsofCO-darkclouds,andthushigherX-factors. nearby dust grains. When the gas densities are & 104cm−3, the In Figure 3, we demonstrate more explicitly the effect of dustandgasexchangeenergyefficiently,andthegastemperature metallicityontheXCO-surfacedensityrelationship.Becausewe approachesthedusttemperature(Goldsmith2001;Juvela&Ysard finditusefulinaforthcomingsection( 4)toparameteriseXCO § 2011). Hence, in regions of high surface density, the increased intermsoftheobservablevelocity-integratedCOintensity,WCO dust temperature driven by the higher star formation ratescauses asanobservable, ratherthanΣH2,weplotXCO againstWCO in anincrease inthegaskinetictemperature. Because theCO(J=1- Figure3.WCOisdefinedastheluminosity-weightedlineintensity 0) line is thermalised at relatively low densities, the brightness fromallGMCsinthegalaxy.WeplottheXCO-WCOrelationship temperature of the line is comparable to the kinetic temperature forallsnapshotsofall1:1z=0majormergerswithintwodistinct metallicityranges.Theselectedmetallicityrangesarearbitrary,and of the gas, and is thus increased in regions of high surface den- are chosen simply to highlight the influence of metallicity. As is sity.Forlowredshiftgalaxies,theeasiestwaytoincreasethesur- face density tends to be through merging activity and the associ- clear,thelowestmetallicitypointsinFigure3havethehighestX- factors, and the reverse is true for the highest metallicity points. atedtidaltorqueswhichdrivegaseousinflowsintothenuclearre- gion(Barnes&Hernquist1991,1996;Mihos&Hernquist1994b, Foreachmetallicitybin,thetrendissuchthatincreasingWCO(or 1996), though higher-redshift discs can have relatively large sur- ΣH2) correlates with decreasing XCO, though the normalisation varieswithmetallicity.Thisinformsourfittingformulain 4. facedensitiessimplyduetogravitationalinstabilitiesinextremely § Returning to Figure 2, we make a final point that there is a gas-richclumps(Springeletal.2005;Bournaudetal.2010). Second, in the simulations, high surface-densities in gas are largedispersioninXCOforthemergermodels.Boththe1:3mod- typically accompanied by high velocity dispersions. This gener- els and 1:1 mergers show XCO values ranging from above the Milky-Way mean to an order of magnitude below it during their ally means some level of merging activity in low-redshift galax- peakstarburst.Whensampling theentirelibraryof merger orbits ies, and either merging activity or unstable gas clumps in high- foragivenmergermassratio,awiderangeinoutcomesisappar- redshift discs. In major mergers, the emission-weighted velocity dispersionscanbeashighas 50 100kms−1. ent.Weseeadiversesetofvelocitydispersionsinthegas,aswell ∼ − asstarformationrates,owingtodifferingefficienciesatwhichan- The increased velocity dispersion and kinetic temperature gularmomentumisremovedfromthegas.Somemodelsundergo contributeroughlyequallytoincreasingthevelocity-integratedline intensity.Duringamerger,thetemperatureandvelocitydispersion rathervigorousstarbursts(approaching 500M yr−1),whereas othershardlysustainanoticeablestarbu∼rstuponfi⊙nalcoalescence. individuallyincreaseenoughtooffsettheincreaseinthegassurface Galaxiesthatundergotheirpeakstarburstonlyonfirstpassagecan density, and in combination tend to drive the emission-weighted haveratherdifferentmetallicitiesintheirISMthanmergersthatgo meanX foragalaxybelowtheMilky-Wayaverage.Inregions CO of high surface density, the emission-weighted mean X tends CO todecreaseonaverage.In 3.4,wedetailspecificnumbersfora samplemergerthatservesa§sanexampleforthiseffect. 3 WecautionthatourdefinitionofhΣH2iisamass-weightedsurfaceden- sity,andisdifferentfromthesurfacedensitydefinedbytheTacconietal. WecanseethismoreexplicitlyinFigure2,whereweplotthe data,MH2/A.Inthelimitofalargevolumefillingfactor,thesevalueswill meanXCOversusmeansurfacedensityforthestarburstsnapshots approachoneanother.TheobserveddataclosertoΣmol=100M⊙pc−2 inourlow-redshiftsampleofgalaxies.Thestarburstsnapshotsare likely represents galaxies with a clumpy ISM, and the modeled and ob- defined as the snapshots where the SFR peaks for a given model servedH2gassurfacedensitiesmaydifferinthisregime. 6 Narayananet al. α (M / (pc2 K−km s−1)) CO1 O · 10 1024 1.2 10000 z=0 Mergers (burst) 0.9Z</ZZO •<<01..51 1.0 z=0z =M0 eDrgisecrss ((aallll)) 1023 O • z=2 Discs (all) −2−1 (cm/K−km s)O 11002212 111000000 2-1M / (pc K-km s))O • mber (normalised) 000...468 XC 1020 (CONu 1 α 0.2 1019 0.0 101 102 103 104 105 19.0 19.5 20.0 20.5 21.0 21.5 W (K−km s−1) log (X ) (cm−2/K−km s−1) CO 10 CO Figure3.XCOversusCOlineintensity,WCOforz=01:1galaxymergers Figure4.DistributionofXCOvaluesduringthepeakofthestarformation intwodistinctmetallicitybins.Inthiscase,WCOisasurrogateforΣH2 rate(the“burst”snapshot)forall1:1and1:3localgalaxymergers(black thatisanactualobservable(andrelateableviaXCO).Atagivenmetallicity, solid),allz=01:1and1:3mergers(i.e.notjusttheburstsnapshots;black XCO decreases with CO intensity due tothe larger number ofCO-dark dash-dot),allhigh-zdiscmodelswithZ′≈1(reddotted),andlow-zdisc GMCsinthesegalaxies.Thesolidlineshowsthebestfitmodel(c.f.§4) modelswithZ′≈1(greendashed).Seetextfordetails. forametallicityofZ′=1. at z 2 (This is model “z3b5e”; please refer to the Table in through avigorous starformationperiodduring firstpassage and the A∼ppendix for the initial conditions of this model merger). inspiral before experiencing astarburst contemporaneous withfi- Model z3b5e undergoes a luminous burst of 1500 M yr−1, nalcoalescence. and may be selected as a submillimetre galax∼y when it⊙merges In the solid line of Figure 4, we plot the distribution of (Narayananetal. 2009; Haywardetal. 2011). During the burst, emission-weighted mean XCO values for each of our 1:1 z=0 this simulation reaches a mass-weighted mean surface density of merger models during the peak of their star formation rate. For molecular gas of 104 M pc−2. At the same time, the mass comparison,weplotthedistributionofX-factorsforourz=0discs weightedkinetic(d∼ust)tempe⊙ratureis 150(160)K4,andthemass- inthegreendashedline(onlyplottinggalaxieswith solarmetal- weightedvelocitydispersionintheG∼MCsis 140kms−1.Do- licity),aswellasthedistributionofXCOforourz=2∼discs(which ing a simple scaling results in a mean XC∼O of 5 1019 wediscussinmoredetailin 3.4).Aswesee,thereisno“merger” cm−2/K-kms−1.Ofcoursetherealmass-weightedva∼luem×ayvary § value for XCO. Itispossible to haveXCO values instarbursting fromthisowingtobothradiativetransferaswellasthefactthatthis mergerscomparabletotheMilkyWay’s.Thefactthatstarbursting simplescalingisnot atrueaveraging. Observational estimatesof mergers,onaverage,havelowerX-factorsthantheGalacticmean the X-factor in SMGs suggest that they are similar to the lower islikelyduetoaselectioneffect.Wereturntothispoint inmore valuesintherangeoflocalULIRGs(Tacconietal.2008). (quantitative)detailin 4. Oursimulateddiscgalaxiesathigh-redshift showarangeof § X values,rangingfromcomparabletotheGalacticmeantoval- CO ues2-5timeslower.Thereasonmassivediscsathigh-redshiftmay 3.4 X inHigh-RedshiftGalaxies CO have lower X-factors than the Galactic mean can be understood 3.4.1 BasicResults inthefollowingway.Incontrasttopresent-epochgalaxies,galax- ies at higher-redshifts (z& 1) at a fixed stellar mass are denser Now that we have developed intuition regarding the variation of and more gas-rich (e.g . Erbetal. 2006; Fo¨rsterSchreiberetal. X withmetallicityandsurfacedensity,weareinapositionto CO 2009; Daddietal. 2010b; Tacconietal. 2010). Both simulations understandhowgalaxiesathighredshiftmaybehavewithrespect and observations suggest that galaxies around redshifts z 1-2 totheCO-H conversionfactor. ∼ 2 mayhavebaryonicgasfractionsoforder20-60%(Dave´etal.2010; Mergers at high-z are some of the most luminous, rapidly Daddietal.2010b;Tacconietal.2010).Aprimaryconsequenceof star-forminggalaxiesintheUniverse.Asanexample,manyz 2 this is that discs at higher-redshifts may be heavily star-forming, ∼ Submillimetre-selected Galaxies (SMG) form stars at & 1000 with star formation rates or order 102 M yr−1, comparable M /yr (Narayananetal. 2010b). However, despite the order tolocalgalaxymergers(Daddietal∼.2007;Fo¨⊙rsterSchreiberetal. of⊙magnitude greater star formation rate in these galaxie∼s com- 2009;Narayananetal.2010a).Infact,simulationssuggestthatdisc paredtolocalmergers,mergersathigh-z aresimilartotheirlow- galaxiesatz 2likelydominatetheinfraredluminosityfunction redshiftcounterpartsintermsoftheirtypicalX-factors.Whilethe ∼ (Hopkinsetal.2010). mean gas surface densities in e.g. z 2 Submillimetre Galaxies ∼ (SMGs) are larger than low-redshift mergers (e.g. Tacconietal. 2008;Narayananetal.2010b),boththedusttemperaturesandgas 4 Notethatowingtoradiativetransfereffects,thisdusttemperatureisnot velocitydispersionsalsorisecommensurately. necessarilywhatwouldbederivedsimplybyidentifyingthelocationofthe As a specific example, we focus on a 1:1 major merger peakoftheSED. TheEffect ofGalacticEnvironmenton X 7 CO In the absence of rather extreme stellar feedback, very gas- rich discs at high-redshift can be unstable to fragmentation, 12 and form massive kpc-scale clumps (e.g. Springeletal. 2005; ∼ Ceverinoetal. 2010). These clumps can have relatively high ve- 10 locity dispersions ( 102 kms−1) and warm gas temperatures ∼ owing to high volumetric densities and high star formation rates y) r 8 (Bournaudetal.2010). a r Theseeffectsarethestrongestinthemostmassivediscs.Our bit r mostmassivez=2modeldiscgalaxyhasatotalbaryonicmassof (a 6 5 1011M yr−1,andhastypical5X-factorsranginganywhere er ∼betw×een a fac⊙tor of five below the Galactic mean to the Galactic mb 4 u meanvalue.Thelowermassz=2isolateddiscmodels(withbary- N onicmassesofM = 1 1011 and3.5 1010 M )typically haveX-factorscobmarparable×totheMilkyW×aymean.R⊙eturningto 2 Figure4,weexaminethereddottedlinethatrepresentsz 2disc ∼ 0 models.Becausetheideaofa’starburst’snapshotislessmeaning- 0.1 1.0 10.0 fulfortheevolutionofadiscgalaxy,weplottheX-factorforevery X (Merger)/X (High−z Disc) at a Given Z and W snapshotforourmodeldiscswithmetallicitiesaroundsolar.Wesee CO CO CO alargespreadinmeanX-factors. Figure5.ComparisonoftheX-factorbetweenlow-zmergers(1:1and1:3) andhigh-zstarformingdiscs.ThehistogramdenotesratioofX-factorfrom 3.4.2 DoMergersandDiscsHaveInherentlyDifferent mergersversushigh-z discsbetweensnapshotswithasimilarmetallicity X-factors? andCOintensity.Thesharppeaknearunityimpliesthatgalaxieswithsim- ilarphysicalconditionshavesimilarX-factors,independentoflarge-scale Inlightofthefactthathigh-z discshave,attimes,starformation morphology. rates comparable to local galaxy mergers, a pertinent question is whether there is an intrinsic difference in the X-factor between high-z discs and galaxy mergers. Another way of saying this is, foragivensetofphysicalconditions,aretheX-factorsfrommerg- erslowerthantheX-factorsfromhigh-z gas-rich,gravitationally Toshowthis,inFigure5,weperformoursecondtestinwhich unstable discs? A cursory examination of Figure 4 indicates that weexaminetheX-factorsfromallthe1:1and1:3mergers(atlow mergers(theblacksolidline)havesystematicallylowerX-factors z)andcomparethemtotheX fromhigh-zdiscswiththesame6 CO than discs (the blue and red dashed and dotted lines). Indeed, in metallicity and CO intensity (W ). We could equivalently per- CO the local Universe, it is observed that mergers have, on average, formthisanalysisintermsofΣ ,thoughaswewillshowin 4, H2 lowerX-factorsthandiscs(e.g.Tacconietal.2008).However,this parameterising in terms of W is desirable with regards to§ob- CO islikelyduetoaselectionbias.Weremindthereaderthattheblack servations. There isa strong peak at X ratiosnear unity, with CO solidlineinFigure4representsstarburstingmergers.Thesemerg- some spread. The median value in the distribution is 0.8, and ers are caught when their gas is extremely warm and with large themeanis 1.1.TheimplicationfromFigure5isth∼atgalaxies velocitydispersion.Whencomparingmergersanddiscswithcom- withsimilar∼physicalconditions(here,Z′ andW )havesimilar CO parable physical conditions, the observed XCO values are infact X-factors,regardlessofwhethertheyarediscsormergers.Thefact quite similar. It is the physical conditions in a galaxy that deter- thatmergers,onaverage,havelowerX-factorsthandiscsinthelo- minetheX-factor,nottheglobalmorphology. cal Universe likelyderives fromthefact that theyareselected as Todemonstratethis,weperformthreetests.First,wecompute starbursts, which have preferentially higher temperatures and ve- thedistributionofXCOvaluesforall1:1and1:3mergersnapshots locitydispersionsinthegas. (at solarmetallicity),andindicatethiswiththeblackdot-dashed Third,inFigure6,weexaminetherelationshipbetweenX ∼ CO lineinFigure4.Aswesee,thedistributionofXCOvaluesisbroad, andWCOforthesamegalaxiesplotted7inFigures4and5.These butwithsubstantiallylesspowerinthelowX-factorregimethan areallgalaxieswithmetallicitiesaroundsolar.Theprincipalresult thedistributionthatdenotesonlystarburstingmergers(blacksolid fromFigure6isthatgalaxieswithinarelativelylimitedmetallic- line).Thishighlightsthatmergerswhichareselectedduringapar- ityandW (orsurface-density)rangehavesimilarX-factors,re- CO ticularlyactive phase aremore likely tohave low X-factors, due gardlessofthetypeofmergeritis.Mergersanddiscshavesimilar totheirwarmandhigh-σ gas.Whencontrollingforthiseffectby X values when they have similar physical conditions, and are CO pickinggalaxieswithsimilarCOintensity(WCO)andmetallicity, notinherentlydifferentbasedontheirglobalmorphology.Inaddi- mergersanddiscshavethesameXCOonaverage. tion,Figure6,likeFigures2and3,showsasystematicdecreaseof X withincreasingW (andΣ ). CO CO mol 5 Becauseoursimulations arenotcosmological, thereisnoaccretion of intergalactic gas.Asaresult,themetallicities inourmodelgalaxiesonly risewithtime.Because theX-factor isdependent onmetallicity (§3.2), wehavetomakeachoiceastowhichsnapshot/metallicity toconsideras a’typical’galaxy.WeassumeanysnapshotaboveZ′ > 0.5is“typical” basedonthesteady-statemetallicitiesfoundforgalaxiesofbaryonicmass 6 “Thesame”heremeansthatthevaluesofZ′andWCOarewithin10% comparabletothoseinoursamplefromcosmologicalmodeling(Figure2of ofoneanother. Dave´etal.2010,thoughseeKeresetal.(2011);Vogelsbergeretal.(2011) 7 Toreduce clutter in the plot, we randomly draw 10% of the galaxies andSijackietal.(2011)). withineachmergerratiobintoplot. 8 Narayananet al. 4 APPLICATIONTOOBSERVATIONS 1021 4.1 DerivingX fromObservations CO z=0 1:1 10 z=0 1:3 Aswehaveseenfromtheprevioussections,itisclearthatthereisa High-z Disc ) dcoonmtiinnuanutmdorifvXerCsOofvtahleueXs-thfaacttvoarriynwoiuthrsgiamlaucltaitcioennsviarroentmheenmt.eTtahle- -1km s -1m s) licityofthestar-forminggas,andthethermalanddynamicalstate K- k oXAftCthOsueMabGsseotMaalalfCluricsnm.ictIyteinotfainosllroimacfieotcidbreussbce,yirawvtlahebiislnse,gewpreeredothipaeerenerttrmiaetposoitdoiavfnaggytraeoldpwaaxttroihaempso.aefrtaeCmriOseat-etdiraoisrnke. -2X (cm/CO 1020 1 2M / (pc K-O • GMCs.Thishasbeennotedbothinobservations(e.g.Leroyetal. ean (O 2011; Genzeletal. 2011a), as well as other numerical models M αC (Shettyetal.2011a;Krumholzetal.2011b;Feldmannetal.2011). Aswesawin§3.2,aswellasinFigure3,atagivengalaxysurface 1019 density(orCOintensity),X increaseswithdecreasingmetallic- CO 101 102 103 104 105 ity. W (K-km s-1) Beyondthis,aswasshownin 3.3,aswellasinthemodelsof CO § Narayananetal.(2011b),galaxysurfacedensityiscorrelatedwith thethermalanddynamical stateofthegas:atagivenmetallicity, Figure 6. Comparison of XCO versus CO intensity (WCO) for low-z highersurfacedensitygalaxies,onaverage,correspondtogalaxies galaxymergersandhigh-z discsinanefforttoinvestigateifmergersand witha warmand high velocity dispersion molecular ISM, due to discs inherently havedifferent XCO properties. Included inthis plotare all 1:1 and1:3 mergers simulated at z=0. Only snapshots with metallic- theirhigherSFRs. ities Z′ > 0.7are shown. Toreduce clutter inthe plot, weplot only a Informed by these results, we perform a 2D Levenberg- randomlydrawnsubsample(10%)ofthesnapshotsfromeachmassratio. Marquardt fit (Markwardt 2009) on our model galaxies (consid- ThelineshowsthebestfitfromEquation8.Evidently,galaxiesthathave eringeverysnapshotofeverymodel),fittingXCOasafunctionof similarphysicalconditionshavesimilarX-factors,independentofgalaxy mass-weightedmeanmetallicityandmass-weightedmeanH2sur- morphologyorevolutionaryhistory.Seetextfordetails. facedensity.Wefindthatoursimulationresultsarereasonablywell fittedbyafunctionoftheform: 1.3 1021 where Σ is in unXitCsOof≈MZ′×pch×−Σ2H2ain0d.5X is in units(6o)f αCO = 10.7×ZhW′0.C65Oi−0.32 (9) H2 CO cm−2/K-kms−1. Equation 6 p⊙rovides a good fit to the model Whereα isinunitsofM pc−2(K-kms−1)−1. results above metallicities of Z′ ≈ 0.2. Turning again to Fig- ItisCiOmportanttorecog⊙nizethatthepower-lawinEquation8 ures 1, 2, 3 and 6, we highlight thesolid lines whichshow how cannotdescribeX indefinitely.AtverylowW ,GMCstend CO CO Equation6fitsboththesimulationresultsandobservationaldata. toward fixed properties in galaxies and the galactic environment We note that Ostriker&Shetty (2011) obtained a similar result, playsalimitedroleinsettingX .Consideringthis,Equation8 α Σ−0.5 by interpolating between empirical α values CO (αCO ∝= 3m.2olfor Σ = 100 M pc−2 and α CO= 1 for formallybecomes: CO mol CO Σ =1000M pc−2). ⊙ mol BecauseΣ ⊙isnotdirectlyobservable(hencetheneedforan min 4,6.75 W −0.32 1020 H2 CO X = ×h i × (10) X-factor),were-castEquation6intermsofthevelocity-integrated CO Z′0.65 (cid:2) (cid:3) COlineintensity.InordertoparameteriseX inamannerthat CO or,similarly: is independent of the effects of varying beam-sizes or observa- tionalsensitivity,wedefinetheobservableCOlineintensityasthe min 6.3,10.7 W −0.32 luminosity-weightedCOintensityoverallGMCs,i: α = ×h COi (11) CO Z′0.65 (cid:2) (cid:3) W2 dA L W hWCOi= R WCCOOdA ≡ P CO,Li×CO,iCO,i (7) of gaElaqxuiaetsiotnosin1f0eranadn1ex1pceacntedbeXu-sfeadctdoirr.eOctnlyewaditvhanotbasgeervoaftitohniss formalismisthat itcapturesthecontinuum of CO-H conversion where W isinunRitsofK-kms−1,andPistheCOsurfacebright- 2 CO factors,ratherthanutilisingbimodal“Disc”and“ULIRG”values. h i nessofthegalaxy.WethenfittoobtainarelationbetweenX , CO Because we have chosen the physical quantities in our modeling Z′,and W : CO based on massor luminosity-weighted averages, they aredefined h i withoutreferencetoaparticularscale.Consequently,Equation10 XCO = 6.75×102Z0′×0.6h5WCOi−0.32 (8) tcoanunbreesuoslevdedonobscsaelrevsatriaonngsinogfgfraolamxioeus.rresolutionlimitof∼70pc It is conceivable that alternative definitions of the observed whereagain W isCOlineintensitymeasuredinK-kms−1, meanCOintensitycouldbeappropriate.Onecanimagineimple- CO X isincmh−2/K-kims−1,andZ′isthemetallicitydividedbythe mentinganarea-weightedintensity,i.e.W = L /Area.This CO CO CO solarmetallicity.ByconvertingX toα ,wesimilarlyobtain: hastheundesirableattributeofbeingdependentonadefinedscale. CO CO TheEffect ofGalacticEnvironmenton X 9 CO 4.2 TheKennicutt-SchmidtStarFormationRelationin Kennicutt-SchmidtplotthatusesabimodalX-factor,thelowerlu- Galaxiesfromz=0-2 minositydiscs have CO-H conversion factors comparable tothe 2 Galacticmean,andthemostluminousdiscshaveX-factorsupto AnaturalapplicationofourmodelfortheCO-H conversionfac- 2 anorderofmagnitudelower.Verymassive,gas-rich,unstablediscs, tor is the Kennicutt-Schmidt star formation rate surface density- aswellaslowerluminositymergershaveX-factorsinbetweenthe gassurfacedensityrelationingalaxies.BecausetheinferredH gas 2 two, however, and fill in the continuum. UtilisingEquation 10, a massesfromobservedgalaxiesareinherentlydependentonconver- simplelinearchi-squarefitoftheobserveddataontherightsideof sionsfromCOlineintensities,ourunderstandingoftheKennicutt- Figure7returns: Schmidtrelationisfundamentallytiedtothepotentialvariationof XCOwiththephysicalenvironmentingalaxies. log10(ΣSFR)=1.95 log10(Σmol) 4.9 (12) × − Recentsurveysofbothlocalgalaxies(e.g.Kennicutt1998a,b; where Σ is measured in M yr−1kpc−2 and Σ is mea- Bigieletal.2008,andreferencestherein),aswellaspioneeringef- SFR mol suredinM pc−2.Utilisingane⊙mpiricalmethodtoobtainX forts at higher redshifts (e.g. Bouche´etal. 2007; Bothwelletal. W−0.3, Os⊙triker&Shetty (2011) previously showed that theCOob∝- 2010; Daddietal. 2010a; Genzeletal. 2010) have provided a CO servationaldatacompiledinGenzeletal.(2010)yieldsasimilarfit wealth of data contributing to our knowledge of the star for- toEquation12. mation relation in both quiescent disc galaxies and starbursts. Weremindthereaderoftheassumptionsthathavegoneinto WorkbyDaddietal.(2010a)andGenzeletal.(2010)demonstrate this fit: We have assumed that every galaxy has solar metallic- the sensitivity of these relations to the CO-H conversion factor: 2 ity,andneglectedanypotentialeffectsofdifferentialexcitationin Whenapplyingthetraditionalbimodal conversion factor(X CO 8 1019 cm−2/K-kms−1 for ULIRGs and X 2 102≈0 theCOasafunctionofinfraredluminosity(e.g.Narayananetal. CO cm×−2/K-kms−1 for discs) tothestarburst galaxies≈and di×scs, re- 2011a).Nevertheless,theapplicationofavariableX-factoronthe SFR-gassurfacedensityrelationhasinterestingimplications. spectively,abimodalSFRrelationbecomesapparentwhenthedata First,theindexof 2ofEquation12isconsistentwiththean- areplottedintermsofΣSFRandΣmol. ∼ alyticmodelsandhydrodynamicsimulationsofself-regulatedstar InFigures7–9,weillustratetheeffectsofourmodelfitfor formation by Ostriker&Shetty (2011). This work suggests that X asafunctionofgalaxyphysicalproperties.Intheleftpanel CO in molecular regions where supernova-driven turbulence controls of Figure 7, we plot the star formation rate surface density for the SFR and gas dominates the vertical gravity, the SFR surface bothlocalgalaxiesandhigh-zgalaxiesascompiledbyDaddietal. densityshouldbeproportionaltothegassurfacedensitysquared: (2010a) and Genzeletal. (2010) against their CO line intensity, log(Σ ) = 2 log(Σ ) 5.0(adoptingfiducialparameters WCO.Althoughthereissignificantscatter,theΣSFRvsWCOrela- SFR × mol − inEquation13ofOstriker&Shetty(2011)).Thisisshownasthe tionisunimodal.Inthemiddlepanel,weplottheSFR-Σ relation H2 solidlineintherightpanelofFigure7,andisverycomparableto utilisingthebimodalX-factorsassumedintheliterature(withthe the best fit relation. Second, comparing Equation 12 to Equation above“ULIRG”valuefortheinferredmergers[localULIRGsand 13 of Ostriker&Shetty (2011), the empirical results are consis- high-zSMGs],andtheabove“quiescent”valueforlow-zdiscsand high-z BzKgalaxies)8.Thecirclesareunresolvedobservationsof tentwithavalueofmomentuminjected/totalstellarmassformed discgalaxiesatlowandhigh-z,trianglesandcontoursareresolved ofifdufcpia×lvpa∗l/umea∗do∼pt3e0d0i0nOkmstrsi−ke1r(&ΣmShole/tt1y0(02M01⊙1)pisc3−020)0−0k.m05;s−th1e. observationsoflocaldiscs,andthesquaresarelocalULIRGsand Daddietal.(2010a)andGenzeletal.(2010)suggestanalter- inferredmergersathigh-redshift.Whenseparatehighandlowval- nativemechanismforreducingthescatterimposedbytheutilisa- uesofX areadoptedfordiscsandmergers,abimodalrelation- CO tionofabimodalX inFigure7.Specifically,theseauthorsfind shipbetweenΣ andΣ results,withpower-lawindexranging CO SFR gas thatbydividingthemoleculargassurfacedensitybythegalaxy’s betweenunityand1.5. orbital time, the observed Kennicutt-Schmidt relation goes from In the right panel of Figure 7, we apply Equation 10 to the observational data(assumingZ′ = 1forthegalaxies).Thescat- bimodal to unimodal, suggesting that the galaxy’s global proper- tiesarerelatedtothelocal,small-scaleprocessesofstarformation. ter in the modified relation immediately tightens, and it becomes Thatistosay,whenusingabimodalX ,theΣ Σ re- unimodal.Tonumericallyquantifythereductioninscatterwiththe CO SFR − mol lationshipisbimodal,whereastheΣ Σ /t relationship modified relation we examine the ratio of the maximum inferred SFR− mol dyn isunimodal,withsomescatter. Σ totheminimumforallpointswithintherelativelytightSFR H2 surfacedensity rangeof [0.05,0.1] M yr−1kpc−2 forthecentre IfoneabandonsthebimodalXCOapproximation,andutilises and right panels of Figure 7. The sca⊙tter is reduced by approxi- our favoured model for XCO, the observed relationship between Σ andΣ /t remainsunimodal,andinfactthescatterin matelyafactorof5.WithinthisΣ range,nomergersareinthe SFR mol dyn SFR the relation is reduced compared to what one obtains using a bi- sample. Thus, the reduction in scatter is not due to simply using modalX .Toshowthis,inFigure8,weshowtheanalogtoFig- aunimodal X versus bimodal X . Wenote that inapplying CO CO CO ure7,but withthe abscissa showing thesurface density or W Equation10totheobserveddata,wehavetoassumethattheinten- CO dividedbythedynamicaltime.Thedynamicaltimesusedarethe sitywithinthereportedareaisuniform.Iftheemissionisinstead sameasthoseinDaddietal.(2010a)andGenzeletal.(2010),and highly concentrated over very few pixels, then the application of aredefinedastherotationaltimeateitherthegalaxy’souterradius, Equation10mayoverestimateX . CO orhalf-lightradius, depending onthesample.Intheleftpanel of ThereasonforthetransitionfromabimodaltounimodalKS Figure8,weshowtherelationshipbetweenΣ andW /t relationisclear.Inthemodifiedrelation,similartothetraditional SFR CO dyn (i.e.pureobservables);inthecentrepanel,weshowtherelationship betweenΣ andΣ /t whenassumingabimodalX (as SFR mol dyn CO 8 Inpractice,forthehigh-zBzKgalaxies,weutiliseanX-factorofXCO≈ isdoneinDaddietal.(2010a)andGenzeletal.(2010)),andinthe 2.3×1020cm−2/K-kms−1toremainconsistentwithDaddietal.(2010a), right panel we show the same relationship, but with Σmol deter- thoughtheusageofthisversusthemorestandarddiscvaluemakeslittle minedusingourbest-fitcontinuousXCO,ratherthanthebimodal difference. XCO value used inDaddietal. (2010a) and Genzeletal.(2010). 10 Narayananet al. 104 No X Bimodal X Continuous X CO CO CO 102 ) -2c p k -1yr 100 M O • ( R F S Σ 10-2 10-4 10-1 100 101 102 103 104 105 100 101 102 103 104 105 100 101 102 103 104 105 W (K-km s-1) Σ (M pc-2) Σ (M pc-2) CO mol gas O • mol gas O • Figure7.Kennicutt-Schmidtstarformationrelation(SFRsurfacedensityversusH2gassurfacedensity)inobservedgalaxies.Circlesandtrianglesarelocal discsorhigh-zBzKgalaxies,andsquaresareinferredmergers(localULIRGsorhigh-zSMGs).Coloursdenotingseparatesurveysaredescribedbelow.Left: SFRsurfacedensityvs.velocity-integratedCOintensity,yieldingaunimodalSFRrelation.Centre:WhenapplyinganeffectivelybimodalXCO(αCO =4.5 forlocaldiscs,3.6forhigh-zdiscs,and0.8formergers),theresultingSFRrelationisbimodal.Thesolidanddottedlinesoverplottedarethebestfittracks foreach“mode”ofstarformationasinDaddietal.(2010a).Right:SFRrelationwhenapplyingEquation10totheobservationaldata,resultinginaunimodal SFRrelation.Thepower-lawindexintherelationisapproximately2(solidline).Symbollegend:Wedividegalaxiesinto’disc-like’withfilledcircles,and ’merger-like’withsquares.Thisassumesthathigh-zBzKgalaxiesarealldiscs,high-zSMGsandlow-zULIRGsareallmergers.Thelow-zdiscobservations (blackfilledcircles andblacktriangles)comefromKennicuttetal.(2007);Wong&Blitz(2002);Crosthwaite&Turner(2007);Schusteretal.(2007)and comprisebothresolvedandunresolvedpoints.TheresolvedpointsfromthesurveyofBigieletal.(2008)aredenotedbythecolouredcontours.Thelocal ULIRGsarecompiledbyKennicutt(1998b)andaredenotedbyblackfilledsquares.Thehigh-zdiscscomefromGenzeletal.(2010),Daddietal.(2010b,a) andarerepresentedbyfilledbluecircles.Thehigh-zSMGsaredividedintothethesamplesofBothwelletal.(2010)(purple),Bouche´etal.(2007)(green), andGreveetal.(2005);Tacconietal.(2006,2008);Engeletal.(2010)ascompiledbyGenzeletal.(2010)(filledredsquares). Wefindabestfitrelation(usingourmodelforX )of: X versus the bimodal value reduces the scatter by a factor of CO CO 5. ∼ log (Σ )=1.03 log (Σ /t ) 1.05 (13) 10 SFR 10 mol dyn × − The fact that our model for the Σ Σ /t relation SFR mol dyn whereΣ andΣ /t arebothinM yr−1kpc−2. isconsistent withtheobserved one (though−withreduced scatter) SFR mol dyn OurbestfitΣ Σ /t relatio⊙nhasslopeofapproxi- isnotsurprising.Daddietal.(2010a)andGenzeletal.(2010)as- SFR mol dyn − matelyunity,comparabletowhatisfoundbyGenzeletal.(2010), sumeaMilkyWay-likeX fortheirdiscgalaxies, androughly CO and consistent with the best fit slope of Daddietal. (2010a) of a factor of 5 lower for their mergers. In our model, the assump- 1.15.AprincipaldifferencebetweenusingourmodelX ver- tionofabimodalX fordiscsandmergersiscorrectonaverage. CO CO ∼ susthebimodalX incalculatingtheΣ Σ /t relation ThemeanvalueforX forhigh-z SMGsandlow-z mergersis CO SFR mol dyn CO − isareductionofscatter.WhenmeasuringthescatternearSFRsur- infactlowerthanthemeanvalueforlocaldiscs(c.f. 4.3).How- face density of 1 M yr−1 kpc−2, we find that using our model ever,manygalaxieslieintheoverlapregion.Somelo§calULIRGs ⊙

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.