Mon.Not.R.Astron.Soc.000,1–??(2010) Printed12January2012 (MNLATEXstylefilev2.2) A General Model for the CO-H Conversion Factor in Galaxies with 2 Applications to the Star Formation Law 2 1⋆ 2 3 4 1 Desika Narayanan †, Mark R. Krumholz , Eve C. Ostriker , Lars Hernquist 0 1StewardObservatory,UniversityofArizona,933NCherryAve,Tucson,Az,85721 2 2DepartmentofAstronomyandAstrophysics,UniversityofCalifornia,SantaCruz,Ca,95064 n 3DepartmentofAstronomy,UniversityofMaryland,CollegePark,Md20742 a 4Harvard-SmithsonianCenterforAstrophysics,60GardenSt.,Cambridge,Ma02138 J 1 1 AcceptedbyMNRAS ] A G ABSTRACT . h Themostcommonmeansofconvertingan observedCO lineintensityintoa molecular p gasmassrequirestheuseofaconversionfactor(XCO).WhileintheMilkyWaythisquantity o- does not appear to vary significantly, there is good reason to believe that XCO will depend r on the larger-scale galactic environment. With sensitive instruments pushing detections to st increasinglyhighredshift,characterisingXCO asafunctionofphysicalconditionsiscrucial a to our understanding of galaxy evolution. Utilising numerical models, we investigate how [ varying metallicities, gas temperatures and velocity dispersions in galaxies impact the way 2 COlineemissiontracestheunderlyingH2gasmass,andunderwhatcircumstancesXCOmay v differfrom the Galactic meanvalue. We find that, due to the combinedeffects of increased 1 gastemperatureandvelocitydispersion,XCO isdepressedbelowtheGalacticmeaninhigh 9 surfacedensityenvironmentssuchasULIRGs.Incontrast,inlowmetallicityenvironments, 7 XCO tends to be higher than in the Milky Way, due to photodissociation of CO in metal- 3 poorclouds.Athigherredshifts,gas-richdiscsmayhavegravitationallyunstableclumpsthat 0. arewarm(duetoincreasedstarformation)andhaveelevatedvelocitydispersions.Thesediscs 1 tendtohaveXCOvaluesrangingbetweenpresent-epochgas-richmergersandquiescentdiscs 1 at low-z. This model shows that on average, mergers do have lower XCO values than disc 1 galaxies,thoughthereissignificantoverlap.XCO variessmoothlywith thelocalconditions : withinagalaxy,andisnotafunctionofglobalgalaxymorphology.Wecombineourresultsto v i provideageneralfittingformulaforXCO asafunctionofCOlineintensityandmetallicity. X WeshowthatreplacingthetraditionalapproachofusingoneconstantXCOforstarburstsand r anotherfordiscswith ourbest-fitfunctionproducesstarformationlawsthatarecontinuous a ratherthanbimodal,andthathavesignificantlyreducedscatter. Key words: ISM:clouds-ISM:molecules-galaxies:interactions-galaxies:ISM- galaxies:starburst-galaxies:starformation 1 INTRODUCTION molecules.Theground-staterotationaltransitionofcarbonmonox- ide(12CO(J=1-0),hereafterCO)isoneofthemostcommontracers Asthebuildingblockofstars,H2 isarguablythemostimportant ofH inGMCsowingtoitsrelativelyhighabundance( 10−4/H moleculeinastrophysics.Ironically,however,itisalsooneofthe 2 ∼ 2 intheGalaxy;Leeetal.1996),thehighatmospherictransmission moreobservationally elusive.Withnopermanent dipolemoment, at 3mmwheretheJ=1-0linelies,andthelowtemperaturesand H2 isbestdirectlydetectedviaitsfirstquadrupole line.Thisline den∼sitiesrequiredforCOexcitation( 5K, 102 103cm−3). lies at 500 K above ground, significantly above the 10 K ∼ ∼ − typical∼ofthecoldmolecular interstellarmedium(ISM),∼andina However,usingCOtotraceH2doesnotcomewithoutuncertainty. At the basis of the interpretation of CO observations is the con- spectralregionwithrelativelylowatmospherictransmission.Asa version between CO spectral line intensity and H gas mass, the result,giantmolecularclouds(GMCs)areoftenstudiedviatracer 2 so-calledCO-H conversionfactor. 2 TheCO-H conversionfactorisdefinedas 2 ⋆ E-mail:[email protected] X = NH2 (1) † BartJ.BokFellow CO W CO 2 Narayananet al. whereN isthemolecular gascolumndensity, andW isthe high-z, the CO-H conversion factor may be larger than the H2 CO 2 velocity-integratedCOlineintensity(measuredinK-kms−1).Al- MilkyWaymeanvalue(Wilson1995;Arimotoetal.1996;Israel ternatively,theconversionfactorcanbedefinedastheratioofthe 1997; Bosellietal. 2002; Leroyetal. 2006; Bolattoetal. 2008; moleculargasmassandCOlineluminosity: Leroyetal.2011;Genzeletal.2011a),thoughthereissomedebate over this (see summaries in Blitzetal. 2007, and the Appendix M αCO = Lgas (2) ofTacconietal.(2008)).ObservationshavesuggestedthattheX- CO factormayscaleasX (O/H)−bwhereb=1 2.7(Arimotoetal. XCOandαCOareeasilyrelatedvia 1996;Israel1997). ∝ − X (cm−2(K kms−1)−1)= Thefact that thesetwoeffectsdrive XCO inopposite direc- CO − (3) tions complicates the interpretation of CO detections from high- 6.3 1019 αCO(M pc−2(K kms−1)−1) redshiftsystemswheregalaxiesdisplayalargerangeinmetallici- × × ⊙ − ties(e.g. Shapleyetal.2004;Genzeletal.2011a;Shapley2011) Hereafter, we refer to the CO-H conversion factor in terms of 2 X 1,thoughplotintermsofbothX andα . and gas surface densities (e.g. Bothwelletal. 2010; Daddietal. CO CO CO 2010a; Genzeletal. 2010; Narayananetal. 2011a). Further mud- DespitepotentialvariationsinCOabundances,radiativetrans- dying the interpretation of high-z molecular line emission is fer effects, and varying H gas fractions, a variety of inde- 2 the fact that there are not always clear analogs of high-redshift pendent measurements of H gas mass in GMCs have shown 2 galaxies in the present-day Universe. For example, relatively that the CO-H conversion factor in Galactic clouds is reason- 2 ably constant, with XCO 2 4 1020 cm−2/K-kms−1 unperturbed discs at z∼2 oftentimes have surface densities, (α 3 6 M pc−2(≈K-km−s−1)−×1). Methods for obtain- star formation rates, and velocity dispersions comparable to lo- CO ing ind≈epend−ent me⊙asurements of H gas mass include (i) as- cal galaxymergers(Daddietal.2005,2010a;Krumholz&Dekel 2 2010;Genzeletal.2011b),though(sometimes)lowermetallicities suming the GMCs are in virial equilibrium, and utilising the (Crescietal.2010).Similarly,eventhemostheavilystar-forming CO line width to derive the H mass within the CO emitting 2 galaxiesatz 2,SMGs,attimesshowdynamicallycoldmolec- region (e.g. Larson 1981; Solomonetal. 1987); (ii) Inferred ∼ ular discs even when they are potentially the result of mergers dust masses and an assumed dust-to-gas mass ratio (Dickman (Narayananetal.2009;Carillietal.2010;Narayananetal.2010b; 1975; deVriesetal. 1987; Guelinetal. 1993; Dameetal. 2001; Engeletal.2010).ConvertingCOlineintensitytoH gasmasses Draine&Li 2007; Lombardietal. 2006; Pinedaetal. 2008; 2 isamulti-facetedproblemthatinvolvesunderstandinghowgalactic Leroyetal.2011;Magdisetal.2011)and(iii)γ-rayemissionaris- environmentsetstheX-factor. ing from the interaction of cosmic rays with H (Bloemenetal. 2 Over the last two decades, models of GMC evolution have 1986; Bertschetal. 1993; Strong&Mattox 1996; Hunteretal. made substantive headway in elucidating the variation of X 1997; Abdoetal. 2010b; Delahayeetal. 2011). Beyond this, ob- CO with physical properties of molecular clouds. The earliest GMC servations of GMCs in the Local Group suggest that a simi- models utilised 1D radiative transfer with spherical cloud mod- lar CO-H conversion factor may apply for some clouds out- 2 els (e.g Kutner&Leung 1985; Wall 2007). Photodissociation side of our own Galaxy (Rosolowskyetal. 2003; Blitzetal. region (PDR) models furthered these studies by including the 2007; DonovanMeyeretal. 2011). Numerical models of molec- formation and destruction pathways of CO (Belletal. 2006, ular clouds on both resolved and galaxy-wide scales have indi- 2007; Meijerinketal. 2007). More recently, magnetohydrody- cated that a relatively constant CO-H conversion factor in the 2 namicmodelsofGMCevolutionwithtime-dependentchemistryby Galaxy and nearby galaxies may naturally arise from GMCsthat Gloveretal. (2010) and Glover&MacLow (2011) coupled with have a limited range in surface densities, metallicities and ve- radiativetransfercalculations (Shettyetal.2011b,a)haveinvesti- locity dispersions (Glover&MacLow 2011; Shettyetal. 2011b; gatedX onthescalesofindividualGMCs,anditsdependence Narayananetal.2011b;Feldmannetal.2011). CO onthephysicalenvironment. In recent years, a number of observational studies have pro- Compared to models of isolated GMCs, there are relatively vided evidence for at least two physical regimes where the CO- fewsimulationsexploringtheeffectofthelargergalacticenviron- H conversion factor departs from the “standard” Milky Way 2 value. The first is in high-surface density environments. In- mentontheX-factor.Maloney&Black(1988)presentedsomeof theearliestmodelswhichexploredtheeffectsofchangingindivid- terferometric observations of present-epoch galaxy mergers by ualphysicalparametersinisolationontheCO-H conversionfac- Scovilleetal.(1991);Downesetal.(1993);Solomonetal.(1997); 2 tor.Veryrecently,Feldmannetal.(2011)havetiedtheGMCmod- Downes&Solomon (2003); Hinz&Rieke (2006); Meieretal. els of Glover&MacLow (2011) to cosmological simulations of (2010)andDownes&Solomon(1998)showedthatusingaMilky WayX wouldcausetheinferredH gasmasstoexceedthedy- galaxyevolutiontoinvestigateXCOongalaxy-widescalesinrela- CO 2 tivelyquiescentdiscgalaxies.Buildingonthesemodels,aswellas namical mass of the CO-emitting region for some galaxies. This whathasbeenlearnedinthestudiesofGlover&MacLow(2011), implies that the CO-H conversion factor should be lower than 2 Shettyetal.(2011b)andWolfireetal.(2010),inNarayananetal. theGalacticmeaninhigh-surfacedensityenvironments.Morere- (2011b), we combined dust and molecular line radiative transfer cent observations of z 2 Submillimetre Galaxies (SMGs) by ∼ calculations withhydrodynamic simulationsof galaxies inevolu- Tacconietal. (2008) suggested a similar result for high-redshift tioninordertodevelop amodel thataimstocapturetheCOline starbursts. Similarly, observations of GMCs toward the Galactic emissionfromGMCsongalaxy-widescales. Centreindicatethat X maybelower inthishigh-surface den- CO sityenvironment(Okaetal.1998). In this paper, utilising the methodology we developed in Second, in low-metallicity environments at both low and Narayananetal.(2011b),weinvestigatetheeffectofgalacticenvi- ronmentinsettingtheCO-H conversionfactoringalaxiesatlow 2 and high-redshifts. Our paper is organised as follows. In 2, we § 1 Intheliterature,XCOissometimesreferredtoastheX-factor,andwe summarisethemethodologydevelopedinNarayananetal.(2011b) shallusethetwointerchangeably. andemployed here.Wenotethatwhile 2isashortersummary, § TheEffect ofGalacticEnvironmenton X 3 CO a more complete description ispresented in Appendix A. In 3, (Krumholz&Thompson 2007). This radiation is then followed § weinvestigatetheroleofgalacticenvironmentonX ,focusing through the galaxy in order to account for radiative transfer pro- CO onisolateddiscgalaxies( 3.1),galaxiesatlowmetallicity( 3.2), cessesongalaxy-widescales(Narayananetal.2006,2011b).With § § high-surfacedensity( 3.3),andhighredshift( 3.4).Buildingon thesecalculations,weknowthethermalandchemicalstateofthe § § theseresults,in 4,wedevelop afunctional formforcalculating molecular ISM in our model galaxies, the synthetic broadband § X fromobservations ofgalaxiesand, asanapplication, utilise SEDs, and the modeled CO emission line spectra. At this point, CO thesetointerpretKennicutt-Schmidtstarformationraterelationsat weareinapositiontounderstandvariationsintheCO-H conver- 2 lowandhigh-redshift.In 5,wediscussourresultsinthecontext sionfactor.Weremindthereaderthatfurtherdetailsregardingthe § of other theoretical models, and in 6, we summarise our main implementationofthesemodelscanbefoundintheAppendix. § results. Wenotethat,inordertoalleviateconfusionbetweensimula- tionpointsandobservationaldataonplots,wewillemployasys- temthroughoutthisworkinwhichfilledsymbolsexclusivelyrefer toobservationaldata,andopensymbolsrefertosimulationresults. 2 SUMMARYOFSIMULATIONMETHODOLOGY Ourmaingoalistosimulatetheimpactofgalacticenvironmenton theH contentandCOemissionfromgalaxies.Thisinvolvessim- 2 3 THEEFFECTOFOFGALACTICENVIRONMENTON ulating theevolution of galaxies, thephysical stateof themolec- X ular ISM, and the radiative transfer of CO lines through GMCs CO andthroughgalaxies.Becausemuchofthemethodologyhasbeen OurgeneralgoalistounderstandhowX dependsonthephys- CO described inaprevious paper byus(Narayananetal.2011b),we icalenvironmentingalaxies,andhowitmayvarywithobservable brieflysummariseourapproachhere,anddeferthequantitativede- propertiesofgalaxies.Inordertodothis,wemustfirstdevelopin- tailstotheAppendix. tuitionastohowvarious physicalparametersaffect X .Inthis CO We first require model galaxies to analyse. We simulate the section, we examine how X varies from the Galactic mean in CO hydrodynamic evolution of disc galaxies in isolation and galaxy low-metallicity environments, high-surface density environments, mergers over a range of galaxy masses, merger mass ratios, and andathigh-redshift. redshiftsutilisingamodifiedversionofthepubliclyavailablecode, Quantitatively,wedefinethemeanX fromagalaxyas: CO GADGET-2. These simulations provide information regarding the kinematicstructure,massandmetaldistributionoftheISM,aswell X = ΣH2dA (4) CO asthestellarpopulations.TableA1summarisesthemodelproper- h i RWCOdA ties. whichisequivalenttoaluminosiRty-weightedX overallGMCs CO The remainder of our calculations occur in post-processing. inthegalaxy. We smooth the SPH results onto an adaptive mesh. We require knowledge of the physical and chemical state of the molecular cloudsinourmodelgalaxies.WeassumethecoldH gasisbound 2 3.1 ReviewofX inz=0QuiescentDiscGalaxies insphericalGMCswithH fractionscalculatedfollowingthemod- CO 2 elsofKrumholzetal.(2008)andKrumholzetal.(2009a).Carbon WebeginbyconsideringX indiscgalaxiesatz=0withmetal- CO is assumed to have a uniform abundance within these clouds of licitiesaroundsolar(Z′ 1).ThesegalaxieshavemeanX-factors 1.5 10−4 Z′,whereZ′isthemetallicitywithrespecttosolar. comparable to the Galac≈tic mean and will serve as the “control” × × ThefractionofcarbonlockedupinCOisdeterminedfollowingthe samplefromwhichwewilldiscussvariationsinphysicalparame- models of Wolfireetal. (2010), and have an explicit dependence ters. onthemetallicity.GMCsthathaveasurfacedensitygreater than Recalling 2,andreferringtotheAppendix,whencloudsare 100M pc−2areconsideredresolved.GMCsthatarenotresolved notresolved,w§eimposeafloorsurfacedensityof100M pc−2. (typica⊙llylowmassGMCsinlargecellsintheadaptivemesh)have IntheseGMCs,thevelocitydispersionisthevirialveloci⊙tyofthe afloorsurfacedensityoftheaforementionedvalueimposed,con- cloud.Inourmodelz=0discgalaxies,gascompressionswithinthe sistentwithobservationsofLocalGroupGMCs(e.g. Bolattoetal. galaxyareunabletocausesignificantdeviationsfromthesesubres- 2008;Fukui&Kawamura2010).UnresolvedGMCshavevelocity olutionvaluesofN 1022cm−2andσ 1 5kms−1.Inthis H2 ∼ ∼ − dispersions equal to the virial velocity of the GMC, whereas re- regime,thetemperaturesoftheGMCstypicallyfallto 8 10K. ∼ − solved GMCshave velocitydispersions determined directlyfrom Thisistheusualtemperaturewherecosmicraysdominategasheat- thesimulations. inginourmodel;thedensitiesarenotsufficientlyhighforanyof ThetemperatureoftheGMCsisdeterminedviaabalanceof theheatingprocessestoincreasethegastemperaturesdrastically. thevariousheatingprocessesonthegas(here,photoelectriceffect, At solarmetallicities,asufficientcolumnofdustcaneasilybuild ∼ cosmicraysandenergyexchangewithdust),andlinecooling.The uptoprotecttheCOfromphotodissocation, andmost ofthecar- dusttemperatureiscalculatedviathepubliclyavailabledustradia- boninmolecular cloudsisintheformofCO.Withthesemodest tivetransfercode, SUNRISE(Jonssonetal.2010).Thecosmicray conditionsintheclouds,andlittlevariationthroughoutthegalaxy heating rate is assumed take on the mean Galactic value (except (seeFigure2of Narayananetal.2011b),themodeledX tends CO asdescribedinAppendixC).Utilisingthismodel,thetemperature to be a few 1020 cm−2/K-kms−1 (i.e. similar to the Milky ∼ × rangestypicallyfrom 10KinquiescentGMCsto> 100Kin Waymean),withtheonlynotableexceptionbeingGMCstoward ∼ thecentresofstarbursts(Narayananetal.2011b). thegalacticcentre(Narayananetal.2011b). Once the physical and chemical state of the ISM is known, As pointed out by Narayananetal. (2011b), while various we are prepared to model the CO line emission via radia- subresolution techniques are folded into our model disc galaxies, tive transfer calculations. The emergent CO line emission from thatweseerelativelylittlevariationintheGMCpropertiesinour the GMCs is calculated via an escape probability formalism model z=0 discs is a statement that the galactic environment is 4 Narayananet al. 22 1021 100.0 1:1 Burst 10.0 1:3 Burst 1:10 Burst ) ) -1-km s 21 10.0 -1m s)) -1-km s 1020 Tacconi et al. 2008 -1m s)) K k K 1.0 k -2(cm/ 20 1.0 2pc K- -2(cm/ 2pc K- g(X) 10CO 19 (M / (O •O ean X CO 1019 0.1 (M / (O •O lo Leroy et al. 2011 0.1 αC M αC Bolatto et al. 2008 Genzel et al. 2011 18 1018 0.0 0.2 0.4 0.6 0.8 1.0 1.2 100 1000 10000 Z/Z Σ (M pc-2) O • mol O • Figure1.XCOversusmass-weightedmeanmetallicity(inunitsofsolar) Figure2.MeanXCOversusmass-weightedmeansurfacedensityforz=0 forallz=0modelgalaxieswithΣH2∼100M⊙pc−2.Thecontoursrep- modelmergerswhentheyareundergoingastarburst(e.g.thesnapshotswith resentthenumberofsnapshotsinagivenXCO-Z′bin,withthenumbers thepeakSFRs).Theplotting symbolsareshowninthelegend, thougha increasingwithincreasinglightnessofthecontour.Thedashedlineouter givensymbolmaybereplacedbyasquareifthemetallicityislowerthan0.5 contour encompasses all model galaxies, regardless of their gas surface Z⊙.ThepurplefilledcirclesrepresentthecompileddatafromTacconietal. density.Overlaidareobservational datapointsfromBolattoetal.(2008); (2008).Theblacksolidlineisthebestfitforallsimulationsnapshotsfrom Leroyetal.(2011)andGenzeletal.(2011a).Thesolidlineshowsourbest Equation10,andisdiscussedin§4. fittothesimulationsandisexpressedinEquation8anddescribedin§4. anorderofmagnitudegreaterthantheGalacticmean.Asthegalax- not extreme enough to cause significant deviations from the de- iesevolveandtheISMbecomesenrichedwithmetals,thecarbonis fault surface densities and velocitydispersions. The temperatures almostexclusivelyintheformofCO,andtheX-factordecreases. and velocity dispersions are allowed to vary freely with galactic The predicted X -Z′ relation in Figure 1 matches well CO environment, and the surface densities have a floor value similar with recent observational data. Overlaid, we plot recent results toactual GMCs(Blitzetal.2007; Bolattoetal.2008).Asshown fromresolvedregionsinnearbygalaxiesfromBolattoetal.(2008), by Shettyetal. (2011b), GMCswithphysical parameterscompa- Leroyetal.(2011)andGenzeletal.(2011a).NotethatΣ (and H2 rable to those observed in Galactic GMCs exhibit XCO values thusXCO) intheobservationsdependsonanestimateofthegas closetotheGalacticmean,XCO 2 4 1020cm−2/K-kms−1 mass, which is obtained with various methods for these studies2. (mαeCrgOer≈s in3th−e6prMese⊙ntpUc−n2iv(eKrs-ek,m≈losw−−1m)−e1ta×)l.liAcistywgealwaxililess,haonwd, iinn Bwoitthhdthecereoabssienrgvamtieotnasllaicnidty.mWodheillseswheowdeafenruapdwisacrdustsrieonndoifnfiXttiCnOg some cases, high-redshift discs, the physical properties of GMCs X intermsofZ′to 4,wedenoteourbestfitmodel(discussed CO varysufficientlythatthisisnolongerthecase. inEquation8)bytheso§lidlineinFigure1. WeshouldnotethatthecontoursinFigure1indicatetherange ofpossibleX-factorsatagivenmetallicityasreturnedbyourmod- 3.2 TheEffectsofMetallicityonX CO els. They are not cosmological, so do not connote any particular Themetallicityof thegascanhaveastrongeffect ontheCO-H probabilities.Thesimplefactthat observed datapointsliewithin 2 conversion factor. In metal-poor gas, it is possible to have “CO- the contours with a similar X -Z′ trend suggest a reasonable CO dark” molecular clouds (Papadopoulosetal. 2002; Wolfireetal. matchbetweenourmodelsandobservedgalaxies.Whenexamin- 2010). In these regions, H can self-shield to protect itself from ingtheoutercontourthatencompassesallofourmodels(andnot 2 photodissociating UV radiation, whereas CO cannot and requires justthoseatagivensurfacedensityasinthegreyscalecontours), dusttosurvive(Sternberg&Dalgarno1995;Hollenbach&Tielens it is clear that there is a significant dispersion in X on either CO 1999).Inthesecases,weexpectalargerfractionofCO-darkclouds sideofthebest-fitlineinFigure1.Moreover,thereisasignificant andariseintheCO-H conversionfactor(Maloney&Black1988; dispersion in the observed data at a given metallicity (especially 2 Wolfireetal.2010;Shettyetal.2011a;Feldmannetal.2011). noticeablenearZ′ 1).Thissuggeststhatthereisasecond pa- ≈ InFigure1,weplottheemission-weightedmeanX forour rametercontrollingtheX-factoringalaxies,asidefrommetallicity. CO modelz=0isolateddiscgalaxiesasafunctionofmetallicitywith filledcontours.Tocontrolforsurfacedensityeffects,weplotmod- elswithΣ 100M −2.Thecontoursindicatethenumberof 2 Bolattoetal.(2008)assumecloudsarevirialised; ifinstead cloudsare H2 snapshotsina≈givenX⊙ Z′ bin.Theouterdashedcontour de- marginallybound,thenXCO woulddecrease.Leroyetal.(2011)usein- CO− fraredemissiontoderivedustmasses,andHIobservationstoderiveadust- notes the contour that encompasses all of our models, at any gas to-gasratio.IfthisdusttogasratiodoesnotmaptotheH2gas,thederived surfacedensity. XCOwillchangeaccordingly.Genzeletal.(2010)assumeascalingrela- Thelowestmetallicitymodelgalaxiesallhaverelativelyhigh tionΣSFR ∝ Σ1g.a1s.Ifasteeper relation wereadopted (c.f.§4.2),then meanX-factorscomparedtothe∼solarmetallicitygalaxies.The thevaluesofXCOcorrespondingtohighvaluesofΣSFRwoulddecrease lowestmetallicitymodelscanhavemeanX-factorsapproximately somewhat. TheEffect ofGalacticEnvironmenton X 5 CO Aswewillshowinthenextsection,thisisthedynamicalandther- andarecategorised by themerger massratio(1:1, 1:3and 1:10). malstateofthemolecularISM. Themeansurfacedensityisdefinedasthemass-weightedsurface densityoverallGMCs,i,inthegalaxy: 3.3 HighSurfaceDensityGalaxies Σ M Σ = i H2,i× H2,i (5) 3.3.1 LargeTemperaturesandVelocityDispersions h H2i P iMH2,i On average, in regions of high surface density, the emission- Henceforth,whenwerefertothePsurfacedensityofthegalaxy,we refertothemeansurfacedensitydefinedbyEquation5.Wenote weightedmeanX inagalaxyislowerthantheGalacticmean CO valueof 2 4 1020 cm−2/K-kms−1.Thishasbeenshown that this is different from the commonly used definition ΣH2 = observatio∼nally−by×Tacconietal.(2008),andseeninthemodelsof MH2/A,whereAistheareawithinanobservationalaperture.We refrainfromthelatterdefinitionasitisdependentonthechoiceof Narayananetal.(2011b). Byitself,anincreaseinsurfacedensitydoesnotcauseX scale. ΣH2 canbethoughtofasthesurfacedensityatwhichmost CO h i ofthemassresides.Immediately,weseetwotrendsinFigure2. todecrease.Rather,theoppositeistrue:perEquation1,athighsur- First,withincreasingsurfacedensity,weseedecreasingmean facedensities,X wouldincreaseifW werefixed.However, CO CO inhigh-Σ regions,thevelocity-integratedlineintensity,W in XCO duetothewarmandhighvelocitydispersiongasassociated H2 CO with merging systems. Second, the most violent mergers tend to factincreasesevenmorerapidlythanΣ ,causinganetdecrease H2 inX .Toseewhythisis,considerthephysicalprocessesthatare havethelowestmeanXCOvalues,whereaslowermassratiomerg- CO typicallyassociatedwithincreasedsurfacedensities. ers (1:3) have less extreme conditions, and thus X-factors more comparabletotheGalacticmeanvalue.ThepurplecirclesinFig- First, regions of high surface density are associated with ure2noteobservationalpointsfromTacconietal.(2008);themod- higher star formation rates (Kennicutt 1998a; Krumholzetal. elsanddatashowbroadagreement3. 2009b;Ostrikeretal.2010;Ostriker&Shetty2011).Whileava- TheopensquaresinFigure2arepointsfromourmodelswith riety of theories exist as to why this is the case (see a review of someofthesemodelsinTan2010),inoursimulationsthisisdue meanmetallicitieslessthanZ′ <0.5.Carefulexaminationofthese to the fact that we explicitly tie our star formation rates to the points shows that some of them have rather large X-factors. As wediscussedin 3.2,lowermetallicitygalaxieshavelargermass volumetric gas density on small scales. With high star formation § ratescomehotterdusttemperaturesastheUVradiationheatsthe fractionsofCO-darkclouds,andthushigherX-factors. nearby dust grains. When the gas densities are & 104cm−3, the In Figure 3, we demonstrate more explicitly the effect of dustandgasexchangeenergyefficiently,andthegastemperature metallicityontheXCO-surfacedensityrelationship.Becausewe approachesthedusttemperature(Goldsmith2001;Juvela&Ysard finditusefulinaforthcomingsection( 4)toparameteriseXCO § 2011). Hence, in regions of high surface density, the increased intermsoftheobservablevelocity-integratedCOintensity,WCO dust temperature driven by the higher star formation ratescauses asanobservable, ratherthanΣH2,weplotXCO againstWCO in anincrease inthegaskinetictemperature. Because theCO(J=1- Figure3.WCOisdefinedastheluminosity-weightedlineintensity 0) line is thermalised at relatively low densities, the brightness fromallGMCsinthegalaxy.WeplottheXCO-WCOrelationship temperature of the line is comparable to the kinetic temperature forallsnapshotsofall1:1z=0majormergerswithintwodistinct metallicityranges.Theselectedmetallicityrangesarearbitrary,and of the gas, and is thus increased in regions of high surface den- are chosen simply to highlight the influence of metallicity. As is sity.Forlowredshiftgalaxies,theeasiestwaytoincreasethesur- face density tends to be through merging activity and the associ- clear,thelowestmetallicitypointsinFigure3havethehighestX- factors, and the reverse is true for the highest metallicity points. atedtidaltorqueswhichdrivegaseousinflowsintothenuclearre- gion(Barnes&Hernquist1991,1996;Mihos&Hernquist1994b, Foreachmetallicitybin,thetrendissuchthatincreasingWCO(or 1996), though higher-redshift discs can have relatively large sur- ΣH2) correlates with decreasing XCO, though the normalisation varieswithmetallicity.Thisinformsourfittingformulain 4. facedensitiessimplyduetogravitationalinstabilitiesinextremely § Returning to Figure 2, we make a final point that there is a gas-richclumps(Springeletal.2005;Bournaudetal.2010). Second, in the simulations, high surface-densities in gas are largedispersioninXCOforthemergermodels.Boththe1:3mod- typically accompanied by high velocity dispersions. This gener- els and 1:1 mergers show XCO values ranging from above the Milky-Way mean to an order of magnitude below it during their ally means some level of merging activity in low-redshift galax- peakstarburst.Whensampling theentirelibraryof merger orbits ies, and either merging activity or unstable gas clumps in high- foragivenmergermassratio,awiderangeinoutcomesisappar- redshift discs. In major mergers, the emission-weighted velocity dispersionscanbeashighas 50 100kms−1. ent.Weseeadiversesetofvelocitydispersionsinthegas,aswell ∼ − asstarformationrates,owingtodifferingefficienciesatwhichan- The increased velocity dispersion and kinetic temperature gularmomentumisremovedfromthegas.Somemodelsundergo contributeroughlyequallytoincreasingthevelocity-integratedline intensity.Duringamerger,thetemperatureandvelocitydispersion rathervigorousstarbursts(approaching 500M yr−1),whereas othershardlysustainanoticeablestarbu∼rstuponfi⊙nalcoalescence. individuallyincreaseenoughtooffsettheincreaseinthegassurface Galaxiesthatundergotheirpeakstarburstonlyonfirstpassagecan density, and in combination tend to drive the emission-weighted haveratherdifferentmetallicitiesintheirISMthanmergersthatgo meanX foragalaxybelowtheMilky-Wayaverage.Inregions CO of high surface density, the emission-weighted mean X tends CO todecreaseonaverage.In 3.4,wedetailspecificnumbersfora samplemergerthatservesa§sanexampleforthiseffect. 3 WecautionthatourdefinitionofhΣH2iisamass-weightedsurfaceden- sity,andisdifferentfromthesurfacedensitydefinedbytheTacconietal. WecanseethismoreexplicitlyinFigure2,whereweplotthe data,MH2/A.Inthelimitofalargevolumefillingfactor,thesevalueswill meanXCOversusmeansurfacedensityforthestarburstsnapshots approachoneanother.TheobserveddataclosertoΣmol=100M⊙pc−2 inourlow-redshiftsampleofgalaxies.Thestarburstsnapshotsare likely represents galaxies with a clumpy ISM, and the modeled and ob- defined as the snapshots where the SFR peaks for a given model servedH2gassurfacedensitiesmaydifferinthisregime. 6 Narayananet al. α (M / (pc2 K−km s−1)) CO1 O · 10 1024 1.2 10000 z=0 Mergers (burst) 0.9Z</ZZO •<<01..51 1.0 z=0z =M0 eDrgisecrss ((aallll)) 1023 O • z=2 Discs (all) −2−1 (cm/K−km s)O 11002212 111000000 2-1M / (pc K-km s))O • mber (normalised) 000...468 XC 1020 (CONu 1 α 0.2 1019 0.0 101 102 103 104 105 19.0 19.5 20.0 20.5 21.0 21.5 W (K−km s−1) log (X ) (cm−2/K−km s−1) CO 10 CO Figure3.XCOversusCOlineintensity,WCOforz=01:1galaxymergers Figure4.DistributionofXCOvaluesduringthepeakofthestarformation intwodistinctmetallicitybins.Inthiscase,WCOisasurrogateforΣH2 rate(the“burst”snapshot)forall1:1and1:3localgalaxymergers(black thatisanactualobservable(andrelateableviaXCO).Atagivenmetallicity, solid),allz=01:1and1:3mergers(i.e.notjusttheburstsnapshots;black XCO decreases with CO intensity due tothe larger number ofCO-dark dash-dot),allhigh-zdiscmodelswithZ′≈1(reddotted),andlow-zdisc GMCsinthesegalaxies.Thesolidlineshowsthebestfitmodel(c.f.§4) modelswithZ′≈1(greendashed).Seetextfordetails. forametallicityofZ′=1. at z 2 (This is model “z3b5e”; please refer to the Table in through avigorous starformationperiodduring firstpassage and the A∼ppendix for the initial conditions of this model merger). inspiral before experiencing astarburst contemporaneous withfi- Model z3b5e undergoes a luminous burst of 1500 M yr−1, nalcoalescence. and may be selected as a submillimetre galax∼y when it⊙merges In the solid line of Figure 4, we plot the distribution of (Narayananetal. 2009; Haywardetal. 2011). During the burst, emission-weighted mean XCO values for each of our 1:1 z=0 this simulation reaches a mass-weighted mean surface density of merger models during the peak of their star formation rate. For molecular gas of 104 M pc−2. At the same time, the mass comparison,weplotthedistributionofX-factorsforourz=0discs weightedkinetic(d∼ust)tempe⊙ratureis 150(160)K4,andthemass- inthegreendashedline(onlyplottinggalaxieswith solarmetal- weightedvelocitydispersionintheG∼MCsis 140kms−1.Do- licity),aswellasthedistributionofXCOforourz=2∼discs(which ing a simple scaling results in a mean XC∼O of 5 1019 wediscussinmoredetailin 3.4).Aswesee,thereisno“merger” cm−2/K-kms−1.Ofcoursetherealmass-weightedva∼luem×ayvary § value for XCO. Itispossible to haveXCO values instarbursting fromthisowingtobothradiativetransferaswellasthefactthatthis mergerscomparabletotheMilkyWay’s.Thefactthatstarbursting simplescalingisnot atrueaveraging. Observational estimatesof mergers,onaverage,havelowerX-factorsthantheGalacticmean the X-factor in SMGs suggest that they are similar to the lower islikelyduetoaselectioneffect.Wereturntothispoint inmore valuesintherangeoflocalULIRGs(Tacconietal.2008). (quantitative)detailin 4. Oursimulateddiscgalaxiesathigh-redshift showarangeof § X values,rangingfromcomparabletotheGalacticmeantoval- CO ues2-5timeslower.Thereasonmassivediscsathigh-redshiftmay 3.4 X inHigh-RedshiftGalaxies CO have lower X-factors than the Galactic mean can be understood 3.4.1 BasicResults inthefollowingway.Incontrasttopresent-epochgalaxies,galax- ies at higher-redshifts (z& 1) at a fixed stellar mass are denser Now that we have developed intuition regarding the variation of and more gas-rich (e.g . Erbetal. 2006; Fo¨rsterSchreiberetal. X withmetallicityandsurfacedensity,weareinapositionto CO 2009; Daddietal. 2010b; Tacconietal. 2010). Both simulations understandhowgalaxiesathighredshiftmaybehavewithrespect and observations suggest that galaxies around redshifts z 1-2 totheCO-H conversionfactor. ∼ 2 mayhavebaryonicgasfractionsoforder20-60%(Dave´etal.2010; Mergers at high-z are some of the most luminous, rapidly Daddietal.2010b;Tacconietal.2010).Aprimaryconsequenceof star-forminggalaxiesintheUniverse.Asanexample,manyz 2 this is that discs at higher-redshifts may be heavily star-forming, ∼ Submillimetre-selected Galaxies (SMG) form stars at & 1000 with star formation rates or order 102 M yr−1, comparable M /yr (Narayananetal. 2010b). However, despite the order tolocalgalaxymergers(Daddietal∼.2007;Fo¨⊙rsterSchreiberetal. of⊙magnitude greater star formation rate in these galaxie∼s com- 2009;Narayananetal.2010a).Infact,simulationssuggestthatdisc paredtolocalmergers,mergersathigh-z aresimilartotheirlow- galaxiesatz 2likelydominatetheinfraredluminosityfunction redshiftcounterpartsintermsoftheirtypicalX-factors.Whilethe ∼ (Hopkinsetal.2010). mean gas surface densities in e.g. z 2 Submillimetre Galaxies ∼ (SMGs) are larger than low-redshift mergers (e.g. Tacconietal. 2008;Narayananetal.2010b),boththedusttemperaturesandgas 4 Notethatowingtoradiativetransfereffects,thisdusttemperatureisnot velocitydispersionsalsorisecommensurately. necessarilywhatwouldbederivedsimplybyidentifyingthelocationofthe As a specific example, we focus on a 1:1 major merger peakoftheSED. TheEffect ofGalacticEnvironmenton X 7 CO In the absence of rather extreme stellar feedback, very gas- rich discs at high-redshift can be unstable to fragmentation, 12 and form massive kpc-scale clumps (e.g. Springeletal. 2005; ∼ Ceverinoetal. 2010). These clumps can have relatively high ve- 10 locity dispersions ( 102 kms−1) and warm gas temperatures ∼ owing to high volumetric densities and high star formation rates y) r 8 (Bournaudetal.2010). a r Theseeffectsarethestrongestinthemostmassivediscs.Our bit r mostmassivez=2modeldiscgalaxyhasatotalbaryonicmassof (a 6 5 1011M yr−1,andhastypical5X-factorsranginganywhere er ∼betw×een a fac⊙tor of five below the Galactic mean to the Galactic mb 4 u meanvalue.Thelowermassz=2isolateddiscmodels(withbary- N onicmassesofM = 1 1011 and3.5 1010 M )typically haveX-factorscobmarparable×totheMilkyW×aymean.R⊙eturningto 2 Figure4,weexaminethereddottedlinethatrepresentsz 2disc ∼ 0 models.Becausetheideaofa’starburst’snapshotislessmeaning- 0.1 1.0 10.0 fulfortheevolutionofadiscgalaxy,weplottheX-factorforevery X (Merger)/X (High−z Disc) at a Given Z and W snapshotforourmodeldiscswithmetallicitiesaroundsolar.Wesee CO CO CO alargespreadinmeanX-factors. Figure5.ComparisonoftheX-factorbetweenlow-zmergers(1:1and1:3) andhigh-zstarformingdiscs.ThehistogramdenotesratioofX-factorfrom 3.4.2 DoMergersandDiscsHaveInherentlyDifferent mergersversushigh-z discsbetweensnapshotswithasimilarmetallicity X-factors? andCOintensity.Thesharppeaknearunityimpliesthatgalaxieswithsim- ilarphysicalconditionshavesimilarX-factors,independentoflarge-scale Inlightofthefactthathigh-z discshave,attimes,starformation morphology. rates comparable to local galaxy mergers, a pertinent question is whether there is an intrinsic difference in the X-factor between high-z discs and galaxy mergers. Another way of saying this is, foragivensetofphysicalconditions,aretheX-factorsfrommerg- erslowerthantheX-factorsfromhigh-z gas-rich,gravitationally Toshowthis,inFigure5,weperformoursecondtestinwhich unstable discs? A cursory examination of Figure 4 indicates that weexaminetheX-factorsfromallthe1:1and1:3mergers(atlow mergers(theblacksolidline)havesystematicallylowerX-factors z)andcomparethemtotheX fromhigh-zdiscswiththesame6 CO than discs (the blue and red dashed and dotted lines). Indeed, in metallicity and CO intensity (W ). We could equivalently per- CO the local Universe, it is observed that mergers have, on average, formthisanalysisintermsofΣ ,thoughaswewillshowin 4, H2 lowerX-factorsthandiscs(e.g.Tacconietal.2008).However,this parameterising in terms of W is desirable with regards to§ob- CO islikelyduetoaselectionbias.Weremindthereaderthattheblack servations. There isa strong peak at X ratiosnear unity, with CO solidlineinFigure4representsstarburstingmergers.Thesemerg- some spread. The median value in the distribution is 0.8, and ers are caught when their gas is extremely warm and with large themeanis 1.1.TheimplicationfromFigure5isth∼atgalaxies velocitydispersion.Whencomparingmergersanddiscswithcom- withsimilar∼physicalconditions(here,Z′ andW )havesimilar CO parable physical conditions, the observed XCO values are infact X-factors,regardlessofwhethertheyarediscsormergers.Thefact quite similar. It is the physical conditions in a galaxy that deter- thatmergers,onaverage,havelowerX-factorsthandiscsinthelo- minetheX-factor,nottheglobalmorphology. cal Universe likelyderives fromthefact that theyareselected as Todemonstratethis,weperformthreetests.First,wecompute starbursts, which have preferentially higher temperatures and ve- thedistributionofXCOvaluesforall1:1and1:3mergersnapshots locitydispersionsinthegas. (at solarmetallicity),andindicatethiswiththeblackdot-dashed Third,inFigure6,weexaminetherelationshipbetweenX ∼ CO lineinFigure4.Aswesee,thedistributionofXCOvaluesisbroad, andWCOforthesamegalaxiesplotted7inFigures4and5.These butwithsubstantiallylesspowerinthelowX-factorregimethan areallgalaxieswithmetallicitiesaroundsolar.Theprincipalresult thedistributionthatdenotesonlystarburstingmergers(blacksolid fromFigure6isthatgalaxieswithinarelativelylimitedmetallic- line).Thishighlightsthatmergerswhichareselectedduringapar- ityandW (orsurface-density)rangehavesimilarX-factors,re- CO ticularlyactive phase aremore likely tohave low X-factors, due gardlessofthetypeofmergeritis.Mergersanddiscshavesimilar totheirwarmandhigh-σ gas.Whencontrollingforthiseffectby X values when they have similar physical conditions, and are CO pickinggalaxieswithsimilarCOintensity(WCO)andmetallicity, notinherentlydifferentbasedontheirglobalmorphology.Inaddi- mergersanddiscshavethesameXCOonaverage. tion,Figure6,likeFigures2and3,showsasystematicdecreaseof X withincreasingW (andΣ ). CO CO mol 5 Becauseoursimulations arenotcosmological, thereisnoaccretion of intergalactic gas.Asaresult,themetallicities inourmodelgalaxiesonly risewithtime.Because theX-factor isdependent onmetallicity (§3.2), wehavetomakeachoiceastowhichsnapshot/metallicity toconsideras a’typical’galaxy.WeassumeanysnapshotaboveZ′ > 0.5is“typical” basedonthesteady-statemetallicitiesfoundforgalaxiesofbaryonicmass 6 “Thesame”heremeansthatthevaluesofZ′andWCOarewithin10% comparabletothoseinoursamplefromcosmologicalmodeling(Figure2of ofoneanother. Dave´etal.2010,thoughseeKeresetal.(2011);Vogelsbergeretal.(2011) 7 Toreduce clutter in the plot, we randomly draw 10% of the galaxies andSijackietal.(2011)). withineachmergerratiobintoplot. 8 Narayananet al. 4 APPLICATIONTOOBSERVATIONS 1021 4.1 DerivingX fromObservations CO z=0 1:1 10 z=0 1:3 Aswehaveseenfromtheprevioussections,itisclearthatthereisa High-z Disc ) dcoonmtiinnuanutmdorifvXerCsOofvtahleueXs-thfaacttvoarriynwoiuthrsgiamlaucltaitcioennsviarroentmheenmt.eTtahle- -1km s -1m s) licityofthestar-forminggas,andthethermalanddynamicalstate K- k oXAftCthOsueMabGsseotMaalalfCluricsnm.ictIyteinotfainosllroimacfieotcidbreussbce,yirawvtlahebiislnse,gewpreeredothipaeerenerttrmiaetposoitdoiavfnaggytraeoldpwaaxttroihaempso.aefrtaeCmriOseat-etdiraoisrnke. -2X (cm/CO 1020 1 2M / (pc K-O • GMCs.Thishasbeennotedbothinobservations(e.g.Leroyetal. ean (O 2011; Genzeletal. 2011a), as well as other numerical models M αC (Shettyetal.2011a;Krumholzetal.2011b;Feldmannetal.2011). Aswesawin§3.2,aswellasinFigure3,atagivengalaxysurface 1019 density(orCOintensity),X increaseswithdecreasingmetallic- CO 101 102 103 104 105 ity. W (K-km s-1) Beyondthis,aswasshownin 3.3,aswellasinthemodelsof CO § Narayananetal.(2011b),galaxysurfacedensityiscorrelatedwith thethermalanddynamical stateofthegas:atagivenmetallicity, Figure 6. Comparison of XCO versus CO intensity (WCO) for low-z highersurfacedensitygalaxies,onaverage,correspondtogalaxies galaxymergersandhigh-z discsinanefforttoinvestigateifmergersand witha warmand high velocity dispersion molecular ISM, due to discs inherently havedifferent XCO properties. Included inthis plotare all 1:1 and1:3 mergers simulated at z=0. Only snapshots with metallic- theirhigherSFRs. ities Z′ > 0.7are shown. Toreduce clutter inthe plot, weplot only a Informed by these results, we perform a 2D Levenberg- randomlydrawnsubsample(10%)ofthesnapshotsfromeachmassratio. Marquardt fit (Markwardt 2009) on our model galaxies (consid- ThelineshowsthebestfitfromEquation8.Evidently,galaxiesthathave eringeverysnapshotofeverymodel),fittingXCOasafunctionof similarphysicalconditionshavesimilarX-factors,independentofgalaxy mass-weightedmeanmetallicityandmass-weightedmeanH2sur- morphologyorevolutionaryhistory.Seetextfordetails. facedensity.Wefindthatoursimulationresultsarereasonablywell fittedbyafunctionoftheform: 1.3 1021 where Σ is in unXitCsOof≈MZ′×pch×−Σ2H2ain0d.5X is in units(6o)f αCO = 10.7×ZhW′0.C65Oi−0.32 (9) H2 CO cm−2/K-kms−1. Equation 6 p⊙rovides a good fit to the model Whereα isinunitsofM pc−2(K-kms−1)−1. results above metallicities of Z′ ≈ 0.2. Turning again to Fig- ItisCiOmportanttorecog⊙nizethatthepower-lawinEquation8 ures 1, 2, 3 and 6, we highlight thesolid lines whichshow how cannotdescribeX indefinitely.AtverylowW ,GMCstend CO CO Equation6fitsboththesimulationresultsandobservationaldata. toward fixed properties in galaxies and the galactic environment We note that Ostriker&Shetty (2011) obtained a similar result, playsalimitedroleinsettingX .Consideringthis,Equation8 α Σ−0.5 by interpolating between empirical α values CO (αCO ∝= 3m.2olfor Σ = 100 M pc−2 and α CO= 1 for formallybecomes: CO mol CO Σ =1000M pc−2). ⊙ mol BecauseΣ ⊙isnotdirectlyobservable(hencetheneedforan min 4,6.75 W −0.32 1020 H2 CO X = ×h i × (10) X-factor),were-castEquation6intermsofthevelocity-integrated CO Z′0.65 (cid:2) (cid:3) COlineintensity.InordertoparameteriseX inamannerthat CO or,similarly: is independent of the effects of varying beam-sizes or observa- tionalsensitivity,wedefinetheobservableCOlineintensityasthe min 6.3,10.7 W −0.32 luminosity-weightedCOintensityoverallGMCs,i: α = ×h COi (11) CO Z′0.65 (cid:2) (cid:3) W2 dA L W hWCOi= R WCCOOdA ≡ P CO,Li×CO,iCO,i (7) of gaElaqxuiaetsiotnosin1f0eranadn1ex1pceacntedbeXu-sfeadctdoirr.eOctnlyewaditvhanotbasgeervoaftitohniss formalismisthat itcapturesthecontinuum of CO-H conversion where W isinunRitsofK-kms−1,andPistheCOsurfacebright- 2 CO factors,ratherthanutilisingbimodal“Disc”and“ULIRG”values. h i nessofthegalaxy.WethenfittoobtainarelationbetweenX , CO Because we have chosen the physical quantities in our modeling Z′,and W : CO based on massor luminosity-weighted averages, they aredefined h i withoutreferencetoaparticularscale.Consequently,Equation10 XCO = 6.75×102Z0′×0.6h5WCOi−0.32 (8) tcoanunbreesuoslevdedonobscsaelrevsatriaonngsinogfgfraolamxioeus.rresolutionlimitof∼70pc It is conceivable that alternative definitions of the observed whereagain W isCOlineintensitymeasuredinK-kms−1, meanCOintensitycouldbeappropriate.Onecanimagineimple- CO X isincmh−2/K-kims−1,andZ′isthemetallicitydividedbythe mentinganarea-weightedintensity,i.e.W = L /Area.This CO CO CO solarmetallicity.ByconvertingX toα ,wesimilarlyobtain: hastheundesirableattributeofbeingdependentonadefinedscale. CO CO TheEffect ofGalacticEnvironmenton X 9 CO 4.2 TheKennicutt-SchmidtStarFormationRelationin Kennicutt-SchmidtplotthatusesabimodalX-factor,thelowerlu- Galaxiesfromz=0-2 minositydiscs have CO-H conversion factors comparable tothe 2 Galacticmean,andthemostluminousdiscshaveX-factorsupto AnaturalapplicationofourmodelfortheCO-H conversionfac- 2 anorderofmagnitudelower.Verymassive,gas-rich,unstablediscs, tor is the Kennicutt-Schmidt star formation rate surface density- aswellaslowerluminositymergershaveX-factorsinbetweenthe gassurfacedensityrelationingalaxies.BecausetheinferredH gas 2 two, however, and fill in the continuum. UtilisingEquation 10, a massesfromobservedgalaxiesareinherentlydependentonconver- simplelinearchi-squarefitoftheobserveddataontherightsideof sionsfromCOlineintensities,ourunderstandingoftheKennicutt- Figure7returns: Schmidtrelationisfundamentallytiedtothepotentialvariationof XCOwiththephysicalenvironmentingalaxies. log10(ΣSFR)=1.95 log10(Σmol) 4.9 (12) × − Recentsurveysofbothlocalgalaxies(e.g.Kennicutt1998a,b; where Σ is measured in M yr−1kpc−2 and Σ is mea- Bigieletal.2008,andreferencestherein),aswellaspioneeringef- SFR mol suredinM pc−2.Utilisingane⊙mpiricalmethodtoobtainX forts at higher redshifts (e.g. Bouche´etal. 2007; Bothwelletal. W−0.3, Os⊙triker&Shetty (2011) previously showed that theCOob∝- 2010; Daddietal. 2010a; Genzeletal. 2010) have provided a CO servationaldatacompiledinGenzeletal.(2010)yieldsasimilarfit wealth of data contributing to our knowledge of the star for- toEquation12. mation relation in both quiescent disc galaxies and starbursts. Weremindthereaderoftheassumptionsthathavegoneinto WorkbyDaddietal.(2010a)andGenzeletal.(2010)demonstrate this fit: We have assumed that every galaxy has solar metallic- the sensitivity of these relations to the CO-H conversion factor: 2 ity,andneglectedanypotentialeffectsofdifferentialexcitationin Whenapplyingthetraditionalbimodal conversion factor(X CO 8 1019 cm−2/K-kms−1 for ULIRGs and X 2 102≈0 theCOasafunctionofinfraredluminosity(e.g.Narayananetal. CO cm×−2/K-kms−1 for discs) tothestarburst galaxies≈and di×scs, re- 2011a).Nevertheless,theapplicationofavariableX-factoronthe SFR-gassurfacedensityrelationhasinterestingimplications. spectively,abimodalSFRrelationbecomesapparentwhenthedata First,theindexof 2ofEquation12isconsistentwiththean- areplottedintermsofΣSFRandΣmol. ∼ alyticmodelsandhydrodynamicsimulationsofself-regulatedstar InFigures7–9,weillustratetheeffectsofourmodelfitfor formation by Ostriker&Shetty (2011). This work suggests that X asafunctionofgalaxyphysicalproperties.Intheleftpanel CO in molecular regions where supernova-driven turbulence controls of Figure 7, we plot the star formation rate surface density for the SFR and gas dominates the vertical gravity, the SFR surface bothlocalgalaxiesandhigh-zgalaxiesascompiledbyDaddietal. densityshouldbeproportionaltothegassurfacedensitysquared: (2010a) and Genzeletal. (2010) against their CO line intensity, log(Σ ) = 2 log(Σ ) 5.0(adoptingfiducialparameters WCO.Althoughthereissignificantscatter,theΣSFRvsWCOrela- SFR × mol − inEquation13ofOstriker&Shetty(2011)).Thisisshownasthe tionisunimodal.Inthemiddlepanel,weplottheSFR-Σ relation H2 solidlineintherightpanelofFigure7,andisverycomparableto utilisingthebimodalX-factorsassumedintheliterature(withthe the best fit relation. Second, comparing Equation 12 to Equation above“ULIRG”valuefortheinferredmergers[localULIRGsand 13 of Ostriker&Shetty (2011), the empirical results are consis- high-zSMGs],andtheabove“quiescent”valueforlow-zdiscsand high-z BzKgalaxies)8.Thecirclesareunresolvedobservationsof tentwithavalueofmomentuminjected/totalstellarmassformed discgalaxiesatlowandhigh-z,trianglesandcontoursareresolved ofifdufcpia×lvpa∗l/umea∗do∼pt3e0d0i0nOkmstrsi−ke1r(&ΣmShole/tt1y0(02M01⊙1)pisc3−020)0−0k.m05;s−th1e. observationsoflocaldiscs,andthesquaresarelocalULIRGsand Daddietal.(2010a)andGenzeletal.(2010)suggestanalter- inferredmergersathigh-redshift.Whenseparatehighandlowval- nativemechanismforreducingthescatterimposedbytheutilisa- uesofX areadoptedfordiscsandmergers,abimodalrelation- CO tionofabimodalX inFigure7.Specifically,theseauthorsfind shipbetweenΣ andΣ results,withpower-lawindexranging CO SFR gas thatbydividingthemoleculargassurfacedensitybythegalaxy’s betweenunityand1.5. orbital time, the observed Kennicutt-Schmidt relation goes from In the right panel of Figure 7, we apply Equation 10 to the observational data(assumingZ′ = 1forthegalaxies).Thescat- bimodal to unimodal, suggesting that the galaxy’s global proper- tiesarerelatedtothelocal,small-scaleprocessesofstarformation. ter in the modified relation immediately tightens, and it becomes Thatistosay,whenusingabimodalX ,theΣ Σ re- unimodal.Tonumericallyquantifythereductioninscatterwiththe CO SFR − mol lationshipisbimodal,whereastheΣ Σ /t relationship modified relation we examine the ratio of the maximum inferred SFR− mol dyn isunimodal,withsomescatter. Σ totheminimumforallpointswithintherelativelytightSFR H2 surfacedensity rangeof [0.05,0.1] M yr−1kpc−2 forthecentre IfoneabandonsthebimodalXCOapproximation,andutilises and right panels of Figure 7. The sca⊙tter is reduced by approxi- our favoured model for XCO, the observed relationship between Σ andΣ /t remainsunimodal,andinfactthescatterin matelyafactorof5.WithinthisΣ range,nomergersareinthe SFR mol dyn SFR the relation is reduced compared to what one obtains using a bi- sample. Thus, the reduction in scatter is not due to simply using modalX .Toshowthis,inFigure8,weshowtheanalogtoFig- aunimodal X versus bimodal X . Wenote that inapplying CO CO CO ure7,but withthe abscissa showing thesurface density or W Equation10totheobserveddata,wehavetoassumethattheinten- CO dividedbythedynamicaltime.Thedynamicaltimesusedarethe sitywithinthereportedareaisuniform.Iftheemissionisinstead sameasthoseinDaddietal.(2010a)andGenzeletal.(2010),and highly concentrated over very few pixels, then the application of aredefinedastherotationaltimeateitherthegalaxy’souterradius, Equation10mayoverestimateX . CO orhalf-lightradius, depending onthesample.Intheleftpanel of ThereasonforthetransitionfromabimodaltounimodalKS Figure8,weshowtherelationshipbetweenΣ andW /t relationisclear.Inthemodifiedrelation,similartothetraditional SFR CO dyn (i.e.pureobservables);inthecentrepanel,weshowtherelationship betweenΣ andΣ /t whenassumingabimodalX (as SFR mol dyn CO 8 Inpractice,forthehigh-zBzKgalaxies,weutiliseanX-factorofXCO≈ isdoneinDaddietal.(2010a)andGenzeletal.(2010)),andinthe 2.3×1020cm−2/K-kms−1toremainconsistentwithDaddietal.(2010a), right panel we show the same relationship, but with Σmol deter- thoughtheusageofthisversusthemorestandarddiscvaluemakeslittle minedusingourbest-fitcontinuousXCO,ratherthanthebimodal difference. XCO value used inDaddietal. (2010a) and Genzeletal.(2010). 10 Narayananet al. 104 No X Bimodal X Continuous X CO CO CO 102 ) -2c p k -1yr 100 M O • ( R F S Σ 10-2 10-4 10-1 100 101 102 103 104 105 100 101 102 103 104 105 100 101 102 103 104 105 W (K-km s-1) Σ (M pc-2) Σ (M pc-2) CO mol gas O • mol gas O • Figure7.Kennicutt-Schmidtstarformationrelation(SFRsurfacedensityversusH2gassurfacedensity)inobservedgalaxies.Circlesandtrianglesarelocal discsorhigh-zBzKgalaxies,andsquaresareinferredmergers(localULIRGsorhigh-zSMGs).Coloursdenotingseparatesurveysaredescribedbelow.Left: SFRsurfacedensityvs.velocity-integratedCOintensity,yieldingaunimodalSFRrelation.Centre:WhenapplyinganeffectivelybimodalXCO(αCO =4.5 forlocaldiscs,3.6forhigh-zdiscs,and0.8formergers),theresultingSFRrelationisbimodal.Thesolidanddottedlinesoverplottedarethebestfittracks foreach“mode”ofstarformationasinDaddietal.(2010a).Right:SFRrelationwhenapplyingEquation10totheobservationaldata,resultinginaunimodal SFRrelation.Thepower-lawindexintherelationisapproximately2(solidline).Symbollegend:Wedividegalaxiesinto’disc-like’withfilledcircles,and ’merger-like’withsquares.Thisassumesthathigh-zBzKgalaxiesarealldiscs,high-zSMGsandlow-zULIRGsareallmergers.Thelow-zdiscobservations (blackfilledcircles andblacktriangles)comefromKennicuttetal.(2007);Wong&Blitz(2002);Crosthwaite&Turner(2007);Schusteretal.(2007)and comprisebothresolvedandunresolvedpoints.TheresolvedpointsfromthesurveyofBigieletal.(2008)aredenotedbythecolouredcontours.Thelocal ULIRGsarecompiledbyKennicutt(1998b)andaredenotedbyblackfilledsquares.Thehigh-zdiscscomefromGenzeletal.(2010),Daddietal.(2010b,a) andarerepresentedbyfilledbluecircles.Thehigh-zSMGsaredividedintothethesamplesofBothwelletal.(2010)(purple),Bouche´etal.(2007)(green), andGreveetal.(2005);Tacconietal.(2006,2008);Engeletal.(2010)ascompiledbyGenzeletal.(2010)(filledredsquares). Wefindabestfitrelation(usingourmodelforX )of: X versus the bimodal value reduces the scatter by a factor of CO CO 5. ∼ log (Σ )=1.03 log (Σ /t ) 1.05 (13) 10 SFR 10 mol dyn × − The fact that our model for the Σ Σ /t relation SFR mol dyn whereΣ andΣ /t arebothinM yr−1kpc−2. isconsistent withtheobserved one (though−withreduced scatter) SFR mol dyn OurbestfitΣ Σ /t relatio⊙nhasslopeofapproxi- isnotsurprising.Daddietal.(2010a)andGenzeletal.(2010)as- SFR mol dyn − matelyunity,comparabletowhatisfoundbyGenzeletal.(2010), sumeaMilkyWay-likeX fortheirdiscgalaxies, androughly CO and consistent with the best fit slope of Daddietal. (2010a) of a factor of 5 lower for their mergers. In our model, the assump- 1.15.AprincipaldifferencebetweenusingourmodelX ver- tionofabimodalX fordiscsandmergersiscorrectonaverage. CO CO ∼ susthebimodalX incalculatingtheΣ Σ /t relation ThemeanvalueforX forhigh-z SMGsandlow-z mergersis CO SFR mol dyn CO − isareductionofscatter.WhenmeasuringthescatternearSFRsur- infactlowerthanthemeanvalueforlocaldiscs(c.f. 4.3).How- face density of 1 M yr−1 kpc−2, we find that using our model ever,manygalaxieslieintheoverlapregion.Somelo§calULIRGs ⊙