A general comparison theorem Claude Semay∗ Service de Physique Nucl´eaire et Subnucl´eaire, Universit´e de Mons, Acad´emie universitaire Wallonie-Bruxelles, Place du Parc 20, 7000 Mons, Belgium (Dated: February 17, 2011) UsingtheHellmann-Feynmantheorem,ageneralcomparison theoremisestablishedforaneigen- value equation of the form (T +V)|ψi = E|ψi, where T is a kinetic part which depends only on momentumsandV isapotentialwhichdependsonlyonpositions. WeassumethatH(1) =T+V(1) and H(2) = T +V(2) (H(1) = T(1) +V and H(2) = T(2) +V) support both discrete eigenvalues E(1) and E(2) , where {α} represents a set of quantum numbers. We prove that, if V(1) ≤ V(2) {α} {α} (T(1) ≤T(2))forallposition(momentum)variables,thenthecorrespondingeigenvaluesareordered 1 E(1) ≤E(2) . Some analytical applications are given. 1 {α} {α} 0 2 Thecomparisontheoremofquantummechanicsstates WeconsidertwoHamiltoniansH(1)andH(2)suchthat n that,forsomeeigenvalueequations,iftworealpotentials a J are ordered, V(1) V(2), then each corresponding pair φH(2) H(1) φ 0, φ . (4) 4 of eigenvalues is or≤dered E(1) E(2) ( α represents a h | − | i≥ ∀ | i {α} ≤ {α} { } Let us assume that the Hamiltonian 2 set of quantum numbers). This can be shownfor Hamil- tonianswhichareboundedfrombelow byusing the Ritz H(a)=(1 a)H(1)+aH(2) (5) ] − h variational principle. But, such a procedure is not ap- p plicable for the corresponding Dirac problem since the possesses a number (finite or infinite) of well defined t- Dirac Hamiltonian is not bounded from below. Never- eigenvalues E{α}(a) characterized by a set of quantum n theless,thecomparisontheoremhasalsobeenprovedfor numbers α , for 0 a 1 [6]. If a; α is the cor- { } ≤ ≤ | { }i a a Dirac equation with a potential monotone in a param- responding eigenstate, the Hellmann-Feynman theorem u eter [1–3]. directly yields q UsingtheHellmann-Feynmantheorem[4],weshallsee [ ∂E (a) that the comparison theorem can be applied to a great {α} = a; α H(2) H(1) a; α . (6) 2 class of eigenvalue problems written in the form ∂a { } − { } v D (cid:12) (cid:12) E 5 (T +V)ψ =E ψ , (1) It is a positive number due(cid:12)(cid:12) to the hyp(cid:12)(cid:12)othesis (4). So, 5 | i | i E{α}(a) is an increasing function of a and 3 where T is a kinetic part which depends only on mo- .5 mentums and V is a potential which depends only on E{α}(0)=E{(1α)} ≤E{(2α)} =E{α}(1), (7) 2 positions. No assumption is made about the number of 1 particles, and it is not necessary that the Hamiltonian where E(1) and E(2) are respectively eigenvalues of 0 {α} {α} 1 is bounded from below. We have not seen this presenta- Hamiltonians H(1) andH(2). Condition (4) is not neces- tionelsewhere,althoughitisrelatedtoideaspresentedin : sarilyeasytoverifyforarbitraryHamiltonians. Itisthen v [3]. As the Klein-Gordonequationis notofthe form(1), interesting to look at two particular simpler situations. i X the comparison theorem presented here does not apply, LetusfirstconsidertwoHamiltoniansH(1) =T+V(1) r but results about the ordering of the spectra can been andH(2) =T +V(2) such that V(1) V(2) for all values a obtained [3, 5]. ≤ of the position variables appearing in these potentials. The Hellmann-Feynman theorem states that if the Relation(4) is satisfiedsince the meanvalue is takenfor Hamiltonian of a system is H(a) where a is a parame- thepositivequantityV(2) V(1). So,thetheoremapplies ter, and that the eigenvalue equation for a bound state inthis case. Strictly speak−ing,the conditionV(1) V(2) is ≤ mustnot be satisfiedeverywherein the position spaceof the potentials. Indeed, some results can be obtained for H(a)a =E(a)a , (2) | i | i two-bodynonrelativisticproblemsinwhichthegraphsof where E(a) is the energy and a the normalized associ- thecomparisonpotentialscrosseachotherinacontrolled ated eigenstate, then | i way [7]. Evenifthevarietyofkineticoperatorsismuchsmaller ∂E(a) ∂H(a) than for potentials, it is worth comparing the spectra of = a a . (3) ∂a ∂a two Hamiltonians H(1) =T(1)+V and H(2) =T(2)+V (cid:28) (cid:12)(cid:12) (cid:12)(cid:12) (cid:29) such that T(1) T(2) for all values of the momentum (cid:12) (cid:12) ≤ (cid:12) (cid:12) variables appearing in these kinetic operators. For simi- larreasonsastheonespresentedabove,thetheoremalso ∗ E-mail: [email protected] applies in this case. It is not really surprising that the 2 comparisontheoremworksforbothpotentialandkinetic between brackets has one minimum in x = Q(c), with n,l operator, because one can indifferently consider a posi- 2 a value equal to 2 Q(c) Q(ho) Q(c) > 0. So, we tion or an momentum representationfor Hamiltonians. n,l n,l − n,l Wenowgiveseveralanalyticalillustrationsofthisthe- haveE(2) E(1) >(cid:16)0,ina(cid:17)cc(cid:16)ordancewith(cid:17)the comparison orem for different two-body systems, using in particular theoremn,.l − n,l the following well known cases: Provided the potential V(r) does not depend on the massm, thetheorempredicts thatthe eigenvaluesofthe p2 2λ H(ho) = +λr2, E(ho) = Q(ho), Hamiltonianp2/m+V(r)decreaseforanincreasingmass 2µ n,l s µ n,l m,whiletheeigenvaluesofthespinlessSalpeterHamilto- (ho) nian 2 p2+m2+V(r) increase with the mass m. This Q =2n+l+3/2; (8) n,l already known result [8] can be immediately checked on H(c) = p2 κ, E(c) = µκ2 , (8) andp(9) for the nonrelativistic case. 2µ − r n,l −2 Q(c) 2 Let us now consider the two kinetic operators T(1) = n,l 2 p2+m2 and T(2) = 2m+p2/m which is the non- Q(c) =n+l+1. (cid:16) (cid:17) (9) relativistic limit of T(1). We have T(1) T(2) since n,l Tp(2) 2 T(1) 2 = p4/m2 0. We can c≤onclude that Ifthe potentialpartofaHamiltonianpossessingadis- − ≥ the replacement of the semirelativistic kinetic part in a cretespectrais ofthe formgv(r) wherev(r) is apositive (cid:0) (cid:1) (cid:0) (cid:1) Hamiltonianbyitsnonrelativisticcounterpartimpliesan function and g a coupling constant(positive ornegative, increaseofthespectra[9]. Letusconsideranexplicitex- according to the structure of v(r)), the theorem states ample. TheeigenvaluesE(2) ofH(2) =2m+p2/m κ/r that the eigenvalues increases with g. This is a well n,l − knownresultwhichcanbe immediatelycheckedwith(8) are given by (9), while only upper bounds E˜(1) of the n,l and (9). exact eigenvalues E(1) of H(1) = 2 p2+m2 κ/r can With T =p2/(2µ), let us now consider n,l − be obtained (the value of κ is assumed to be low enough p κ to allow the existence of bound states) [10]: V(1)(r)= , (10) −r κ 3κ V(2)(r)= 2r03r2− 2r0, (11) E˜n(1,l) =2mv1− 4 Qκ(2c) 2, (14) u n,l where r0 is an arbitrary positive distance. These poten- u tials are tangent at r , and the quantity t mκ(cid:16)2 (cid:17) 0 E(2) =2m . (15) 2 n,l − 4 Q(c) 2 κ r r n,l V(2)(r) V(1)(r)= 1 +2 (12) − 2r r − r (cid:16) (cid:17) (cid:18) 0 (cid:19) (cid:18) 0 (cid:19) 2 2 4 isnon-negativeforallphysicalvaluesofr. Using(8)and Since En(2,l) − E˜n(1,l) =m2κ4/ 16 Q(nc,)l >0,we (9),thedifferencebetweentwocorrespondingeigenvalues have E(cid:16)(2) >(cid:17)E˜(1)(cid:16) E((cid:17)1). (cid:18) (cid:16) (cid:17) (cid:19) is given by n,l n,l ≥ n,l 2 2 √κ x3 3 Q(c) x+2Q(ho) Q(c) − n,l n,l n,l En(2,l)−En(1,l) = (cid:20) (cid:16)2r0√µ(cid:17)r0 Q(nc,)l 2 (cid:16) (cid:17) (cid:21), ACKNOWLEDGMENTS (cid:16) (cid:17) (13) The author thanks the F.R.S.-FNRS for financialsup- where x=√κµr0 is an arbitrary positive quantity. It is port. He alsothanksF.Buisseretforacarefulreadingof easytocheckthat,forpositivevaluesofx,thepolynomial the manuscript. [1] R.L. Hall, Phys.Rev.Lett. 83, 468 (1999). (2008) [arXiv:0811.1222]. [2] R. L. Hall, Phys. Rev. Lett. 101, 090401 (2008) [6] Forinstance,theYukawainteraction,whichhasonlyafi- [arXiv:0808.0486]. nitenumberofboundstates,iseverywhereboundedfrom [3] R. L. Hall, Phys. Rev. A 81, 052101 (2010) abovebyaharmonicpotential,whichischaracterizedby [arXiv:1004.1109]. an infinitenumberof discrete eigenvalues. [4] H.Hellmann, Acta Physicochimica URSS1, 913 (1935); [7] R. L. Hall, J. Phys.A 25, 4459 (1992). R.P. Feynman,Phys. Rev.56, 340 (1939). [8] D. B. Lichtenberg, Phys. Rev.D 40, 4196 (1989). [5] R. L. Hall and M. D. Aliyu, Phys. Rev. A 78, 052115 [9] W. Lucha and F. F. Sch¨oberl, Phys. Rev. A 54, 3790 3 (1996) [arXiv:hep-ph/9603429]. [10] B. Silvestre-Brac, C. Semay, and F. Buisseret, Int. J. Mod. Phys.A 24, 4695 (2009) [arXiv:0903.3181].