informatio n Article A Fuzzy EWMA Attribute Control Chart to Monitor Process Mean MuhammadZahirKhan1,MuhammadFaridKhan1,MuhammadAslam2,* , SeyedTaghiAkhavanNiaki3 andAbdurRazzaqueMughal1 1 DepartmentofMathematicsandStatistics,RiphahInternationalUniversity,Islamabad45210,Pakistan; [email protected](M.Z.K.);[email protected](M.F.K.); [email protected](A.R.M.) 2 DepartmentofStatistics,FacultyofScience,KingAbdulazizUniversity,Jeddah21551,SaudiArabia 3 DepartmentofIndustrialEngineering,SharifUniversityofTechnology,P.O.Box11155-9414AzadiAve., Tehran15119-43943,Iran;[email protected] * Correspondence:[email protected];Tel.:+966-59-3329841 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:30September2018;Accepted:4December2018;Published:7December2018 Abstract: Conventionalcontrolchartsareoneofthemostimportanttechniquesinstatisticalprocess control which are used to assess the performance of processes to see whether they are in- or out-of-control. As traditional control charts deal with crisp data, they are not suitable to study unclear, vague, and fuzzy data. In many real-world applications, however, the data to be used in a control charting method are not crisp since they are approximated due to environmental uncertainties and systematic ambiguities involved in the systems under investigation. In these situations,fuzzynumbersandlinguisticvariablesareusedtograbsuchuncertainties. Thatiswhy the use of a fuzzy control chart, in which fuzzy data are used, is justified. As an exponentially weightedmovingaverage(EWMA)schemeisusuallyusedtodetectsmallshifts, inthispapera fuzzyEWMA(F-EWMA)controlchartisproposedtodetectsmallshiftsintheprocessmeanwhen fuzzydataareavailable. Theapplicationofthenewlydevelopedfuzzycontrolchartisillustrated usingreal-lifedata. Keywords: crispdata;fuzzydata;fuzzycontrolcharts;EWMAcharts;fuzzyEWMAcharts 1. IntroductionandLiteratureReview Process performance and proficiency can be enhanced by decreasing variability. This can be attained with the assistance of statistical process control (SPC) methods. The aim of a statistical processcontrolmethodistoachievestabilityandtoimprovetheefficiencyofaprocessbyreducing the variability involved. Conventional control charts are one of the tools to achieve this objective. Conventional control charts, also known as Shewhart control charts, are used to detect shifts in a process. ThemostlyusedShewhartcontrolchartswhenavariablequalitycharacteristicismonitored include“x-barandrange”and“x-barands(standarddeviation)”controlcharts. However,thesecharts arenotabletodetectsmallshifts. Anotherproblemisthatthesechartsarenotindependentofeach other. Inordertodetectsmallshiftsintheprocessmeanorintheprocessvariation,anexponentially weightedmovingaverage(EWMA)schemeisused. Nonetheless,theconstructionmethodandthe interpretationinvolvedinatraditionalShewhartchartaredifferentfromtheonesinanEMWAcontrol chart. Inotherwords,theplotofaShewhartcontrolchartshowsindependentdatapointsandfollows thelawofthesamplingdistributionofthestatistic. However,inanEWMAorinacumulativesum (CUSUM) scheme, a statistic corresponding to a parameter is estimated directly. When a process monitoredusinganEWMAoraCUSUMcontrolchartgoesout-of-control,thedatamovesgraduallyto Information2018,9,312;doi:10.3390/info9120312 www.mdpi.com/journal/information Information2018,9,312 2of13 thenextlevel. Otherwise,thechartwillshowadiscrepancyaboutthecenterlinewithsmallvariations whentheprocessisin-control[1]. Inaddition,theEWMAandtheCUSUMcontrolchartsareusually usedtodetectsmallshiftsinaprocess. Yangetal.[2]proposedanewEWMAcontrolcharttomonitor themeanofaprocesswithavariablequalitycharacteristic. Itcanbeappliedinasituationwhenthe distributionoftheavailableprocessdataiseitherunidentifiedornon-normal. Althoughtheirchart wasshowntohaveaverygoodperformance,theArcsine-EWMAcontrolchartdevelopedalsoby Yangetal.[2]performedbetter. Tomonitorprocesseswithattributecharacteristics,however,thep andthecchartsarethemostwidelyemployedschemes. Acontrolchartconsistsofthreelines;thecenter(average)line,theupper,andthelowercontrol limits (lines). The strength of any chart can be judged by its ability to identify the shifts and the irregularityofaprocess. Thisstrengthisdirectlyrelatedtothechoiceofitscontrollimitswhenthe chartisdesigned. ThisalsoappliestofuzzycontrolchartsintroducedbyRaz&Wang[3]forthefirst time,whentheysuggestedtheuseoftwoapproaches: aprobabilisticapproachandamembership approach. Eversince,thistypeofcharthasgainedmuchinterestintheliterature. Thecontrolcharts arerecommendedbyKanagawa[4]forlinguistictermsobtainedbyexperts’opinionandregarded as fuzzy data are different from the one proposed by Wang [5]. It monitors not only the process averagebutalsotheprocessvariability. Inordertodecreasetheemergenceoffalsealarms,aswellasto enhancethespeedtoidentifyactualerrors,El-Shal[6]usedfuzzylogictoamendSPCrules. Rowlands &Wang[7]proposedafuzzySPCevaluationandcontrolmethodwhichcombinedthetraditional statistical process control methodology with an intelligent system approach. Gülbay & Ruan [8] recommendedα-cutcontrolchartstomonitorattributedatatoadjustthestiffnessoftheinspection usingtriangularfuzzynumbers. Cheng[9]developedafuzzycontrolcharttodealwithaprocessthat givesfuzzyoutcomes. Hedesignedtwofuzzycontrolchartstodirectlyobservethefuzzyresultsin ordertodeterminetheprocessquality. AdirectfuzzyapproachwasintroducedbyGülbay[10]asa substitutetofuzzycontrolcharts. Thisapproachcanbeappliedonfuzzyattributedataobtainedby vagueevents. Tocontrolprocessmean,Faraz[11]developedafuzzycontrolchartwithawarningline alongsideanuppercontrollimit. Erginel[12]presentedthetheoreticalstructureoffuzzyindividual andmovingrangecontrolchartswithα-cutsusingα-levelfuzzymediantransformationtechniques. Sentürk[13]designedfuzzy(X(cid:101) −R(cid:101))and(X(cid:101)−S(cid:101))chartswithα-cutsusingα-levelfuzzymidrange transformationtechniques. Theyusedtriangularfuzzymembershipfunctionswithfuzzynumbers (a,b,c). Later,Sentürk[14]proposedafuzzyregressioncontrolchart. Fuzzyvariablecontrolcharts dealwithfuzzyvariabledata,forexample,fuzzymeasurement(length,width,height). Ontheother hand,fuzzyattributecontrolchartsstudyqualitativedatawhichcannotbeexpressedinnumbers, forexample,fuzzyattributes(defective,nonconformities). Whilesomefuzzyvariablecontrolcharts include (X(cid:101) −R(cid:101)) and (X(cid:101)−S(cid:101)), fuzzy attribute control charts include (p(cid:101),c(cid:101),u(cid:101)). If the quality-related characteristicscannotberepresentedinarithmeticform,suchascharacteristicsforappearance,softness, color,andsoforth,thencontrolchartsforattributesareused. Productunitsareeitherclassifiedas conformingornonconforming,dependinguponwhetherornottheymeetspecifications,orthenumber ofnonconformities(deviationsfromspecifications)perunitiscounted. Therearefourmajortypes of control charts. The first type, the x-chart (and related x-bar, r-, and s-charts), is a generic and simple control chart. The x-chart is designed to be used primarily with variable data, which are usually measurements, such as the length of an object, processing time, or the number of objects producedperperiod. Theothertypesofcontrolchartsarethep-charts,whichareusedwithbinomial data, the c-charts, which are used for Poisson processes, and the u-charts, generally designed for countingdefectspersamplewhenthesamplesizevariesforeachinspection. AccordingtoKaya& Kahraman[15]whenthevalueisgivenas“around”and”approximate”,atriangularfuzzynumber ismostlyused,andwhenthevalueisgivenas“between”,twotrapezoidalfuzzynumbersareused. Theexamplesofatriangularfuzzynumberandtrapezoidalfuzzynumbersareapproximatespeed (20km)andspeedbetween(25kmto30km). Ifthevertexofatrapezoidalfuzzynumberhastakena commonvalue,itistransformedintoatriangularfuzzynumber. Information2018,9,312 3of13 Sentürketal.[16]introducedfuzzyucontrolchartstomonitorfuzzyattributedata. Kaya[15] (cid:101) designedfuzzycontrolchartsforfuzzymeasurementsoftherelatedqualitycharacteristics. Afuzzy multivariateexponentiallyweightedmovingaverage(F-MEWMA)controlchartwassuggestedby Alipour [17] to be implemented on a process in the food industry. Sentürk [18] suggested a fuzzy EWMA (F-EWMA) control chart to study fuzzy univariate process data using α-cuts. The design of this scheme is based on using triangular fuzzy numbers and the fuzzy midrange technique to studyfuzzydatabyconvertingitintoscalarform. Theirfuturerecommendationwastoapplythe same technique on conventional control charts to make them able to work in fuzzy environment. Khademi[19]developedtwofuzzyapproachestodesigncontrolchartsobservingfuzzyaverages andranges. Theseapproachesthatarebasedonfuzzymodeandfuzzybaserulesarebetterinthe sense they do not use a defuzzification method and are more informative than the existing fuzzy controlcharts. Theydemonstratedtheperformanceoftheirchartswiththehelpofareal-lifeexample. Recently,Kahraman[20]introducedtwofuzzycontrolchartstomonitorfuzzyoutcomesinorderto seewhetheraprocessisin-controlorout-of-control. Itshouldbementionedthatthecapabilityofa processcanalsobemeasuredwiththehelpofafuzzycontrolcharttocheckwhetheraprocessisin-or out-of-control[15]. The recommendation provided by Sentürk [18] is utilized in the current paper on another conventional scheme proposed by Yang et al. [2] to design a new fuzzy EWMA chart that can be usedtodetectsmallshiftsonthemeanofaprocessinafuzzyenvironment. Thismakesthenewly designchartmoreapplicable,moreflexible,andmoreinformativeinreal-lifequalitycontrolproblems. It gives practitioners an opportunity to study intermediate values of fuzzy parameters that is not possiblewithcrispparametersinafuzzyenvironment. AlthoughYangetal.[2]usedapproximate valuesintheirexample, theyaretreatedasfuzzynumbersinthecurrentwork, basedonwhicha fuzzyformofhischartisproposed. Thisnewlydevelopedfuzzychartwillbeappliedonreal-lifedata collectedfromthefoodindustry. The structure of the remainder of the paper is as follows. A brief background on the fuzzy variableandattributecontrolchartsandthefuzzytransformationapproachesisgiveninSection2. The conventional EWMA chart proposed by Yang et al. [2] is described in Section 3 in detail. ThefuzzyEWMAcharttomonitortheprocessmeaninafuzzyenvironmentisdesignedinSection4. TheapplicationoftheproposedchartisinvestigatedinSection5usingcookingoilfillingdata. Finally, theconclusionandrecommendationforfuturestudiesaregiveninSection6. 2. TheFuzzyAttributeandVariableSchemes Fuzziness and ambiguity may have several reasons including lack of knowledge, chance, imprecision,incompetencetoperformadequatemeasurements,andinbornfuzzinessintheprocess. Fuzzinessinhumanisticsystemsisdealtwithinamathematicalwaywiththehelpoffuzzysets[21]. Thefuzzysettheoryprovidesanopportunitytostudyhumansubjectivityinascientificmannerwith theassistanceoffuzzysets[22]. 2.1. FuzzyTransformationApproaches Whenfuzzydataareused,itisessentialtorepresentthefuzzysetslinkedwiththelinguisticdata inthesamplebysomescalar(transformation)numbersforadditionalcalculations. Therearefourfuzzy measuresofcentraltendenciesintheliteratureusedtocalculatetransformednumbers. Thesemeasures include(1)fuzzymean,(2)fuzzymedian,(3)fuzzymode,and(4)fuzzymidrange([3,5]). 2.2. SomeFuzzyFormulae Theformulatocomputethefuzzyaverageis[21]: (cid:82)1 xU (X) f = x=0 F . avg (cid:82)1 U (X) x=0 F Information2018,9,312 4of13 Todeterminethefuzzymedian,thecurveunderthemembershipfunctionisdividedintotwo halves. Asaresult,thefuzzymedianbecomes Information 2018, 9, x FOR PEER REVIEW (cid:90) fmed 4 of 14 f = U (X)dx. median F a 𝑓 = (cid:1516)(cid:3033)(cid:3288)(cid:3280)(cid:3279)𝑈 (𝑋)𝑑𝑥. Thefuzzymodeisthevalueofth(cid:3040)e(cid:3032)(cid:3031)b(cid:3036)a(cid:3028)s(cid:3041)evar(cid:3028)iablew(cid:3007)herethemembershipfunctionequals1.Thus, The fuzzy mode is the value of the base variable where the membership function equals 1. Thus, f = {X/U (X) =1}. mode F 𝑓 = (cid:4668)𝑋∕𝑈 (𝑋) = 1(cid:4669). (cid:3040)(cid:3042)(cid:3031)(cid:3032) (cid:3007) Thefuzzymid-rangeisthemeanendpointsoftheα-cutas The fuzzy mid-range is the mean end points of the α-cut as 1 𝑓(cid:3080)f(cid:3040)α(cid:3045)m=r =(cid:2869)(cid:2870)(2𝑎((cid:3080)a+α+𝑎(cid:3030)a)c. ). AcAcocrcdoirndgin tgo t[o18[]1, 8t]h,etrhee raerea rneon soosliodl irdearesoansos ntso tdoedciedceid wehwichhi cthecthecnhiqnuiqe uise bisebtteetrt etor tuosue,s eb,ubt umtomsto st resreeasrecahrecrhse arpspalipepdl tihede αt-hleevαel- lfeuvzezly fmuizdzryanmgeid terachnngiequteec ihnn thiqeuire winorkths ediurew too ritkss sidmupelet oforitms osifm foprmleufloar. m offormula. 2.3. Triangular Fuzzy Number 2.3. TriangularFuzzyNumber A triangular fuzzy number 𝐴(cid:4634) is a fuzzy number with its membership function defined by three numberAs t𝑎rian<g𝑎ula<rf𝑎uz zwyhneurme btheer Ab(cid:101)aissea offu zthzye ntruiamnbgeler wisi tthheit sinmteermvable r(cid:4670)s𝑎hi,p𝑎f(cid:4671)u nacntido nthdee fivneretdexb yist hart ee (cid:2869) (cid:2870) (cid:2871) (cid:2869) (cid:2871) 𝑋 =nu𝑎m(cid:2870).b ersa1 < a2 < a3wherethebaseofthetriangleistheinterval[a1,a3]andthevertexisatX = a2. ExEamxapmlep.l Ien. Itnhet hfoellfoowlloinwgi nFgigFuigreu r1e, 1th,etrhee rise itsritarniagnuglaurl anrunmubmebr edredfienfiende bdyb ythtrheree neunmumbebresr (sa(1a =1 =2, 2a,2 a=2 3=, 3a3, a=3 4=), 4), whwerhee rtehet hbeasbea soef othfet hteritarniagnleg ilse tishet hinetienrtvearvl a(cid:4670)l2[,24,(cid:4671)4 ]anand dthteh evveretretxex isi sata t𝑋X==33. . Figure1.TriangularFuzzyNumber. Figure 1. Triangular Fuzzy Number. The basic forms of the variable and the attribute fuzzy control charts were given in [20]. ThTehaet tbriabsuict efocromnstr oofl tchhea rvtsaraiarbelep -acnhda rtth,en pa-ttcrhibaurtt,e cf-uchzzayrt ,coanntdroul -cchhaarrtts, wwehriele gtihveenv ainr ia[2b0l]e. cThhaer ts (cid:101) (cid:101) (cid:101) (cid:101) attirnibcluutdee c(oX(cid:101)nt−rolR(cid:101) c)haanrdts (aX(cid:101)re− 𝑝(cid:3556)S(cid:101)-c)hsacrhte, m𝑛𝑝e(cid:3556)-sc.hFaurzt,z y𝑐̃-fcohramrst, oafntdh e𝑢(cid:3556)se-cchhaarrtt, swmhailkee tthhee mvarmiaobrleefl cehxairbtlse ,insecnlusditeiv e, (cid:3435)𝑋(cid:3364)(cid:3560)a−nd𝑅(cid:3561) i(cid:3439)n faonrdm a(cid:3435)t𝑋(cid:3560)iv−e.𝑆(cid:4634)A(cid:3439) sfuchzezmyevsa.r Fiaubzlzeyq fuoarlmitsy ocfh tahreascet ecrhisatritcs imnamkes athmepmle ms,oeraec hflewxiibthle,t hseenssiizteivoef, annwd as infroerpmreasteivnete. dAu sfuinzgzya tvraiarniagbulela rqfuuazliztyy ncuhmarbaecrtedriesntioct eidn b𝑚y (cid:102)Xsaim=p(lXesia, ,eXaicbh,X wic)it,hw thheer esiiz=e 1o,f2 ,𝑛3 ,w..a.s, m. repInreasdendtietido nu,sienagc ha tsraiamnpgluelainr faufzuzzyz nyuamttbreibru dteencohtaedrt ,bfyo 𝑋r(cid:3561)(cid:3114)e=xa(m𝑋p(cid:3036)(cid:3028)l,e𝑋,(cid:3036)t(cid:3029)h,𝑋e(cid:3036)n(cid:3030))p(cid:101), wcohnetrreo l𝑖c=ha1r,t2d,3e,v…e,lo𝑚p. eIdn to adsdtuitdioynt,h eeacnhu smabmeprloef inno an fcuoznzfyo ramttirnibguutne icthsainrta, ffourz ezxyaemnpvliero, nthme e𝑛n𝑝t(cid:3556), wcoanstprorel scehnatretd dbeyvealotrpiaendg tuol satrufduyz zy the number of nonconforming units in a fuzzy environment, was presented by a triangular fuzzy number (𝑑 ,𝑑 ,𝑑 ) with the mean of (cid:3435)𝑛𝑝̅ 𝑛𝑝̅ 𝑛𝑝̅ (cid:3439), where 𝑛𝑝̅ =∑(cid:3288)(cid:3284)(cid:3128)(cid:3117)(cid:3031)(cid:3284)(cid:3276),𝑛𝑝̅ =∑(cid:3288)(cid:3284)(cid:3128)(cid:3117)(cid:3031)(cid:3284)(cid:3277),and 𝑛𝑝̅ = (cid:3036)(cid:3028) (cid:3036)(cid:3029) (cid:3036)(cid:3030) (cid:3028), (cid:3029), (cid:3030) (cid:3028) (cid:3040) (cid:3029) (cid:3040) (cid:3030) ∑(cid:3288)(cid:3284)(cid:3128)(cid:3117)(cid:3031)(cid:3284)(cid:3278). Hence, the control limits of the fuzzy 𝑛𝑝(cid:3556) chart are [20]: (cid:3040) 𝑈(cid:3563)𝐶𝐿=(cid:4672)𝑛𝑝̅ +3(cid:3493)𝑛𝑝̅ (1−𝑝̅ ),𝑛𝑝̅ +3(cid:3493)𝑛𝑝̅ (1−𝑝̅ ),𝑛𝑝̅ (cid:3028) (cid:3028) (cid:3028) (cid:3029) (cid:3029) (cid:3029) (cid:3030) (1) +3(cid:3493)𝑛𝑝̅ (1−𝑝̅ )(cid:4673) (cid:3030) (cid:3030) Information2018,9,312 5of13 number(d ,d ,d )withthemeanof(np np np ),wherenp = ∑im=1dia,np = ∑im=1dib,andnp = ia ib ic a, b, c a m b m c ∑im=1dic. Hence,thecontrollimitsofthefuzzynpchartare[20]: m (cid:101) (cid:113) (cid:113) (cid:113) (cid:93) UCL = (np +3 np (1−p ),np +3 np (1−p ),np +3 np (1−p )) (1) a a a b b b c c c C(cid:102)L = (np ,np ,np ) (2) a b c (cid:113) (cid:113) (cid:113) L(cid:103)CL = (np −3 np (1−p ),np −3 np (1−p ),np −3 np (1−p )). (3) a a a b b b c c c 3. TheEWMAControlCharttoMonitorProcessMean AnewversionoftheconventionalEWMAcontrolchart,initiallypresentedbyMontgomery[23], wasproposedbyYangetal.[2]tomonitorsmallshiftsinaprocessmean. Thedetailsofthischartare givenasfollows. ArandomsampleofsizenincludingtherandomvariablesX X X ...,X istaken 1, 2, 3, n fromaprocesswithameanµinsubgroupi.Let Y = X −µ; j =1,2,3,..., n, i =1,2,3,...,m. (4) j ij Inasubgroup,defineaBernoullirandomvariableas (cid:40) 1; Y >0 I = j . (5) j 0; Otherwise Let S be the total number of Y > 0. Then, S = ∑n I would follow a binomial distribution j j=1 j (cid:8) (cid:9) withtheparameters(n,p)foranin-controlprocesswith p = P Y >0 astheprobabilityofhaving j = = a positive difference (X −X) > 0, in which X is the estimate of the process mean µ. Although ij the S statistic in Yang et al.’s EWMA chart [2] follows a binomial distribution, the difference with theconventionalnpchartisthatthebinomialvariableisnotthecountofnon-conformingunitsin thesample,ratherthenumberof X valuesinasamplethatareabovethein-controlprocessmean. i Thischartisdesignedtodetectsmallshiftsrapidlyandeffectively. TheEWMAstatisticsinYangetal.’sEWMAchart[2]isdefinedas EWMA = λS +(1−λ)EWMA ; 0< λ ≤1 (6) Si i Si whereS representsthevalueofSintheithsubgroup.TheinitialvalueofthisstatisticisEWMA = np. i Si AsthemeanofthestatisticisE(EWMA ) = npandthevarianceisVar(EWMA ) = np(1−p)with Si Si thelimitingvalueofVar(EWMA ) = λ [np(1−p)],thendependingonthenumberofthesubgroup Si 2−λ inwhichasampleisdrawn,theEWMAchartproposedbyYangetal.[2]isdesignedbythecontrol limitsinEquations(7)–(9)and(10)–(12)foralargeandasmallnumberofsubgroup,respectively. Whenthesubgroupnumberislarge: (cid:115) (cid:18) (cid:19) λ UCL = np+k [np(1−p)] (7) EWMAS 2−λ CL = np (8) EWMAS (cid:115) (cid:18) (cid:19) λ LCL = np−k [np(1−p)] . (9) EWMAS 2−λ Information2018,9,312 6of13 Whenthesubgroupnumberissmall: (cid:115) (cid:18) (cid:19) λ UCL = np+k [np(1−p)] [1−(1−λ)2t] (10) EWMAS 2−λ CL = np (11) EWMAS (cid:115) (cid:18) (cid:19) λ LCL = np−k [np(1−p)] [1−(1−λ)2t]. (12) EWMAS 2−λ ThisversionoftheEWMAchartisusedinthecurrentworktodesignafuzzyEWMAchartin Section4. However,beforeproposingthechart,abriefbackgroundisprovidedinthenextsectionto describeanexistingfuzzyEWMAchart. TheExistingFuzzyEMWAControlChart In the fuzzy EWMA scheme proposed by Sentürk [18], z is the tth exponentially weighted t movingaverage,x indicatesthesamplemean,0< λ <1isarealconstant,Xistheoverallsample t = mean,misthenumberofsamples,t =1,2,3...misthesamplenumber,andz = X. Assumingx s 0 i tobeindependentrandomvariableswithaknownvariance σ2, thevarianceof z becomes σ2 = n t zt σ2( λ )[1−(1−λ)2t], where n. is the samplesize. Then, when t is small the control limits in the n 2−λ traditionalEWMAcontrolchartareasfollows: (cid:115) = σ2(cid:18) λ (cid:19) UCL = X+3 [1−(1−λ)2t] (13) EWMA n 2−λ = CL = X (14) EWMA (cid:115) = σ2(cid:18) λ (cid:19) LCL = X−3 [1−(1−λ)2t]. (15) EWMA n 2−λ However,astincreasesσ2 tendstoalimitingvalueσ2 = σ2( λ ). Assuch,thecontrollimits zt zt n 2−λ inthetraditionalEWMAcontrolchartbecome (cid:115) = σ2(cid:18) λ (cid:19) UCL = X+3 (16) EWMA n 2−λ = CL = X (17) EWMA (cid:115) = σ2(cid:18) λ (cid:19) LCL = X+3 . (18) EWMA n 2−λ Ontheotherhand,thecontrollimitsofthefuzzyEWMAschemeproposedby[18]whenσis knownandtissmallare (cid:115) = = = 3 (cid:18) λ (cid:19) UC(cid:101)LEWMA = (Xa,Xb,Xc)+ √n(σa,σb,σc) 2−λ [1−(1−λ)2t] (19) = = = C(cid:101)LEWMA = (Xa,Xb,Xc) (20) (cid:115) = = = 3 (cid:18) λ (cid:19) UC(cid:101)LEWMA = (Xa,Xb,Xc)− √n(σa,σb,σc) 2−λ [1−(1−λ)2t]. (21) Information2018,9,312 7of13 However,whentislarge,thecontrollimitsbecome (cid:115) = = = 3 (cid:18) λ (cid:19) UC(cid:101)LEWMA = (Xa,Xb,Xc)+ √n(σa,σb,σc) 2−λ (22) = = = C(cid:101)LEWMA = (Xa,Xb,Xc) (23) (cid:115) = = = 3 (cid:18) λ (cid:19) UC(cid:101)LEWMA = (Xa,Xb,Xc)− √n(σa,σb,σc) 2−λ . (24) Incaseσisunknownandtissmall,thecontrollimitsare (cid:115) = = = (cid:18) λ (cid:19) UC(cid:101)LEWMA = (Xa,Xb,Xc)+3(Ra,Rb,Rc) 2−λ [1−(1−λ)2t] (25) = = = C(cid:101)LEWMA = (Xa,Xb,Xc) (26) (cid:115) = = = (cid:18) λ (cid:19) UC(cid:101)LEWMA = (Xa,Xb,Xc)−3(Ra,Rb,Rc) 2−λ [1−(1−λ)2t]. (27) Finally,whenσisunknownandtislargethecontrollimitsare (cid:115) = = = (cid:18) λ (cid:19) UC(cid:101)LEWMA = (Xa,Xb,Xc)+3(Ra,Rb,Rc) 2−λ (28) = = = C(cid:101)LEWMA = (Xa,Xb,Xc) (29) (cid:115) = = = (cid:18) λ (cid:19) UC(cid:101)LEWMA = (Xa,Xb,Xc)−3(Ra,Rb,Rc) 2−λ . (30) NoteinEquations(25)–(30)thatR , R , andR areranges. a b c 4. TheProposedFEWMASchemeBasedonthenpchart Based on the background provided in Section 3, the control limits of the new fuzzy EWMA schemetodetectsmallshiftsintheprocessmeanwhenfuzzyprocessdataareavailableareproposed asfollows. SimilartothelimitsshownintheexistingfuzzyEWMAchart, assuminganunknown standarddeviationoftheprocess,thecasethatmostlyhappensinpractice,thelimitsareprovided dependingonwhethertissmallorlarge. 4.1. σIsUnknownandtIsSmall Thecontrollimits,inthiscase,areproposedas U(cid:93)CLEWMAS =(npa,npb,npc)+K(cid:114)(cid:16)2−λλ(cid:17)[1−(1−λ)2t][npa(1−pa)],[npb(1−pb)],[npc(1−pc)] (31) C(cid:102)LEWMAS = (npa,npb,npc) (32) (cid:114)(cid:16) (cid:17) L(cid:103)CLEWMAS =(npa,npb,npc)−K 2−λλ [1−(1−λ)2t][npa(1−pa)],[npb(1−pb)],[npc(1−pc)] (33) Information2018,9,312 8of13 whichcanbewritteninthefollowingforms: (cid:93) (cid:18) (cid:114)(cid:16) (cid:17) UCL = np +K λ [1−(1−λ)2t][np (1−p )], np EWMAS a 2−λ a a b (cid:114) (cid:16) (cid:17) +K λ [1−(1−λ)2t][np (1−p )], np (34) 2−λ b b c (cid:114)(cid:16) (cid:17) (cid:19) +K λ [1−(1−λ)2t][np (1−p )] 2−λ c c C(cid:102)LEWMAS = (npa,npb,npc) (35) (cid:18) (cid:114)(cid:16) (cid:17) L(cid:103)CLEWMAS = npa−K 2−λλ [1−(1−λ)2t][npa(1−pa)], npb− (cid:114) (cid:16) (cid:17) K λ [1−(1−λ)2t][np (1−p )], np − (36) 2−λ b b c (cid:114)(cid:16) (cid:17) (cid:19) K λ [1−(1−λ)2t][np (1−p )] 2−λ c c In Equations (34) and (36), the parameter K is chosen such that the chart exhibits a desired in-controlaveragerunlength. 4.2. σIsUnknownandtIsLarge Thecontrollimitsinthiscaseare (cid:115) (cid:18) (cid:19) (cid:93) λ UCL = (np ,np np )+K [np (1−p )],[np (1−p )],[np (1−p )]) (37) EWMAS a b, c 2−λ a a b b c c C(cid:102)LEWMAS = (npa,npb,npc) (38) (cid:115) (cid:18) (cid:19) λ L(cid:103)CLEWMAS = (npa,npb,npc)−K 2−λ [npa(1−pa)],[npb(1−pb)],[npc(1−pc)] (39) whichcanberewrittenas (cid:93) (cid:18) (cid:114)(cid:16) (cid:17) UCL = np +K λ [np (1−p )], np EWMAS a 2−λ a a b (cid:114) (cid:16) (cid:17) +K λ [np (1−p )], np (40) 2−λ b b c (cid:114)(cid:16) (cid:17) (cid:19) +K λ [np (1−p )] 2−λ c c C(cid:102)LEWMAS = (npa,npb,npc) (41) (cid:16) (cid:113) L(cid:103)CLEWMAS = npa−K (2−λλ)[npa(1−pa)],npb (cid:113) −K ( λ )[np (1−p )], np (42) 2−λ b b c (cid:113) (cid:17) −K ( λ )[np (1−p )] . 2−λ c c Then,dependingonthefuzzymeasuresofcentraltendenciesusedforthefuzzytransformation approachdiscussedinSection2.2,thefollowinglimitsareobtained. 4.3. TheControlLimitsintheα-CutsFuzzyEWMAControlChart Thecontrollimitsinthisfuzzytransformationapproachare Information2018,9,312 9of13 (cid:94) (cid:16) (cid:113) UCLα = np α+K λ (np α(1−p α)), np α EWMAS a 2−λ a a b (cid:113) +K λ (np α(1−p α)), np α (43) 2−λ b b c (cid:113) (cid:17) +K λ (np α(1−np α)) 2−λ c c C(cid:103)LαEWMAS = (npaα,npbα,npcα) (44) (cid:93) (cid:16) (cid:113) LCLα = np α+K λ (np α(1−p α)),np α EWMAS a 2−λ a a b (cid:113) +K λ (np α(1−p α)),np α (45) 2−λ b b c (cid:113) (cid:17) +K λ (np α(1−np α)) . 2−λ c c 4.4. TheControlLimitsintheα-CutFuzzyMedianEWMAScheme ThecontrollimitsoftheproposedfuzzyEWMAschemewhenthistypeoffuzzytransformation approachisusedareshowninEquations(46)–(48). U(cid:94)CLαmed−EWMAS = 13(npaα+npbα+npcα)+13K(cid:113)2−λλ(npaα(1−paα))+(npbα(1−pbα))+(npcα(1−npcα)) (46) 1 C(cid:103)Lαmed−EWMAS = 3(npaα+npbα+npcα) (47) L(cid:93)CLαmed−EWMAS = 13(npaα+npbα+npcα)−13K(cid:113)2−λλ(npaα(1−paα))+(npbα(1−pbα))+(npcα(1−npcα)) (48) 5. TheApplication In this section, the application of the proposed fuzzy EWMA chart is demonstrated using fuzzy observations obtained from a cooking oil filling process involved in the food industry in Pakistan. Inthisexample,fuzzydataarecollectedfromtheprocess,wherefuzzyobservationsare treatedastriangularfuzzynumbers(x ,x ,x )ineachsampletakenatdifferenttimes. Inaddition, ai bi ci theproportionofthevaluesaboveagiventhreshold(zero)willbetreatedasatriangularfuzzynumber (p ,p ,p ). Thedataconsistof10samples,eachwith10fuzzyobservations,andtheproportionis ai bi ci obtainedfromeachsamplebasedonthegiventhreshold. In this application, the chart parameters used are K = 2.58, λ = 0.2, n = 10, p = 0.35, p = 0.48, a b α=0.65,andp =0.64. Here,theparametersettingK=2.58,λ=0.2,andP=0.65isobtainedusinga c simulationapproachdescribedinthenextsection. Inaddition, p = 0.35showstheproportionof“a” a aboveitsgivenmean,p =0.48impliestheproportionabovethemeanof“b”,andp =0.64indicates b c theproportionabovethemeanof“c”. Thisisdoneduetothefactthateachvalueisbeingusedasa triangularfuzzynumber. Thecontrollimitsarecalculatedas (cid:93) UCL == (4.75, 6.117.66) EWMAS C(cid:102)LEWMAS == (3.5, 4.8, 6.4) L(cid:103)CLEWMAS == (2.22,4.46,5.13). Then,thelimitsoftheα-cutsfuzzyEWMAcontrolchartareobtainedbasedonEquations(43)–(45)as: (cid:94) UCLα == (5.69,6.15,6.7) EWMAS (cid:93) LCLα == (2.99, 3.44, 4.0). EWMAS However, when the α-cut fuzzy median EWMA scheme is used, the control limits based on Equations(46)–(48)areobtainedas Information2018,9,312 10of13 (cid:94) UCLαmed−EWMAS =5.62 C(cid:103)Lαmed−EWMAS =4.84 (cid:94) LCLαmed−EWMAS =4.05. Whentheα-cutfuzzymedianEWMAchartisemployedonthefirstsamplewehave np α = np +α(np −np ) (49) a a,1 a,1 b,1 a,1 npα = np +α(np −np ) (50) c,1 c,1 b,1 c,1 1 Sαmed−EWMAsj = (npαa,j+npb,j+ npαc,j); j =1,2,... . (51) 3 Then,atα=0.65wehave np 0.65 = 4.65 a a,1 np =5 b,1 np0.65 =5.35. c,1 Asaresult,thestatisticinthefirstsamplebecomes Sαmed−EWMAs1 ==5 Now,sincethestatisticfallswithinthecontrollimit,i.e.,4.05<5<5.61,theprocessisin-control basedonthefirstsampledrawn. Theproportionsofthefuzzyobservationsabovetheprocessmeanarefirstcalculatedforeach sampleinTable1. ThedetailedcalculationusingtheRstatisticalsoftwareisgiveninAppendixA. Then,thecontrollimitsoftheproposedfuzzyexponentiallyweightedmovingaveragecontrolchart usingtheα-cutmedianapproacharecomputed. Theresultsshowthattheprocessisin-control. Table1.Monitoringthefuzzyoilpackagingprocessusingtheproposedfuzzyexponentiallyweighted movingaverage(EWMA)scheme. Sample FuzzyProportion α-CutsfortheProportion FuzzyEWMAs Fuzzy(EWMA-med) 4.054<SαEMWAsα<5.62 1 (4,5,6) (4.65,5,5.35) (3.6,4.84,6.32) 4.92 In-control 2 (3,4,5) (3.65,4,4.35) (3.8,4.8,5.8) 4.80 In-control 3 (5,6,7) (5.65,6,6.35) (3.4,4.4,5.4) 4.40 In-control 4 (2,3,4) (2.65,3,3.35) (5.05,5.4,5.75) 5.40 In-control 5 (6,5,7) (6.65,6,6.35) (4.80,6.3,6.46) 4.60 Incontrol 6 (3,4,5) (3.65,4,4.35) (4.6,5.6,6.6) 4.93 In-control 7 (4,6,7) (4.65,3,2,3.25) (3.40,4.6,4.7) 4.63 In-control 8 (3,4,5) (3.65,4,4.35) (4.6,5.6,6.6) 4.93 In-control 9 (4,5,6) (4.65,5,5.35) (3.2,4.2,5.2) 4.20 In-control 10 (6,7,8) (6.65,7,7.35) (4.4,5.4,6.4) 5.40 In-control TheSimulation InthissectionwesimulatedthedatausingMATLABcodetocalculateFuzzyaveragerunlength (ARL1s) when the process is not in-control shown in Table 2. Similarly, conventional ARL1s are presentedinTable3. ComparisonshowsthatthefuzzyARL1sarelessthantheconventionalARL1s. Thismeansthatthefuzzycontrolschemeisquickerinindicatingsmallshiftsintheprocessascompared totheconventionalchart. Thisisthestrengthoftheproposedfuzzycontrolchartcomparedtothe conventionalchart. ThefollowingalgorithmwasusedtofindthecontrolchartcoefficientsandtheARLs. 1. Generateabinomialrandomvariable.