ebook img

A future very-high-energy view of our Galaxy PDF

0.4 MB·English
by  S. Funk
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A future very-high-energy view of our Galaxy

A future very-high-energy view of our Galaxy S. Funk , J.A. Hinton†, G. Hermann and S. Digel‡ ∗ ∗∗ KavliInstituteforParticleAstrophysicsandCosmology,Stanford,CA94025,USA ∗ †SchoolofPhysics&Astronomy,UniversityofLeeds,Leeds,LS29JT,UK 9 Max-PlanckInstitutfürKernphysik,P.O.Box103980,D-69029,Heidelberg,Germany 0 ∗∗ ‡KavliInstituteforParticleAstrophysicsandCosmology,Stanford,CA-94025,USA 0 2 Abstract. ThesurveyoftheinnerGalaxywithH.E.S.S.[1,2]wasremarkablysuccessfulindetectingawiderangeofnew n very-high-energygamma-raysources.NewTeVgamma-rayemittingsourceclasseswereestablished,althoughseveralofthe a J sourcesremainunidentified,andprogresshasbeenmadeinunderstandingparticleaccelerationinastrophysicalsources.In this work, we constructed a model of a population of such very-high-energy gamma-ray emitters and normalised the flux 3 and size distribution of this population model to theH.E.S.S.-discoveredsources. Extrapolating that population of objects 1 to lower flux levels we investigate what a future array of imaging atmospheric telescopes (IACTs) such as AGIS or CTA might detect inasurveyof theInner Galaxywithanorder ofmagnitude improvement insensitivity.Thesheer number of ] A sourcesdetectedtogetherwiththeimprovedresolvingpowerwilllikelyresultinahugeimprovementinourunderstanding ofthepopulationsofgalacticgamma-raysources.AdeepsurveyoftheinnerMilkyWaywouldalsosupportstudiesofthe G interstellardiffusegamma-rayemissioninregionsofhighcosmic-raydensity.Inthefinalsectionofthispaperweinvestigate . thesciencepotentialfortheGalacticCentreregionforstudyingenergy-dependentdiffusionwithsuchafuturearray. h p Keywords: Gamma-rayobservations,AGIS,CTA,IACT,H.E.S.S.,Ground-basedGamma-rayastronomy,GalacticCentre,SgrA* - PACS: 95.55.Ka,95.85.Pw o r t BUILDINGTHE POPULATION s a Radial distribution [ The first step in the simulation of a future survey of 1.6 1 theGalactic planeistoestablish amodelforthesource 1.4 v population. For this purpose, the sources detected in 1.2 5 the H.E.S.S. survey of the inner Galaxy ( 30 ) were ◦ 8 assumed to be attributable to a single pop±ulation and 1 8 thefollowingobservableswerecomparedbetweenthese 1 0.8 sourcesandasyntheticpopulation: . 1 0.6 0 • Numberofdetectedsources 0.4 9 • Galacticlongitudeandlatitudedistributions 0 0.2 • Gamma-rayfluxdistribution : v • Angularsizedistribution 00 2 4 6 8 10 12 14 16 18 20 i X Two different source population models have so far r been tested separately: an SNR-type and a PWN-type FIGURE1. RadialdistributionofsourcesintheSNRmodel a model.In thefollowingwe will focuson theSNR pop- ingalactocentriccoordinates.Theunitsonthey-axisarearbi- trary. ulationmodel.Tomatchthenumberofsources,thefre- quencyofSNeinourGalaxywasfixedto10percentury. For the distribution of Galactic longitudesand latitudes inourGalaxyasgivenby[4]withtheefficiencyofcon- of the underlying population we used a 3-dimensional vertingthattotalexplosionenergyintogammaraysasa distributionofsourcesinourGalaxy.Theradialdistribu- singleadjustableparameter.Thelinearsizeofthemodel tionweretakenfromamodelofofSNRsinourGalaxy sourcesasafunctionoftimewastakenfromtheSedov- (see Fig. 1) as given in [3] and the height distribution solutionforSNRs[5,6].Usingadistributionofdensities above the galactic disc was assumed to be exponential ofinterstellargasproportionalton 1 aroundtheSNRs, withascaleheightof30kpc,approximatelymatchedto − the gamma-ray flux from p 0-emission was then calcu- thetypicalscaleheightofmoleculargas. lated based on the prescription of Drury, Aharonian & For the distribution of gamma-ray luminosities we Völk [7]. As mentioned before, in this model, the ad- usedthemodeloftotalexplosionenergiesofSupernovae justableparameters(tomatchtheH.E.S.S.distributions) are: es 7 c • SNRTeVgamma-raylifetime Sour 6 • Efficiencyoftransferringexplosionenergyintoki- # neticenergyofprotons 5 4 Withtheseparametersadistributionofsourcesbased on the SNR-modelcan be constructedandcomparedto 3 theabovementionedH.E.S.S.distributions. 2 1 MATCHINGTHEH.E.S.S. POPULATION 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Galactic Latitude (deg) Thedistributionsofgamma-rayfluxes,galacticlatitudes and angular sizes of the H.E.S.S. sources in the inner Galaxywerefittedtotherespectivedistributionsfromthe es population. It seems clear from the fit (as already sug- urc 18 o gested in the initial publication about the H.E.S.S. sur- # s 16 vey [2]), that the scale height of the sources above the 14 Galaxymustberathersmalltomatchthenarrowdistri- 12 butionofH.E.S.S.sourcesinGalacticlatitude.Figures2 10 showthedistributioninGalacticlatitudeandinLog(N)- 8 Log(S)forthemodelandtheH.E.S.S.data.TheH.E.S.S. 6 Log(N)-Log(S)distributionfollowsapower-lawwithin- 4 dex -1.Areasonableagreementbetweenthemodeland 2 ∼ theH.E.S.S.datacanbeachievedwiththefollowingpa- -013 -12.5 -12 -11.5 -11 -10.5 -10 -9.5 -9 rameters: Log10 (Flux) • NumberofSNexplosions/century:10 FIGURE2. Top:DistributionofGalacticlatitudesformodel • SNRTeVgamma-raylifetime:104years (black)andH.E.S.S.data(red).Bottom:Log(N)-Log(S)distri- butionsformodel(black)andH.E.S.S.data(red). • ScaleheightoftheSNRdistribution:30pc • Efficiencyofconvertingexplosionenergyintocos- micrays:9% backgroundweightedbyanadjustableparameterwhich • Averagedensityofsurroundingmedium:0.5cm−3 denotes how much better the background-rejectionof a futureinstrumentwillberelativetotheH.E.S.S.system. Withthispopulationofsourceswecanreproducethe Inadditiontothepopulationofsourceswealsoadddif- distributionofsourcesandwiththisandtheH.E.S.S.ex- fusegamma-rayemissionfromp 0-interactionsusingCO posuremap of the InnerGalaxyand the H.E.S.S. back- maps [8] and assuming solar system cosmic ray (CR) groundwe can simulate the survey of the inner Galaxy densitiesthroughouttheGalaxy. withbothaH.E.S.S.-likeandafutureinstrument. Figure 3 shows simulatedmaps forthe populationof sourcesderivedintheprevioussection,oneforaninstru- A FUTURE VIEWOFTHE INNER mentwithH.E.S.S.effectiveareas,backgroundrejection and angular resolution (top) - it should be noted that in GALAXY this case instead of using the sources from the popula- tion, we used the measured parameters of the H.E.S.S. Usingthepopulationmodelderivedintheprevioussec- sourcesintheinnerGalaxy(intermsoffluxnormalisa- tionandextrapolatingthispopulationtolowerfluxes,we tion,spectralpower-lawindex,positionandextension)to can now make an educated guess at what a future TeV enhancethesimilaritytothewell-knownH.E.S.S.survey gamma-rayinstrumentmight be able to detect in a sur- picture[2].Thisiswhy,e.g.,weseeashell-typeSNRat veyof the inner Galaxy.Starting fromthe modelpopu- the position of RXJ1713.7-3946.Nevertheless, the dis- lation,wehavetoincludetheinstrumentresponsefunc- tribution of these parameters for the population model tion,i.e.,theeffectiveareaandthepoint-spreadfunction matchesthedistributionofH.E.S.S.sourcesasderivedin of the instrument (as adjustable parameters) to predict theprevioussection.ThebottomplotofFigure3shows thenumberofdetectedgammaraysforthegivenpopu- a simulated significance map for a future survey of the lationmodel.WeusetheH.E.S.S.residual(photon-like) 3 Simulation Significance H.E.S.S. (Real Exposure) 2 1 0 -1 -2 Galactic Longitude (deg.) 3 Simulation Significance AGIS/CTA (Flat Exposure) 2 1 0 -1 -2 -3 Galactic Longitude (deg.) FIGURE3. SignificanceMapsoftheinnerl= 30 andb= 3 forthepopulationmodeldescribedinthispaperusingthe ◦ ◦ ± ± H.E.S.S.background. Top: for an array withthe H.E.S.S.survey exposure and the H.E.S.S.angular resolution and background rejection.Bottom:foranarraywithafactorof10largerarea,afactorof2betterbackgroundrejectionandafactorof2improved angularresolution(resultinginafactorof 9improvementinsensitivity). innerGalaxy.Again,forthebrightestsourcestheparam- eters of the H.E.S.S. sources have been used, whereas to extrapolateto lowerfluxeswe used the sourcesfrom thepopulationmodel.Forthisbottomplot,theexposure is a maximumof 5 hoursat anygivenpointonthe sur- vey map was required (i.e., a more even exposure than intheoriginalH.E.S.S.survey).Forthisparticularmap, theeffectiveareaofthefuturearraywas10timesthatof H.E.S.S. and both the angular resolution and the back- groundrejection were conservativelyimprovedonly by a factor of 2, resulting in an overallsensitivity increase byafactorof2 √10 √2 9. × × ∼ PROBINGENERGY-DEPENDENT DIFFUSION In the plots shown in the previous paragraph we have integrated over the whole energy range of a future Cherenkov array. A natural extension to that scheme wouldbe to splitthe energyrangeintoseveralbandsto FIGURE4. Simulatedgamma-raymapintwoenergybands intheGalacticCentreregion,assumingenergy-dependentdif- seehowwellspectralparameterscanbemeasured.Asa fusionofcosmicraysandaburst-likesourceinthecenter. firstexampleofsuchanapproach,wesplitthesimulated diffuseemission frominteractionof cosmic rayswithin interstellargasintheGalacticCenterregionintoseveral target material distribution (note that the unknown z- energybandsandshowinFigure4onlythehighestand distributionwasassumedtobeflat).TheCRdistribution the lowest range (0.1-0.3 TeV, and E > 3 TeV). With waschosenasa3-dimensionalGaussianwithenergyde- this approachwe can test how well a future Cherenkov pendent width, corresponding to burst-like injection in instrumentmightstudyenergy-dependentdiffusion-as- the past(e.g.a SN explosion).Thediffusioncoefficient sumingacentralsourceilluminatesthecloudsintheGC normalisationat1TeVwaschosentomatchtheH.E.S.S. region. data in the GC regionand an energydependenceof the For Figure 4, CS data have been used to trace the formD(E) E0.6 wasassumed.Usinga power-lawin- 7. L.O.Drury,F.A.Aharonian,andH.J.Voelk,A&A287, ∼ jectionenergyspectrumoftheCRswederivedthespatial 959–971(1994),astro-ph/9305037. distributionofCRsintheGC-region.Usingthisdistribu- 8. T.M.Dame,D.Hartmann, andP.Thaddeus, ApJ 547, tion of CRs we calculated the distribution of p 0-decay 792–813(2001),arXiv:astro-ph/0009217. 9. S.R.Kelner,F.A.Aharonian,andV.V.Bugayov,Phys. gamma-rays following the parametrisation of Kelner Rev.D74,16(2006). etal.[9].Thegamma-raymapsshowninFigure4have beensmearedwiththeestimated(energy-dependent)an- gularresolutionofaCTA/AGIS-likeinstrumentandthe probabilitydensitydistributionforgamma-raydetection hasbeenplottedinthetwoenergybandsspecifiedabove. Amissingstepinthisstudy(tobeaddedinafuturestep) is the additionof backgroundand the sampling of pho- tonswithPoissonstatistics. SUMMARY This study provides a first glimpse of what a future ar- rayofground-basedCherenkovtelescopessuchasAGIS or CTA might be able to study in the inner part of the Galaxy. We have constructed a populationmodelbased on a distribution of SNR-like sources that is able to explain the global properties of the H.E.S.S.-detected sources.Extrapolatingthispopulationtogamma-rayflux values below the H.E.S.S.-sensitivity gives a prediction oftherichnessofobjectsthatwemightbeabletostudy withafutureinstrument.Dependingontheexactparam- eters of the simulation we expect 300 sources above ∼ thefluxsensitivitylimitofCTA/AGISfortheinner30 ◦ of the Galaxy. Next steps will include trade-off studies betweenangularresolution,energythresholdand effec- tiveareatoguidethechoiceofarrayparameters.Detailed studiesareneededforawiderangeofastrophysicstopics toeducatesuchaparameterchoice.Wehavebegunwork onthespecificareaoftheenergy-dependentdiffusionin theGalacticCentreregion,asasteptowardsthis. ACKNOWLEDGMENTS The authors would like to thank the members of the H.E.S.S. CTA and AGIS collaborations for help and interestingdiscussions. REFERENCES 1. F.Aharonian,etal.,Science307,1938–1942(2005). 2. F.Aharonian,etal.,ApJ636,777–797(2006). 3. G.Case,andD.Bhattacharya,A&AS120,C437+(1996). 4. L. G. Sveshnikova, A&A 409, 799–807 (2003), arXiv:astro-ph/0303159. 5. L.I.Sedov,Prikl.Mat.Mekh.10(2),241(1946). 6. G.Taylor,RoyalSocietyofLondonProceedingsSeriesA 201,159–174(1950).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.