A future very-high-energy view of our Galaxy S. Funk , J.A. Hinton†, G. Hermann and S. Digel‡ ∗ ∗∗ KavliInstituteforParticleAstrophysicsandCosmology,Stanford,CA94025,USA ∗ †SchoolofPhysics&Astronomy,UniversityofLeeds,Leeds,LS29JT,UK 9 Max-PlanckInstitutfürKernphysik,P.O.Box103980,D-69029,Heidelberg,Germany 0 ∗∗ ‡KavliInstituteforParticleAstrophysicsandCosmology,Stanford,CA-94025,USA 0 2 Abstract. ThesurveyoftheinnerGalaxywithH.E.S.S.[1,2]wasremarkablysuccessfulindetectingawiderangeofnew n very-high-energygamma-raysources.NewTeVgamma-rayemittingsourceclasseswereestablished,althoughseveralofthe a J sourcesremainunidentified,andprogresshasbeenmadeinunderstandingparticleaccelerationinastrophysicalsources.In this work, we constructed a model of a population of such very-high-energy gamma-ray emitters and normalised the flux 3 and size distribution of this population model to theH.E.S.S.-discoveredsources. Extrapolating that population of objects 1 to lower flux levels we investigate what a future array of imaging atmospheric telescopes (IACTs) such as AGIS or CTA might detect inasurveyof theInner Galaxywithanorder ofmagnitude improvement insensitivity.Thesheer number of ] A sourcesdetectedtogetherwiththeimprovedresolvingpowerwilllikelyresultinahugeimprovementinourunderstanding ofthepopulationsofgalacticgamma-raysources.AdeepsurveyoftheinnerMilkyWaywouldalsosupportstudiesofthe G interstellardiffusegamma-rayemissioninregionsofhighcosmic-raydensity.Inthefinalsectionofthispaperweinvestigate . thesciencepotentialfortheGalacticCentreregionforstudyingenergy-dependentdiffusionwithsuchafuturearray. h p Keywords: Gamma-rayobservations,AGIS,CTA,IACT,H.E.S.S.,Ground-basedGamma-rayastronomy,GalacticCentre,SgrA* - PACS: 95.55.Ka,95.85.Pw o r t BUILDINGTHE POPULATION s a Radial distribution [ The first step in the simulation of a future survey of 1.6 1 theGalactic planeistoestablish amodelforthesource 1.4 v population. For this purpose, the sources detected in 1.2 5 the H.E.S.S. survey of the inner Galaxy ( 30 ) were ◦ 8 assumed to be attributable to a single pop±ulation and 1 8 thefollowingobservableswerecomparedbetweenthese 1 0.8 sourcesandasyntheticpopulation: . 1 0.6 0 • Numberofdetectedsources 0.4 9 • Galacticlongitudeandlatitudedistributions 0 0.2 • Gamma-rayfluxdistribution : v • Angularsizedistribution 00 2 4 6 8 10 12 14 16 18 20 i X Two different source population models have so far r been tested separately: an SNR-type and a PWN-type FIGURE1. RadialdistributionofsourcesintheSNRmodel a model.In thefollowingwe will focuson theSNR pop- ingalactocentriccoordinates.Theunitsonthey-axisarearbi- trary. ulationmodel.Tomatchthenumberofsources,thefre- quencyofSNeinourGalaxywasfixedto10percentury. For the distribution of Galactic longitudesand latitudes inourGalaxyasgivenby[4]withtheefficiencyofcon- of the underlying population we used a 3-dimensional vertingthattotalexplosionenergyintogammaraysasa distributionofsourcesinourGalaxy.Theradialdistribu- singleadjustableparameter.Thelinearsizeofthemodel tionweretakenfromamodelofofSNRsinourGalaxy sourcesasafunctionoftimewastakenfromtheSedov- (see Fig. 1) as given in [3] and the height distribution solutionforSNRs[5,6].Usingadistributionofdensities above the galactic disc was assumed to be exponential ofinterstellargasproportionalton 1 aroundtheSNRs, withascaleheightof30kpc,approximatelymatchedto − the gamma-ray flux from p 0-emission was then calcu- thetypicalscaleheightofmoleculargas. lated based on the prescription of Drury, Aharonian & For the distribution of gamma-ray luminosities we Völk [7]. As mentioned before, in this model, the ad- usedthemodeloftotalexplosionenergiesofSupernovae justableparameters(tomatchtheH.E.S.S.distributions) are: es 7 c • SNRTeVgamma-raylifetime Sour 6 • Efficiencyoftransferringexplosionenergyintoki- # neticenergyofprotons 5 4 Withtheseparametersadistributionofsourcesbased on the SNR-modelcan be constructedandcomparedto 3 theabovementionedH.E.S.S.distributions. 2 1 MATCHINGTHEH.E.S.S. POPULATION 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 Galactic Latitude (deg) Thedistributionsofgamma-rayfluxes,galacticlatitudes and angular sizes of the H.E.S.S. sources in the inner Galaxywerefittedtotherespectivedistributionsfromthe es population. It seems clear from the fit (as already sug- urc 18 o gested in the initial publication about the H.E.S.S. sur- # s 16 vey [2]), that the scale height of the sources above the 14 Galaxymustberathersmalltomatchthenarrowdistri- 12 butionofH.E.S.S.sourcesinGalacticlatitude.Figures2 10 showthedistributioninGalacticlatitudeandinLog(N)- 8 Log(S)forthemodelandtheH.E.S.S.data.TheH.E.S.S. 6 Log(N)-Log(S)distributionfollowsapower-lawwithin- 4 dex -1.Areasonableagreementbetweenthemodeland 2 ∼ theH.E.S.S.datacanbeachievedwiththefollowingpa- -013 -12.5 -12 -11.5 -11 -10.5 -10 -9.5 -9 rameters: Log10 (Flux) • NumberofSNexplosions/century:10 FIGURE2. Top:DistributionofGalacticlatitudesformodel • SNRTeVgamma-raylifetime:104years (black)andH.E.S.S.data(red).Bottom:Log(N)-Log(S)distri- butionsformodel(black)andH.E.S.S.data(red). • ScaleheightoftheSNRdistribution:30pc • Efficiencyofconvertingexplosionenergyintocos- micrays:9% backgroundweightedbyanadjustableparameterwhich • Averagedensityofsurroundingmedium:0.5cm−3 denotes how much better the background-rejectionof a futureinstrumentwillberelativetotheH.E.S.S.system. Withthispopulationofsourceswecanreproducethe Inadditiontothepopulationofsourceswealsoadddif- distributionofsourcesandwiththisandtheH.E.S.S.ex- fusegamma-rayemissionfromp 0-interactionsusingCO posuremap of the InnerGalaxyand the H.E.S.S. back- maps [8] and assuming solar system cosmic ray (CR) groundwe can simulate the survey of the inner Galaxy densitiesthroughouttheGalaxy. withbothaH.E.S.S.-likeandafutureinstrument. Figure 3 shows simulatedmaps forthe populationof sourcesderivedintheprevioussection,oneforaninstru- A FUTURE VIEWOFTHE INNER mentwithH.E.S.S.effectiveareas,backgroundrejection and angular resolution (top) - it should be noted that in GALAXY this case instead of using the sources from the popula- tion, we used the measured parameters of the H.E.S.S. Usingthepopulationmodelderivedintheprevioussec- sourcesintheinnerGalaxy(intermsoffluxnormalisa- tionandextrapolatingthispopulationtolowerfluxes,we tion,spectralpower-lawindex,positionandextension)to can now make an educated guess at what a future TeV enhancethesimilaritytothewell-knownH.E.S.S.survey gamma-rayinstrumentmight be able to detect in a sur- picture[2].Thisiswhy,e.g.,weseeashell-typeSNRat veyof the inner Galaxy.Starting fromthe modelpopu- the position of RXJ1713.7-3946.Nevertheless, the dis- lation,wehavetoincludetheinstrumentresponsefunc- tribution of these parameters for the population model tion,i.e.,theeffectiveareaandthepoint-spreadfunction matchesthedistributionofH.E.S.S.sourcesasderivedin of the instrument (as adjustable parameters) to predict theprevioussection.ThebottomplotofFigure3shows thenumberofdetectedgammaraysforthegivenpopu- a simulated significance map for a future survey of the lationmodel.WeusetheH.E.S.S.residual(photon-like) 3 Simulation Significance H.E.S.S. (Real Exposure) 2 1 0 -1 -2 Galactic Longitude (deg.) 3 Simulation Significance AGIS/CTA (Flat Exposure) 2 1 0 -1 -2 -3 Galactic Longitude (deg.) FIGURE3. SignificanceMapsoftheinnerl= 30 andb= 3 forthepopulationmodeldescribedinthispaperusingthe ◦ ◦ ± ± H.E.S.S.background. Top: for an array withthe H.E.S.S.survey exposure and the H.E.S.S.angular resolution and background rejection.Bottom:foranarraywithafactorof10largerarea,afactorof2betterbackgroundrejectionandafactorof2improved angularresolution(resultinginafactorof 9improvementinsensitivity). innerGalaxy.Again,forthebrightestsourcestheparam- eters of the H.E.S.S. sources have been used, whereas to extrapolateto lowerfluxeswe used the sourcesfrom thepopulationmodel.Forthisbottomplot,theexposure is a maximumof 5 hoursat anygivenpointonthe sur- vey map was required (i.e., a more even exposure than intheoriginalH.E.S.S.survey).Forthisparticularmap, theeffectiveareaofthefuturearraywas10timesthatof H.E.S.S. and both the angular resolution and the back- groundrejection were conservativelyimprovedonly by a factor of 2, resulting in an overallsensitivity increase byafactorof2 √10 √2 9. × × ∼ PROBINGENERGY-DEPENDENT DIFFUSION In the plots shown in the previous paragraph we have integrated over the whole energy range of a future Cherenkov array. A natural extension to that scheme wouldbe to splitthe energyrangeintoseveralbandsto FIGURE4. Simulatedgamma-raymapintwoenergybands intheGalacticCentreregion,assumingenergy-dependentdif- seehowwellspectralparameterscanbemeasured.Asa fusionofcosmicraysandaburst-likesourceinthecenter. firstexampleofsuchanapproach,wesplitthesimulated diffuseemission frominteractionof cosmic rayswithin interstellargasintheGalacticCenterregionintoseveral target material distribution (note that the unknown z- energybandsandshowinFigure4onlythehighestand distributionwasassumedtobeflat).TheCRdistribution the lowest range (0.1-0.3 TeV, and E > 3 TeV). With waschosenasa3-dimensionalGaussianwithenergyde- this approachwe can test how well a future Cherenkov pendent width, corresponding to burst-like injection in instrumentmightstudyenergy-dependentdiffusion-as- the past(e.g.a SN explosion).Thediffusioncoefficient sumingacentralsourceilluminatesthecloudsintheGC normalisationat1TeVwaschosentomatchtheH.E.S.S. region. data in the GC regionand an energydependenceof the For Figure 4, CS data have been used to trace the formD(E) E0.6 wasassumed.Usinga power-lawin- 7. L.O.Drury,F.A.Aharonian,andH.J.Voelk,A&A287, ∼ jectionenergyspectrumoftheCRswederivedthespatial 959–971(1994),astro-ph/9305037. distributionofCRsintheGC-region.Usingthisdistribu- 8. T.M.Dame,D.Hartmann, andP.Thaddeus, ApJ 547, tion of CRs we calculated the distribution of p 0-decay 792–813(2001),arXiv:astro-ph/0009217. 9. S.R.Kelner,F.A.Aharonian,andV.V.Bugayov,Phys. gamma-rays following the parametrisation of Kelner Rev.D74,16(2006). etal.[9].Thegamma-raymapsshowninFigure4have beensmearedwiththeestimated(energy-dependent)an- gularresolutionofaCTA/AGIS-likeinstrumentandthe probabilitydensitydistributionforgamma-raydetection hasbeenplottedinthetwoenergybandsspecifiedabove. Amissingstepinthisstudy(tobeaddedinafuturestep) is the additionof backgroundand the sampling of pho- tonswithPoissonstatistics. SUMMARY This study provides a first glimpse of what a future ar- rayofground-basedCherenkovtelescopessuchasAGIS or CTA might be able to study in the inner part of the Galaxy. We have constructed a populationmodelbased on a distribution of SNR-like sources that is able to explain the global properties of the H.E.S.S.-detected sources.Extrapolatingthispopulationtogamma-rayflux values below the H.E.S.S.-sensitivity gives a prediction oftherichnessofobjectsthatwemightbeabletostudy withafutureinstrument.Dependingontheexactparam- eters of the simulation we expect 300 sources above ∼ thefluxsensitivitylimitofCTA/AGISfortheinner30 ◦ of the Galaxy. Next steps will include trade-off studies betweenangularresolution,energythresholdand effec- tiveareatoguidethechoiceofarrayparameters.Detailed studiesareneededforawiderangeofastrophysicstopics toeducatesuchaparameterchoice.Wehavebegunwork onthespecificareaoftheenergy-dependentdiffusionin theGalacticCentreregion,asasteptowardsthis. ACKNOWLEDGMENTS The authors would like to thank the members of the H.E.S.S. CTA and AGIS collaborations for help and interestingdiscussions. REFERENCES 1. F.Aharonian,etal.,Science307,1938–1942(2005). 2. F.Aharonian,etal.,ApJ636,777–797(2006). 3. G.Case,andD.Bhattacharya,A&AS120,C437+(1996). 4. L. G. Sveshnikova, A&A 409, 799–807 (2003), arXiv:astro-ph/0303159. 5. L.I.Sedov,Prikl.Mat.Mekh.10(2),241(1946). 6. G.Taylor,RoyalSocietyofLondonProceedingsSeriesA 201,159–174(1950).